@@ -302,7 +302,7 @@ class StaticGraphAdapter(object):
assertself.model._optimizer, \
"model not ready, please call `model.prepare()` first"
self.mode='train'
assertupdateisTrue,"Model does not support `update == False` in static mode by now."
assertupdateisTrue,"Does not support `update == False` in static mode by now."
returnself._run(inputs,labels)
defeval_batch(self,inputs,labels=None):
...
...
@@ -1032,7 +1032,7 @@ class Model(object):
a numpy array or paddle.Tensor, or a list of arrays or tensors
(in case the model has multiple labels). If has no labels,
set None. Default is None.
update (bool): Whether update parameters after loss.backward() computes. Using this to accumulate gradients. Default is True.
update (bool): Whether update parameters after loss.backward() computing. Using it to accumulate gradients. Default is True.
Returns:
A list of scalar training loss if the model has no metrics,
...
...
@@ -1584,7 +1584,7 @@ class Model(object):
callbacks (Callback|None): A list of `Callback` instances to apply
during training. If None, `ProgBarLogger` and `ModelCheckpoint`
are automatically inserted. Default: None.
accumulate (int): The number of steps to accumulate gradident in training process before optimizer update. Using this to mimic large batch size. Default: 1.
accumulate (int): The number of steps to accumulate gradident during training process before optimizer updates. It can mimic large batch size. Default: 1.