layer.h 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

X
Xin Pan 已提交
17 18 19 20 21 22 23
// clang-format off
#include "paddle/fluid/framework/python_headers.h"
// clang-format on

#include <map>     // NOLINT
#include <string>  // NOLINT
#include <vector>  // NOLINT
M
minqiyang 已提交
24
#include <memory>  // NOLINT
M
minqiyang 已提交
25

26 27 28 29
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"
M
minqiyang 已提交
30
#include "paddle/fluid/platform/device_context.h"
M
minqiyang 已提交
31
#include "paddle/fluid/operators/math/math_function.h"
32

M
minqiyang 已提交
33 34
#include "paddle/fluid/imperative/type_defs.h"

35 36 37
namespace paddle {
namespace imperative {

M
minqiyang 已提交
38 39
class VarBase;

X
Xin Pan 已提交
40 41
namespace py = ::pybind11;

X
Xin Pan 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
class PreparedOp {
 public:
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             framework::OperatorWithKernel::OpKernelFunc func,
             platform::DeviceContext* dev_ctx)
      : op(op), ctx(ctx), func(func), dev_ctx(dev_ctx) {}

  static PreparedOp Prepare(const framework::RuntimeContext& ctx,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);

    // check if op[type] has kernel registered.
    auto& all_op_kernels = op.AllOpKernels();
    auto kernels_iter = all_op_kernels.find(op.Type());
    if (kernels_iter == all_op_kernels.end()) {
      PADDLE_THROW(
          "There are no kernels which are registered in the %s operator.",
          op.Type());
    }

    framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second;

    auto expected_kernel_key = op.GetExpectedKernelType(
X
Xin Pan 已提交
68
        framework::ExecutionContext(op, framework::Scope(), *dev_ctx, ctx));
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

    auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
    // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
    if (kernel_iter == kernels.end() &&
        expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) {
      VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
      expected_kernel_key.library_type_ = framework::LibraryType::kPlain;
      expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout;
      kernel_iter = kernels.find(expected_kernel_key);
    }
#endif
    if (kernel_iter == kernels.end()) {
      PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
                   KernelTypeToString(expected_kernel_key));
    }
    return PreparedOp(op, ctx, kernel_iter->second, dev_ctx);
  }

M
minqiyang 已提交
89 90
  inline platform::DeviceContext* GetDeviceContext() const { return dev_ctx; }

X
Xin Pan 已提交
91 92 93 94 95
  const framework::OperatorBase& op;
  const framework::RuntimeContext& ctx;
  framework::OperatorWithKernel::OpKernelFunc func;
  platform::DeviceContext* dev_ctx;
};
X
polish  
Xin Pan 已提交
96

97 98
class OpBase;

M
minqiyang 已提交
99 100 101 102 103
/* The wrapper for Variable which holds a Variable and a VarBase of its
 * gradient. This object should be managed totally by Python intepreter.
 *
 * Nearly all interface should be implemented in C++.
 */
104 105
class VarBase {
 public:
106
  VarBase() : VarBase(new framework::Variable(), new VarBase(true)) {}
X
polish  
Xin Pan 已提交
107 108

  // Owns `var` and `grad`
109
  VarBase(framework::Variable* var, VarBase* grad)
X
Xin Pan 已提交
110
      : var_desc_(nullptr),
X
polish  
Xin Pan 已提交
111 112
        var_(var),
        grads_(grad),
X
Xin Pan 已提交
113 114 115
        stop_gradient_(false),
        pre_op_(nullptr),
        pre_op_out_idx_(-1) {}
M
minqiyang 已提交
116 117

  explicit VarBase(bool stop_gradient)
X
Xin Pan 已提交
118
      : var_desc_(nullptr),
X
Xin Pan 已提交
119
        var_(new framework::Variable()),
M
minqiyang 已提交
120
        grads_(stop_gradient ? nullptr : new VarBase(true)),
X
Xin Pan 已提交
121 122 123
        stop_gradient_(stop_gradient),
        pre_op_(nullptr),
        pre_op_out_idx_(-1) {}
124

M
minqiyang 已提交
125 126 127 128 129 130 131 132 133
  virtual ~VarBase() {
    if (var_) {
      delete var_;
    }

    if (grads_) {
      delete grads_;
    }
  }
134

X
Xin Pan 已提交
135 136 137 138 139 140
  OpBase* PreOp() const { return pre_op_; }
  int PreOpOutIdx() const { return pre_op_out_idx_; }

  void SetStopGradient(bool stop_gradient) { stop_gradient_ = stop_gradient; }
  bool IsStopGradient() const { return stop_gradient_; }

X
Xin Pan 已提交
141
  void RunBackward();
142

X
Xin Pan 已提交
143 144 145 146 147 148 149 150 151
  void TrackPreOp(OpBase* pre_op, const std::string& pre_op_out_name,
                  int pre_op_out_idx, bool stop_gradient) {
    pre_op_ = pre_op;
    pre_op_out_name_ = pre_op_out_name;
    pre_op_out_idx_ = pre_op_out_idx;
    stop_gradient_ = stop_gradient;
  }

  void ClearGradient() {
M
minqiyang 已提交
152 153 154 155 156 157
    VLOG(1) << "clear gradient of " << var_desc_->Name();
    auto grads_t = grads_->var_->GetMutable<framework::LoDTensor>();
    operators::math::set_constant(
        *(platform::DeviceContextPool::Instance().Get(
            grads_->var_->Get<framework::LoDTensor>().place())),
        grads_t, 0.0);
X
Xin Pan 已提交
158 159
  }

