layer.h 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

X
Xin Pan 已提交
17 18 19 20 21 22 23
// clang-format off
#include "paddle/fluid/framework/python_headers.h"
// clang-format on

#include <map>     // NOLINT
#include <string>  // NOLINT
#include <vector>  // NOLINT
M
minqiyang 已提交
24
#include <memory>  // NOLINT
M
minqiyang 已提交
25

26 27 28 29
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"
M
minqiyang 已提交
30
#include "paddle/fluid/platform/device_context.h"
M
minqiyang 已提交
31
#include "paddle/fluid/operators/math/math_function.h"
32

M
minqiyang 已提交
33 34
#include "paddle/fluid/imperative/type_defs.h"

35 36 37
namespace paddle {
namespace imperative {

M
minqiyang 已提交
38 39
class VarBase;

X
Xin Pan 已提交
40 41
namespace py = ::pybind11;

X
Xin Pan 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
class PreparedOp {
 public:
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             framework::OperatorWithKernel::OpKernelFunc func,
             platform::DeviceContext* dev_ctx)
      : op(op), ctx(ctx), func(func), dev_ctx(dev_ctx) {}

  static PreparedOp Prepare(const framework::RuntimeContext& ctx,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);

    // check if op[type] has kernel registered.
    auto& all_op_kernels = op.AllOpKernels();
    auto kernels_iter = all_op_kernels.find(op.Type());
    if (kernels_iter == all_op_kernels.end()) {
      PADDLE_THROW(
          "There are no kernels which are registered in the %s operator.",
          op.Type());
    }

    framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second;

    auto expected_kernel_key = op.GetExpectedKernelType(
X
Xin Pan 已提交
68
        framework::ExecutionContext(op, framework::Scope(), *dev_ctx, ctx));
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

    auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
    // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
    if (kernel_iter == kernels.end() &&
        expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) {
      VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
      expected_kernel_key.library_type_ = framework::LibraryType::kPlain;
      expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout;
      kernel_iter = kernels.find(expected_kernel_key);
    }
#endif
    if (kernel_iter == kernels.end()) {
      PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
                   KernelTypeToString(expected_kernel_key));
    }
    return PreparedOp(op, ctx, kernel_iter->second, dev_ctx);
  }

M
minqiyang 已提交
89 90
  inline platform::DeviceContext* GetDeviceContext() const { return dev_ctx; }

X
Xin Pan 已提交
91 92 93 94 95
  const framework::OperatorBase& op;
  const framework::RuntimeContext& ctx;
  framework::OperatorWithKernel::OpKernelFunc func;
  platform::DeviceContext* dev_ctx;
};
X
polish  
Xin Pan 已提交
96

97 98
class OpBase;

M
minqiyang 已提交
99 100 101 102 103
/* The wrapper for Variable which holds a Variable and a VarBase of its
 * gradient. This object should be managed totally by Python intepreter.
 *
 * Nearly all interface should be implemented in C++.
 */
104 105
class VarBase {
 public:
M
minqiyang 已提交
106 107 108
  explicit VarBase(std::string name)
      : VarBase(new framework::Variable(), new VarBase(name + "XGRAD", true),
                name) {}
X
polish  
Xin Pan 已提交
109 110

  // Owns `var` and `grad`
M
minqiyang 已提交
111
  VarBase(framework::Variable* var, VarBase* grad, std::string name)
X
Xin Pan 已提交
112
      : var_desc_(nullptr),
X
polish  
Xin Pan 已提交
113 114
        var_(var),
        grads_(grad),
X
Xin Pan 已提交
115 116
        stop_gradient_(false),
        pre_op_(nullptr),
M
minqiyang 已提交
117
        pre_op_out_idx_(-1),
M
minqiyang 已提交
118
        name_(name) {}
M
minqiyang 已提交
119

M
minqiyang 已提交
120
  explicit VarBase(std::string name, bool stop_gradient)
X
Xin Pan 已提交
121
      : var_desc_(nullptr),
X
Xin Pan 已提交
122
        var_(new framework::Variable()),
M
minqiyang 已提交
123
        grads_(stop_gradient ? nullptr : new VarBase(name + "XGRAD", true)),
X
Xin Pan 已提交
124 125
        stop_gradient_(stop_gradient),
        pre_op_(nullptr),
M
minqiyang 已提交
126
        pre_op_out_idx_(-1),
M
minqiyang 已提交
127
        name_(name) {}
128

M
minqiyang 已提交
129 130 131 132 133 134 135 136 137
  virtual ~VarBase() {
    if (var_) {
      delete var_;
    }

    if (grads_) {
      delete grads_;
    }
  }
138

X
Xin Pan 已提交
139 140 141 142 143 144
  OpBase* PreOp() const { return pre_op_; }
  int PreOpOutIdx() const { return pre_op_out_idx_; }

  void SetStopGradient(bool stop_gradient) { stop_gradient_ = stop_gradient; }
  bool IsStopGradient() const { return stop_gradient_; }

X
Xin Pan 已提交
145
  void RunBackward();
146

X
Xin Pan 已提交
147
  void TrackPreOp(OpBase* pre_op, const std::string& pre_op_out_name,
M
minqiyang 已提交
148
                  int pre_op_out_idx, bool pre_op_stop_gradient) {
X
Xin Pan 已提交
149 150 151
    pre_op_ = pre_op;
    pre_op_out_name_ = pre_op_out_name;
    pre_op_out_idx_ = pre_op_out_idx;
M
minqiyang 已提交
152 153 154
    if (pre_op_stop_gradient) {
      stop_gradient_ = pre_op_stop_gradient;
    }
X
Xin Pan 已提交
155 156 157
  }

  void ClearGradient() {
M
minqiyang 已提交
158
    VLOG(1) << "clear gradient of " << var_desc_->Name();
M
minqiyang 已提交
159 160 161 162 163 164 165
    if (grads_ && grads_->var_ && grads_->var_->IsInitialized()) {
      auto grads_t = grads_->var_->GetMutable<framework::LoDTensor>();
      operators::math::set_constant(
          *(platform::DeviceContextPool::Instance().Get(
              grads_->var_->Get<framework::LoDTensor>().place())),
          grads_t, 0.0);
    }
X
Xin Pan 已提交
166 167
  }

