layer.h 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

X
Xin Pan 已提交
17
#include <map>
18 19
#include <string>
#include <vector>
M
minqiyang 已提交
20

21 22 23 24
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"
X
try fix  
Xin Pan 已提交
25
#include "pybind11/pybind11.h"
26

M
minqiyang 已提交
27 28
#include "paddle/fluid/imperative/type_defs.h"

29 30 31
namespace paddle {
namespace imperative {

X
Xin Pan 已提交
32 33
namespace py = ::pybind11;

X
Xin Pan 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
class PreparedOp {
 public:
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             framework::OperatorWithKernel::OpKernelFunc func,
             platform::DeviceContext* dev_ctx)
      : op(op), ctx(ctx), func(func), dev_ctx(dev_ctx) {}

  static PreparedOp Prepare(const framework::RuntimeContext& ctx,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);

    // check if op[type] has kernel registered.
    auto& all_op_kernels = op.AllOpKernels();
    auto kernels_iter = all_op_kernels.find(op.Type());
    if (kernels_iter == all_op_kernels.end()) {
      PADDLE_THROW(
          "There are no kernels which are registered in the %s operator.",
          op.Type());
    }

    framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second;

    auto expected_kernel_key = op.GetExpectedKernelType(
X
Xin Pan 已提交
60
        framework::ExecutionContext(op, framework::Scope(), *dev_ctx, ctx));
X
Xin Pan 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

    auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
    // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
    if (kernel_iter == kernels.end() &&
        expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) {
      VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
      expected_kernel_key.library_type_ = framework::LibraryType::kPlain;
      expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout;
      kernel_iter = kernels.find(expected_kernel_key);
    }
#endif
    if (kernel_iter == kernels.end()) {
      PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
                   KernelTypeToString(expected_kernel_key));
    }
    return PreparedOp(op, ctx, kernel_iter->second, dev_ctx);
  }

  const framework::OperatorBase& op;
  const framework::RuntimeContext& ctx;
  framework::OperatorWithKernel::OpKernelFunc func;
  platform::DeviceContext* dev_ctx;
};
X
polish  
Xin Pan 已提交
86

87 88
class OpBase;

M
minqiyang 已提交
89 90 91 92 93
/* The wrapper for Variable which holds a Variable and a VarBase of its
 * gradient. This object should be managed totally by Python intepreter.
 *
 * Nearly all interface should be implemented in C++.
 */
94 95
class VarBase {
 public:
96
  VarBase() : VarBase(new framework::Variable(), new VarBase(true)) {}
X
polish  
Xin Pan 已提交
97 98

  // Owns `var` and `grad`
99
  VarBase(framework::Variable* var, VarBase* grad)
M
minqiyang 已提交
100
      : pre_op_(nullptr),
101
        pre_op_out_name_(),
M
minqiyang 已提交
102 103
        pre_op_out_idx_(-1),
        var_desc_(nullptr),
X
polish  
Xin Pan 已提交
104 105
        var_(var),
        grads_(grad),
M
minqiyang 已提交
106 107 108
        stop_gradient_(false) {}

  explicit VarBase(bool stop_gradient)
109
      : pre_op_(nullptr),
110
        pre_op_out_name_(),
111 112
        pre_op_out_idx_(-1),
        var_desc_(nullptr),
X
Xin Pan 已提交
113
        var_(new framework::Variable()),
M
minqiyang 已提交
114
        grads_(stop_gradient ? nullptr : new VarBase(true)),
115
        stop_gradient_(stop_gradient) {}
116

M
minqiyang 已提交
117 118 119 120 121 122 123 124 125
  virtual ~VarBase() {
    if (var_) {
      delete var_;
    }

    if (grads_) {
      delete grads_;
    }
  }
126

X
Xin Pan 已提交
127
  void RunBackward();
128

M
minqiyang 已提交
129
  framework::LoDTensor& GradValue();
130

M
minqiyang 已提交
131 132 133 134 135 136 137
  inline std::string GradName() const {
    PADDLE_ENFORCE(
        var_desc_,
        "Couldn't get gradient variable's name, please call backward() first");
    return string::Sprintf("%s@IGrad", var_desc_->Name());
  }

138
  OpBase* pre_op_;
X
Xin Pan 已提交
139
  std::string pre_op_out_name_;
140 141 142
  int pre_op_out_idx_;

  framework::VarDesc* var_desc_;
M
minqiyang 已提交
143

M
minqiyang 已提交
144 145
  framework::Variable* var_;
  VarBase* grads_;
146 147

  bool stop_gradient_;
148 149
};

M
minqiyang 已提交
150 151 152
/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
 * gradient. This object should be managed totally by Python intepreter.
 */
153 154
class OpBase {
 public:
X
Xin Pan 已提交
155 156 157
  OpBase()
      : op_desc_(nullptr),
        forward_id_(-1),
X
polish  
Xin Pan 已提交
158
        grad_op_desc_(nullptr),
X
Xin Pan 已提交
159
        backward_id_(-1) {}
160 161 162 163 164

  virtual ~OpBase() {
    if (grad_op_desc_) delete grad_op_desc_;
  }

X
Xin Pan 已提交
165
  std::map<std::string, std::vector<VarBase*>> ApplyGrad();
166

X
polish  
Xin Pan 已提交
167 168
  // One of `op_desc_` or `forward_id_` is set, not both.
  // For pure python PyLayer, use `forward_id_`, otherwise, use op_desc_.
169
  framework::OpDesc* op_desc_;
X
Xin Pan 已提交
170
  int forward_id_;
X
polish  
Xin Pan 已提交
171 172
  // When has backward, one of `grad_op_desc_` or `backward_id_` is set,
  // not both.
173
  framework::OpDesc* grad_op_desc_;
X
Xin Pan 已提交
174
  int backward_id_;
X
Xin Pan 已提交
175

M
minqiyang 已提交
176 177 178
  VarBasePtrMap input_vars_;
  VarBasePtrMap output_vars_;
  OpBasePtrMap pre_ops_;
X
Xin Pan 已提交
179
  std::map<std::string, std::vector<int>> pre_ops_out_idx_;
180

M
minqiyang 已提交
181 182
  framework::VariableValueMap grad_input_vars_;
  framework::VariableValueMap grad_output_vars_;
183 184 185 186 187 188 189 190 191 192 193
  framework::BlockDesc* block_;
};

class Layer {
 public:
  virtual ~Layer() {}

  virtual std::vector<VarBase> Forward(const std::vector<VarBase>& inputs) {
    std::vector<VarBase> vars;
    return vars;
  }
X
Xin Pan 已提交
194
};
195

X
Xin Pan 已提交
196 197 198 199
class PyLayer {
 public:
  virtual ~PyLayer() {}

X
Xin Pan 已提交
200
  static void RegisterFunc(int func_id, const py::object& py_func);
X
Xin Pan 已提交
201

X
polish  
Xin Pan 已提交
202 203
  static int NumFuncs();

X
Xin Pan 已提交
204
  static std::vector<VarBase*> Apply(int func_id,
X
Xin Pan 已提交
205 206
                                     const std::vector<VarBase*>& inputs);

X
polish  
Xin Pan 已提交
207 208
  static std::vector<framework::Variable*> ApplyGrad(
      int func_id, const std::vector<framework::Variable*>& inputs);
209

X
polish  
Xin Pan 已提交
210 211 212
 private:
  static std::vector<framework::Variable*> CallPythonFunc(
      const py::object& callable, const std::vector<framework::Variable*>& ins);
213 214 215 216
};

}  // namespace imperative
}  // namespace paddle