layer.h 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

X
Xin Pan 已提交
17 18 19 20 21 22 23
// clang-format off
#include "paddle/fluid/framework/python_headers.h"
// clang-format on

#include <map>     // NOLINT
#include <string>  // NOLINT
#include <vector>  // NOLINT
M
minqiyang 已提交
24

25 26 27 28 29
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"

M
minqiyang 已提交
30 31
#include "paddle/fluid/imperative/type_defs.h"

32 33 34
namespace paddle {
namespace imperative {

X
Xin Pan 已提交
35 36
namespace py = ::pybind11;

X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
class PreparedOp {
 public:
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             framework::OperatorWithKernel::OpKernelFunc func,
             platform::DeviceContext* dev_ctx)
      : op(op), ctx(ctx), func(func), dev_ctx(dev_ctx) {}

  static PreparedOp Prepare(const framework::RuntimeContext& ctx,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);

    // check if op[type] has kernel registered.
    auto& all_op_kernels = op.AllOpKernels();
    auto kernels_iter = all_op_kernels.find(op.Type());
    if (kernels_iter == all_op_kernels.end()) {
      PADDLE_THROW(
          "There are no kernels which are registered in the %s operator.",
          op.Type());
    }

    framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second;

    auto expected_kernel_key = op.GetExpectedKernelType(
X
Xin Pan 已提交
63
        framework::ExecutionContext(op, framework::Scope(), *dev_ctx, ctx));
X
Xin Pan 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

    auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
    // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
    if (kernel_iter == kernels.end() &&
        expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) {
      VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
      expected_kernel_key.library_type_ = framework::LibraryType::kPlain;
      expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout;
      kernel_iter = kernels.find(expected_kernel_key);
    }
#endif
    if (kernel_iter == kernels.end()) {
      PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
                   KernelTypeToString(expected_kernel_key));
    }
    return PreparedOp(op, ctx, kernel_iter->second, dev_ctx);
  }

  const framework::OperatorBase& op;
  const framework::RuntimeContext& ctx;
  framework::OperatorWithKernel::OpKernelFunc func;
  platform::DeviceContext* dev_ctx;
};
X
polish  
Xin Pan 已提交
89

90 91
class OpBase;

M
minqiyang 已提交
92 93 94 95 96
/* The wrapper for Variable which holds a Variable and a VarBase of its
 * gradient. This object should be managed totally by Python intepreter.
 *
 * Nearly all interface should be implemented in C++.
 */
97 98
class VarBase {
 public:
99
  VarBase() : VarBase(new framework::Variable(), new VarBase(true)) {}
X
polish  
Xin Pan 已提交
100 101

  // Owns `var` and `grad`
102
  VarBase(framework::Variable* var, VarBase* grad)
M
minqiyang 已提交
103 104 105
      : pre_op_(nullptr),
        pre_op_out_idx_(-1),
        var_desc_(nullptr),
X
polish  
Xin Pan 已提交
106 107
        var_(var),
        grads_(grad),
M
minqiyang 已提交
108 109 110
        stop_gradient_(false) {}

  explicit VarBase(bool stop_gradient)
111 112 113
      : pre_op_(nullptr),
        pre_op_out_idx_(-1),
        var_desc_(nullptr),
X
Xin Pan 已提交
114
        var_(new framework::Variable()),
M
minqiyang 已提交
115
        grads_(stop_gradient ? nullptr : new VarBase(true)),
116
        stop_gradient_(stop_gradient) {}
117

M
minqiyang 已提交
118 119 120 121 122 123 124 125 126
  virtual ~VarBase() {
    if (var_) {
      delete var_;
    }

    if (grads_) {
      delete grads_;
    }
  }
127

X
Xin Pan 已提交
128 129 130 131 132 133 134
  void Clear() {
    delete grads_;
    grads_ = new VarBase(true);
    pre_op_ = nullptr;
    pre_op_out_name_ = "";
  }

