optimizer.py 63.5 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
from collections import defaultdict

18 19
import numpy as np

20
import paddle
21
import paddle.autograd as imperative_base
22
from paddle import _C_ops
23
from paddle.fluid import core
24 25
from paddle.fluid.framework import (
    Variable,
26 27
    _current_expected_place,
    _in_eager_without_dygraph_check,
28 29
    default_main_program,
    device_guard,
30
    in_dygraph_mode,
31 32
    name_scope,
)
M
MRXLT 已提交
33

34
from ..fluid import framework, unique_name
35
from ..fluid.backward import _get_no_grad_set_name, append_backward
36
from ..fluid.framework import Parameter, program_guard
M
MRXLT 已提交
37
from ..fluid.layer_helper import LayerHelper
38
from .lr import LRScheduler
M
MRXLT 已提交
39

40 41
__all__ = []

M
MRXLT 已提交
42

43
@framework.static_only
44 45 46 47 48 49 50 51
def append_backward_new(
    loss_list,
    parameter_list=None,
    no_grad_set=None,
    callbacks=None,
    checkpoints=None,
    distop_context=None,
):
52
    from paddle.incubate.autograd.primx import Transform, orig2prim
53

54
    program = default_main_program()
55 56 57
    assert (
        program.num_blocks == 1
    ), "The append_backward_new interface is designed to process only one block."
58
    block = program.current_block()
59
    for el in loss_list:
60 61 62
        assert (
            el.block == block
        ), 'variable in loss_list should be in current block of main program'
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

    orig2prim(block)
    ad = Transform(block)
    if parameter_list is None:
        parameter_list = program.global_block().all_parameters()
    param_dot, loss_dot = ad.linearize(parameter_list, loss_list)
    loss_bar, param_bar = ad.transpose(loss_dot, param_dot)

    # remove param_dot and their constructor ops
    op_indexes = []
    for var in param_dot:
        if var is not None:
            op_index = block.ops.index(var.op)
            assert op_index >= 0
            op_indexes.append(op_index)

    ad.erase_ops(sorted(op_indexes))
    ad.erase_dots(param_dot)

    if len(parameter_list) == 1:
        params_and_grads = [(parameter_list, param_bar)]
    else:
        params_and_grads = []
        for i, param in enumerate(parameter_list):
            params_and_grads.append((param, param_bar[i]))
    return params_and_grads


91
class Optimizer:
92
    r"""Optimizer Base class.
M
MRXLT 已提交
93 94 95 96 97 98

    Define the common interface of an optimizer.
    User should not use this class directly,
    but need to use one of it's implementation.

    Args:
99 100
        learning_rate (float|LRScheduler): The learning rate used to update ``Parameter``.
            It can be a float value or any subclass of ``LRScheduler`` .
101
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``. \
102 103 104 105
            This parameter is required in dygraph mode. And you can specify different options for \
            different parameter groups such as the learning rate, weight decay, etc, \
            then the parameters are list of dict. Note that the learning_rate in paramter groups \
            represents the scale of base learning_rate. \
106
            The default value is None in static graph mode, at this time all parameters will be updated.
M
MRXLT 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
            It canbe a float value as coeff of L2 regularization or \
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
            the regularization setting here in optimizer will be ignored for this parameter. \
            Otherwise, the regularization setting here in optimizer will take effect. \
            Default None, meaning there is no regularization.
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of \
            some derived class of ``GradientClipBase`` . There are three cliping strategies \
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , \
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    Returns:
123 124
       Base class for optimizer.

M
MRXLT 已提交
125 126 127 128 129 130
    Examples:
        .. code-block:: python

            #Take the subclass adam as an example
            import paddle
            linear = paddle.nn.Linear(10, 10)
131
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
M
MRXLT 已提交
132 133 134 135
            out = linear(inp)
            loss = paddle.mean(out)
            adam = paddle.optimizer.Adam(learning_rate=0.1,
                    parameters=linear.parameters())
R
Roc 已提交
136
            loss.backward()
M
MRXLT 已提交
137 138 139
            adam.step()
            adam.clear_grad()

140
            #Take the subclass sgd as an example
141
            #optimize parameters in linear_1 and linear2 in different options.
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            sgd = paddle.optimizer.SGD(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1
                }],
158
                weight_decay=0.01)
R
Roc 已提交
159
            loss.backward()
160 161 162
            sgd.step()
            sgd.clear_grad()

M
MRXLT 已提交
163 164
    """

165
    @imperative_base.no_grad()
166 167 168 169 170 171 172 173
    def __init__(
        self,
        learning_rate,
        parameters=None,
        weight_decay=None,
        grad_clip=None,
        name=None,
    ):
174

