layer.h 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

X
Xin Pan 已提交
17 18 19 20 21 22 23
// clang-format off
#include "paddle/fluid/framework/python_headers.h"
// clang-format on

#include <map>     // NOLINT
#include <string>  // NOLINT
#include <vector>  // NOLINT
M
minqiyang 已提交
24
#include <memory>  // NOLINT
M
minqiyang 已提交
25

26 27 28 29
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"
M
minqiyang 已提交
30
#include "paddle/fluid/platform/device_context.h"
M
minqiyang 已提交
31
#include "paddle/fluid/operators/math/math_function.h"
32

M
minqiyang 已提交
33 34
#include "paddle/fluid/imperative/type_defs.h"

35 36 37
namespace paddle {
namespace imperative {

M
minqiyang 已提交
38 39
class VarBase;

X
Xin Pan 已提交
40 41
namespace py = ::pybind11;

X
Xin Pan 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
class PreparedOp {
 public:
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             framework::OperatorWithKernel::OpKernelFunc func,
             platform::DeviceContext* dev_ctx)
      : op(op), ctx(ctx), func(func), dev_ctx(dev_ctx) {}

  static PreparedOp Prepare(const framework::RuntimeContext& ctx,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);

    // check if op[type] has kernel registered.
    auto& all_op_kernels = op.AllOpKernels();
    auto kernels_iter = all_op_kernels.find(op.Type());
    if (kernels_iter == all_op_kernels.end()) {
      PADDLE_THROW(
          "There are no kernels which are registered in the %s operator.",
          op.Type());
    }

    framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second;

    auto expected_kernel_key = op.GetExpectedKernelType(
X
Xin Pan 已提交
68
        framework::ExecutionContext(op, framework::Scope(), *dev_ctx, ctx));
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

    auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
    // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
    if (kernel_iter == kernels.end() &&
        expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) {
      VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
      expected_kernel_key.library_type_ = framework::LibraryType::kPlain;
      expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout;
      kernel_iter = kernels.find(expected_kernel_key);
    }
#endif
    if (kernel_iter == kernels.end()) {
      PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
                   KernelTypeToString(expected_kernel_key));
    }
    return PreparedOp(op, ctx, kernel_iter->second, dev_ctx);
  }

M
minqiyang 已提交
89 90
  inline platform::DeviceContext* GetDeviceContext() const { return dev_ctx; }

X
Xin Pan 已提交
91 92 93 94 95
  const framework::OperatorBase& op;
  const framework::RuntimeContext& ctx;
  framework::OperatorWithKernel::OpKernelFunc func;
  platform::DeviceContext* dev_ctx;
};
X
polish  
Xin Pan 已提交
96

97 98
class OpBase;

M
minqiyang 已提交
99 100 101 102 103
/* The wrapper for Variable which holds a Variable and a VarBase of its
 * gradient. This object should be managed totally by Python intepreter.
 *
 * Nearly all interface should be implemented in C++.
 */
104 105
class VarBase {
 public:
M
minqiyang 已提交
106
  VarBase() : VarBase(new framework::Variable(), new VarBase(true)) {}
X
polish  
Xin Pan 已提交
107

M
minqiyang 已提交
108 109 110 111
  explicit VarBase(bool stop_gradient)
      : VarBase(new framework::Variable(),
                stop_gradient ? nullptr : new VarBase(true), stop_gradient) {}

M
minqiyang 已提交
112
  VarBase(framework::Variable* var, VarBase* grad)
M
minqiyang 已提交
113 114 115 116
      : VarBase(var, grad, false) {}

 private:
  VarBase(framework::Variable* var, VarBase* grad, bool stop_gradient)
X
Xin Pan 已提交
117
      : var_desc_(nullptr),
X
polish  
Xin Pan 已提交
118 119
        var_(var),
        grads_(grad),
X
Xin Pan 已提交
120 121
        stop_gradient_(stop_gradient),
        pre_op_(nullptr),
M
minqiyang 已提交
122
        pre_op_out_idx_(-1) {}
123

M
minqiyang 已提交
124
 public:
M
minqiyang 已提交
125 126 127 128 129 130 131 132 133
  virtual ~VarBase() {
    if (var_) {
      delete var_;
    }

    if (grads_) {
      delete grads_;
    }
  }
134

M
minqiyang 已提交
135 136
  inline OpBase* PreOp() const { return pre_op_; }
  inline int PreOpOutIdx() const { return pre_op_out_idx_; }
X
Xin Pan 已提交
137

M
minqiyang 已提交
138 139 140 141
  inline void SetStopGradient(bool stop_gradient) {
    stop_gradient_ = stop_gradient;
  }
  inline bool IsStopGradient() const { return stop_gradient_; }
142

M
minqiyang 已提交
143 144
  void RunBackward();

X
Xin Pan 已提交
145
  void TrackPreOp(OpBase* pre_op, const std::string& pre_op_out_name,
M
minqiyang 已提交
146
                  int pre_op_out_idx, bool pre_op_stop_gradient) {
X
Xin Pan 已提交
147 148 149
    pre_op_ = pre_op;
    pre_op_out_name_ = pre_op_out_name;
    pre_op_out_idx_ = pre_op_out_idx;
M
minqiyang 已提交
150 151 152
    if (pre_op_stop_gradient) {
      stop_gradient_ = pre_op_stop_gradient;
    }
X
Xin Pan 已提交
153 154
  }