X
Xin Pan 已提交
135
  void RunBackward();
136

M
minqiyang 已提交
137
  framework::LoDTensor& GradValue();
138

M
minqiyang 已提交
139 140 141 142 143 144 145
  inline std::string GradName() const {
    PADDLE_ENFORCE(
        var_desc_,
        "Couldn't get gradient variable's name, please call backward() first");
    return string::Sprintf("%s@IGrad", var_desc_->Name());
  }

146
  OpBase* pre_op_;
X
Xin Pan 已提交
147
  std::string pre_op_out_name_;
148 149 150
  int pre_op_out_idx_;

  framework::VarDesc* var_desc_;
M
minqiyang 已提交
151

M
minqiyang 已提交
152 153
  framework::Variable* var_;
  VarBase* grads_;
154 155

  bool stop_gradient_;
156 157
};

M
minqiyang 已提交
158 159 160
/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
 * gradient. This object should be managed totally by Python intepreter.
 */
161 162
class OpBase {
 public:
X
Xin Pan 已提交
163 164 165
  OpBase()
      : op_desc_(nullptr),
        forward_id_(-1),
X
polish  
Xin Pan 已提交
166
        grad_op_desc_(nullptr),
X
Xin Pan 已提交
167
        backward_id_(-1) {}
168 169 170 171 172

  virtual ~OpBase() {
    if (grad_op_desc_) delete grad_op_desc_;
  }

X
Xin Pan 已提交
173
  std::map<std::string, std::vector<VarBase*>> ApplyGrad();
174

X
polish  
Xin Pan 已提交
175 176
  // One of `op_desc_` or `forward_id_` is set, not both.
  // For pure python PyLayer, use `forward_id_`, otherwise, use op_desc_.
177
  framework::OpDesc* op_desc_;
X
Xin Pan 已提交
178
  int forward_id_;
X
polish  
Xin Pan 已提交
179 180
  // When has backward, one of `grad_op_desc_` or `backward_id_` is set,
  // not both.
181
  framework::OpDesc* grad_op_desc_;
X
Xin Pan 已提交
182
  int backward_id_;
X
Xin Pan 已提交
183

M
minqiyang 已提交
184 185 186
  VarBasePtrMap input_vars_;
  VarBasePtrMap output_vars_;
  OpBasePtrMap pre_ops_;
X
Xin Pan 已提交
187
  std::map<std::string, std::vector<int>> pre_ops_out_idx_;
188

M
minqiyang 已提交
189 190
  framework::VariableValueMap grad_input_vars_;
  framework::VariableValueMap grad_output_vars_;
191 192 193 194 195 196 197 198 199 200 201
  framework::BlockDesc* block_;
};

class Layer {
 public:
  virtual ~Layer() {}

  virtual std::vector<VarBase> Forward(const std::vector<VarBase>& inputs) {
    std::vector<VarBase> vars;
    return vars;
  }
X
Xin Pan 已提交
202
};
203

X
Xin Pan 已提交
204 205 206 207
class PyLayer {
 public:
  virtual ~PyLayer() {}

X
polish  
Xin Pan 已提交
208 209
  static const char* kFwdInp;
  static const char* kFwdOut;
X
Xin Pan 已提交
210

X
Xin Pan 已提交
211
  static void RegisterFunc(int func_id, const py::object& py_func);
X
Xin Pan 已提交
212

X
polish  
Xin Pan 已提交
213 214
  static int NumFuncs();

X
Xin Pan 已提交
215
  static std::vector<VarBase*> Apply(int func_id,
X
Xin Pan 已提交
216 217
                                     const std::vector<VarBase*>& inputs);

X
polish  
Xin Pan 已提交
218 219
  static std::vector<framework::Variable*> ApplyGrad(
      int func_id, const std::vector<framework::Variable*>& inputs);
220

X
polish  
Xin Pan 已提交
221 222 223
 private:
  static std::vector<framework::Variable*> CallPythonFunc(
      const py::object& callable, const std::vector<framework::Variable*>& ins);
224 225 226 227
};

}  // namespace imperative
}  // namespace paddle