M
minqiyang 已提交
160
  framework::LoDTensor& GradValue();
161

M
minqiyang 已提交
162 163
  std::unique_ptr<VarBase> NewVarBase(const platform::Place& dst_place,
                                      const bool blocking) const;
M
minqiyang 已提交
164

M
minqiyang 已提交
165 166 167 168 169 170 171
  inline std::string GradName() const {
    PADDLE_ENFORCE(
        var_desc_,
        "Couldn't get gradient variable's name, please call backward() first");
    return string::Sprintf("%s@IGrad", var_desc_->Name());
  }

172
  framework::VarDesc* var_desc_;
M
minqiyang 已提交
173

M
minqiyang 已提交
174 175
  framework::Variable* var_;
  VarBase* grads_;
176

X
Xin Pan 已提交
177
 private:
178
  bool stop_gradient_;
X
Xin Pan 已提交
179 180 181
  OpBase* pre_op_;
  std::string pre_op_out_name_;
  int pre_op_out_idx_;
182 183
};

M
minqiyang 已提交
184 185 186
/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
 * gradient. This object should be managed totally by Python intepreter.
 */
187 188
class OpBase {
 public:
X
Xin Pan 已提交
189 190 191
  OpBase()
      : op_desc_(nullptr),
        forward_id_(-1),
M
minqiyang 已提交
192
        backward_id_(-1),
P
Paddle CI 已提交
193
        place_(platform::CPUPlace()) {}
194 195

  virtual ~OpBase() {
X
Xin Pan 已提交
196 197 198
    for (framework::OpDesc* desc : grad_op_descs_) {
      delete desc;
    }
199 200
  }

X
Xin Pan 已提交
201
  std::map<std::string, std::vector<VarBase*>> ApplyGrad();
202

X
polish  
Xin Pan 已提交
203 204
  // One of `op_desc_` or `forward_id_` is set, not both.
  // For pure python PyLayer, use `forward_id_`, otherwise, use op_desc_.
205
  framework::OpDesc* op_desc_;
X
Xin Pan 已提交
206
  int forward_id_;
X
polish  
Xin Pan 已提交
207

X
Xin Pan 已提交
208
  // When has backward, one of `grad_op_descs_` or `backward_id_` is set,
X
polish  
Xin Pan 已提交
209
  // not both.
X
polish  
Xin Pan 已提交
210
  // Note: each fwd op corresponds to a vector of bwd ops.
X
Xin Pan 已提交
211
  std::vector<framework::OpDesc*> grad_op_descs_;
X
Xin Pan 已提交
212
  int backward_id_;
X
Xin Pan 已提交
213

P
Paddle CI 已提交
214
  platform::Place place_;
M
minqiyang 已提交
215

M
minqiyang 已提交
216 217 218
  VarBasePtrMap input_vars_;
  VarBasePtrMap output_vars_;
  OpBasePtrMap pre_ops_;
X
Xin Pan 已提交
219
  std::map<std::string, std::vector<int>> pre_ops_out_idx_;
220

X
polish  
Xin Pan 已提交
221
  // Inputs to a vector of bwd ops.
X
Xin Pan 已提交
222
  std::vector<framework::VariableValueMap> grad_input_vars_;
X
polish  
Xin Pan 已提交
223
  // Outputs to a vector of bwd ops.
X
Xin Pan 已提交
224
  std::vector<framework::VariableValueMap> grad_output_vars_;
X
polish  
Xin Pan 已提交
225

226 227 228 229 230 231 232 233 234 235 236
  framework::BlockDesc* block_;
};

class Layer {
 public:
  virtual ~Layer() {}

  virtual std::vector<VarBase> Forward(const std::vector<VarBase>& inputs) {
    std::vector<VarBase> vars;
    return vars;
  }
X
Xin Pan 已提交
237
};
238

X
Xin Pan 已提交
239 240 241 242
class PyLayer {
 public:
  virtual ~PyLayer() {}

X
polish  
Xin Pan 已提交
243 244
  static const char* kFwdInp;
  static const char* kFwdOut;
X
Xin Pan 已提交
245

X
Xin Pan 已提交
246
  static void RegisterFunc(int func_id, const py::object& py_func);
X
Xin Pan 已提交
247

X
polish  
Xin Pan 已提交
248 249
  static int NumFuncs();

X
Xin Pan 已提交
250
  static std::vector<VarBase*> Apply(int func_id,
X
Xin Pan 已提交
251 252
                                     const std::vector<VarBase*>& inputs);

X
polish  
Xin Pan 已提交
253 254
  static std::vector<framework::Variable*> ApplyGrad(
      int func_id, const std::vector<framework::Variable*>& inputs);
255

X
polish  
Xin Pan 已提交
256 257 258
 private:
  static std::vector<framework::Variable*> CallPythonFunc(
      const py::object& callable, const std::vector<framework::Variable*>& ins);
259 260 261 262
};

}  // namespace imperative
}  // namespace paddle