M
minqiyang 已提交
155 156 157 158 159 160 161 162 163 164
  void ClearGradient() {
    VLOG(1) << "clear gradient of " << var_desc_->Name();
    if (grads_ && grads_->var_ && grads_->var_->IsInitialized()) {
      auto grads_t = grads_->var_->GetMutable<framework::LoDTensor>();
      operators::math::set_constant(
          *(platform::DeviceContextPool::Instance().Get(
              grads_->var_->Get<framework::LoDTensor>().place())),
          grads_t, 0.0);
    }
  }
X
Xin Pan 已提交
165

M
minqiyang 已提交
166
  framework::LoDTensor& GradValue();
167

M
minqiyang 已提交
168 169
  std::unique_ptr<VarBase> NewVarBase(const platform::Place& dst_place,
                                      const bool blocking) const;
M
minqiyang 已提交
170

M
minqiyang 已提交
171 172 173 174 175 176 177
  inline std::string GradName() const {
    PADDLE_ENFORCE(
        var_desc_,
        "Couldn't get gradient variable's name, please call backward() first");
    return string::Sprintf("%s@IGrad", var_desc_->Name());
  }

178
  framework::VarDesc* var_desc_;
M
minqiyang 已提交
179

M
minqiyang 已提交
180 181
  framework::Variable* var_;
  VarBase* grads_;
182

X
Xin Pan 已提交
183
 private:
184
  bool stop_gradient_;
X
Xin Pan 已提交
185 186 187
  OpBase* pre_op_;
  std::string pre_op_out_name_;
  int pre_op_out_idx_;
188 189
};

M
minqiyang 已提交
190 191 192
/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
 * gradient. This object should be managed totally by Python intepreter.
 */
193 194
class OpBase {
 public:
X
Xin Pan 已提交
195 196 197
  OpBase()
      : op_desc_(nullptr),
        forward_id_(-1),
M
minqiyang 已提交
198
        backward_id_(-1),
M
minqiyang 已提交
199
        trace_id_(-1),
P
Paddle CI 已提交
200
        place_(platform::CPUPlace()) {}
201 202

  virtual ~OpBase() {
X
Xin Pan 已提交
203 204 205
    for (framework::OpDesc* desc : grad_op_descs_) {
      delete desc;
    }
206 207
  }

X
Xin Pan 已提交
208
  std::map<std::string, std::vector<VarBase*>> ApplyGrad();
209

X
polish  
Xin Pan 已提交
210 211
  // One of `op_desc_` or `forward_id_` is set, not both.
  // For pure python PyLayer, use `forward_id_`, otherwise, use op_desc_.
212
  framework::OpDesc* op_desc_;
X
Xin Pan 已提交
213
  int forward_id_;
X
polish  
Xin Pan 已提交
214

X
Xin Pan 已提交
215
  // When has backward, one of `grad_op_descs_` or `backward_id_` is set,
X
polish  
Xin Pan 已提交
216
  // not both.
X
polish  
Xin Pan 已提交
217
  // Note: each fwd op corresponds to a vector of bwd ops.
X
Xin Pan 已提交
218
  std::vector<framework::OpDesc*> grad_op_descs_;
X
Xin Pan 已提交
219
  int backward_id_;
M
minqiyang 已提交
220
  int trace_id_;
X
Xin Pan 已提交
221

P
Paddle CI 已提交
222
  platform::Place place_;
M
minqiyang 已提交
223

M
minqiyang 已提交
224 225 226
  VarBasePtrMap input_vars_;
  VarBasePtrMap output_vars_;
  OpBasePtrMap pre_ops_;
X
Xin Pan 已提交
227
  std::map<std::string, std::vector<int>> pre_ops_out_idx_;
228

X
polish  
Xin Pan 已提交
229
  // Inputs to a vector of bwd ops.
X
Xin Pan 已提交
230
  std::vector<framework::VariableValueMap> grad_input_vars_;
X
polish  
Xin Pan 已提交
231
  // Outputs to a vector of bwd ops.
X
Xin Pan 已提交
232
  std::vector<framework::VariableValueMap> grad_output_vars_;
X
polish  
Xin Pan 已提交
233

234 235 236 237 238 239 240 241 242 243 244
  framework::BlockDesc* block_;
};

class Layer {
 public:
  virtual ~Layer() {}

  virtual std::vector<VarBase> Forward(const std::vector<VarBase>& inputs) {
    std::vector<VarBase> vars;
    return vars;
  }
X
Xin Pan 已提交
245
};
246

X
Xin Pan 已提交
247 248 249 250
class PyLayer {
 public:
  virtual ~PyLayer() {}

X
polish  
Xin Pan 已提交
251 252
  static const char* kFwdInp;
  static const char* kFwdOut;
X
Xin Pan 已提交
253

X
Xin Pan 已提交
254
  static void RegisterFunc(int func_id, const py::object& py_func);
X
Xin Pan 已提交
255

X
polish  
Xin Pan 已提交
256 257
  static int NumFuncs();

X
Xin Pan 已提交
258
  static std::vector<VarBase*> Apply(int func_id,
X
Xin Pan 已提交
259 260
                                     const std::vector<VarBase*>& inputs);

X
polish  
Xin Pan 已提交
261 262
  static std::vector<framework::Variable*> ApplyGrad(
      int func_id, const std::vector<framework::Variable*>& inputs);
263

X
polish  
Xin Pan 已提交
264 265 266
 private:
  static std::vector<framework::Variable*> CallPythonFunc(
      const py::object& callable, const std::vector<framework::Variable*>& ins);
267 268 269 270
};

}  // namespace imperative
}  // namespace paddle