M
minqiyang 已提交
168
  framework::LoDTensor& GradValue();
169

M
minqiyang 已提交
170 171
  std::unique_ptr<VarBase> NewVarBase(const platform::Place& dst_place,
                                      const bool blocking) const;
M
minqiyang 已提交
172

M
minqiyang 已提交
173 174 175 176 177 178 179
  inline std::string GradName() const {
    PADDLE_ENFORCE(
        var_desc_,
        "Couldn't get gradient variable's name, please call backward() first");
    return string::Sprintf("%s@IGrad", var_desc_->Name());
  }

180
  framework::VarDesc* var_desc_;
M
minqiyang 已提交
181

M
minqiyang 已提交
182 183
  framework::Variable* var_;
  VarBase* grads_;
184

X
Xin Pan 已提交
185
 private:
186
  bool stop_gradient_;
X
Xin Pan 已提交
187 188 189
  OpBase* pre_op_;
  std::string pre_op_out_name_;
  int pre_op_out_idx_;
M
minqiyang 已提交
190
  std::string name_;
191 192
};

M
minqiyang 已提交
193 194 195
/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
 * gradient. This object should be managed totally by Python intepreter.
 */
196 197
class OpBase {
 public:
X
Xin Pan 已提交
198 199 200
  OpBase()
      : op_desc_(nullptr),
        forward_id_(-1),
M
minqiyang 已提交
201
        backward_id_(-1),
P
Paddle CI 已提交
202
        place_(platform::CPUPlace()) {}
203 204

  virtual ~OpBase() {
X
Xin Pan 已提交
205 206 207
    for (framework::OpDesc* desc : grad_op_descs_) {
      delete desc;
    }
208 209
  }

X
Xin Pan 已提交
210
  std::map<std::string, std::vector<VarBase*>> ApplyGrad();
211

X
polish  
Xin Pan 已提交
212 213
  // One of `op_desc_` or `forward_id_` is set, not both.
  // For pure python PyLayer, use `forward_id_`, otherwise, use op_desc_.
214
  framework::OpDesc* op_desc_;
X
Xin Pan 已提交
215
  int forward_id_;
X
polish  
Xin Pan 已提交
216

X
Xin Pan 已提交
217
  // When has backward, one of `grad_op_descs_` or `backward_id_` is set,
X
polish  
Xin Pan 已提交
218
  // not both.
X
polish  
Xin Pan 已提交
219
  // Note: each fwd op corresponds to a vector of bwd ops.
X
Xin Pan 已提交
220
  std::vector<framework::OpDesc*> grad_op_descs_;
X
Xin Pan 已提交
221
  int backward_id_;
X
Xin Pan 已提交
222

P
Paddle CI 已提交
223
  platform::Place place_;
M
minqiyang 已提交
224

M
minqiyang 已提交
225 226 227
  VarBasePtrMap input_vars_;
  VarBasePtrMap output_vars_;
  OpBasePtrMap pre_ops_;
X
Xin Pan 已提交
228
  std::map<std::string, std::vector<int>> pre_ops_out_idx_;
229

X
polish  
Xin Pan 已提交
230
  // Inputs to a vector of bwd ops.
X
Xin Pan 已提交
231
  std::vector<framework::VariableValueMap> grad_input_vars_;
X
polish  
Xin Pan 已提交
232
  // Outputs to a vector of bwd ops.
X
Xin Pan 已提交
233
  std::vector<framework::VariableValueMap> grad_output_vars_;
X
polish  
Xin Pan 已提交
234

235 236 237 238 239 240 241 242 243 244 245
  framework::BlockDesc* block_;
};

class Layer {
 public:
  virtual ~Layer() {}

  virtual std::vector<VarBase> Forward(const std::vector<VarBase>& inputs) {
    std::vector<VarBase> vars;
    return vars;
  }
X
Xin Pan 已提交
246
};
247

X
Xin Pan 已提交
248 249 250 251
class PyLayer {
 public:
  virtual ~PyLayer() {}

X
polish  
Xin Pan 已提交
252 253
  static const char* kFwdInp;
  static const char* kFwdOut;
X
Xin Pan 已提交
254

X
Xin Pan 已提交
255
  static void RegisterFunc(int func_id, const py::object& py_func);
X
Xin Pan 已提交
256

X
polish  
Xin Pan 已提交
257 258
  static int NumFuncs();

X
Xin Pan 已提交
259
  static std::vector<VarBase*> Apply(int func_id,
X
Xin Pan 已提交
260 261
                                     const std::vector<VarBase*>& inputs);

X
polish  
Xin Pan 已提交
262 263
  static std::vector<framework::Variable*> ApplyGrad(
      int func_id, const std::vector<framework::Variable*>& inputs);
264

X
polish  
Xin Pan 已提交
265 266 267
 private:
  static std::vector<framework::Variable*> CallPythonFunc(
      const py::object& callable, const std::vector<framework::Variable*>& ins);
268 269 270 271
};

}  // namespace imperative
}  // namespace paddle