175 176 177 178
        if parameters is not None:
            # paddle.Tensor is also iterable, so here we don't check whether
            # the input is iterable, if the input is paddle.Tensor, the
            # list(paddle.Tensor) will be a error value
179
            if isinstance(parameters, (paddle.Tensor, core.eager.Tensor)):
180 181
                raise TypeError(
                    "`parameters` argument given to the optimizer should be "
182 183 184 185
                    "an iterable of paddle Tensors, but got argument type is `{}`.".format(
                        type(parameters)
                    )
                )
186 187 188 189
            if isinstance(parameters, dict):
                raise TypeError(
                    "`parameters` argument should not get dict type, "
                    "if parameter groups is needed, please set `parameters`"
190 191
                    " as list of dict"
                )
192 193 194 195
            self._parameter_list = list(parameters)
        else:
            self._parameter_list = None

M
MRXLT 已提交
196
        self._name = name
J
Jiabin Yang 已提交
197
        if framework._non_static_mode():
M
MRXLT 已提交
198 199 200 201 202
            if self._parameter_list is None:
                raise AttributeError(
                    "parameters argument given to the Optimizer should not be None in dygraph mode."
                )
            if weight_decay is not None:
203 204
                if not isinstance(self._parameter_list[0], dict):
                    for param in self._parameter_list:
205 206 207 208
                        if (
                            hasattr(param, 'regularizer')
                            and param.regularizer is not None
                        ):
209 210 211
                            logging.info(
                                "If regularizer of a Parameter has been set by 'paddle.ParamAttr' or 'static.WeightNormParamAttr' already. "
                                "The weight_decay[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
212 213
                                % weight_decay.__str__()
                            )
214 215
                            break

216
        if not isinstance(learning_rate, (float, LRScheduler)):
217
            raise TypeError(
218 219 220
                "learning rate should be float or LRScheduler, got %s here"
                % type(learning_rate)
            )
M
MRXLT 已提交
221
        if grad_clip is not None:
222
            if not isinstance(grad_clip, paddle.nn.clip.GradientClipBase):
M
MRXLT 已提交
223 224 225 226 227
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
        if isinstance(weight_decay, float):
            from ..fluid.regularizer import L2Decay
228

M
MRXLT 已提交
229 230 231 232 233
            self.regularization = L2Decay(weight_decay)
        else:
            self.regularization = weight_decay
        self._grad_clip = grad_clip
        self._learning_rate = learning_rate
L
Leo Chen 已提交
234

M
MRXLT 已提交
235
        self._dtype = None
L
Leo Chen 已提交
236 237
        # Infer the dtype form parameter
        if self._parameter_list:
238 239
            if isinstance(self._parameter_list[0], dict):
                for param_group in self._parameter_list:
240 241 242
                    assert (
                        'params' in param_group
                    ), 'params should be set in parameters if parameter groups are optimized in different options'
243 244 245
                self._dtype = self._parameter_list[0]['params'][0].dtype
            else:
                self._dtype = self._parameter_list[0].dtype
L
Leo Chen 已提交
246

M
MRXLT 已提交
247 248
        # each program should have a independent learning rate
        # program -> tensor(learning_rate)
249
        self._learning_rate_map = {}
M
MRXLT 已提交
250 251 252 253
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra tensors associated with the parameters
        # to train. These tensors are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
254
        self._accumulators = defaultdict(lambda: {})
M
MRXLT 已提交
255 256 257
        self.helper = None
        self._opti_name_list = []
        self._accumulators_holder = {}
258
        self._param_device_map = {}
M
MRXLT 已提交
259
        self.clear_gradients = self.clear_grad
260 261
        self._default_dict = {
            'weight_decay': self.regularization,
262
            'grad_clip': self._grad_clip,
263 264 265 266 267 268 269 270
        }

        self._param_groups = []
        if self._parameter_list and isinstance(self._parameter_list[0], dict):
            for param_group in self._parameter_list:
                self._add_param_group(param_group.copy())
        else:
            self._param_groups = self._parameter_list
M
MRXLT 已提交
271

272
        # NOTE: Multi Tensor: Pass in all parameters and gradients to the op kernel of the Optimizer at one time for updating for dygraph mode.
Z
zhangbo9674 已提交
273
        # Optimizer support list: [ paddle.optimizer.Momentum, paddle.optimizer.Adam].
274 275
        self._use_multi_tensor = None

276
        self._param_dict = self._create_multi_tensor_dict()
277
        self._auxiliary_vars = {}
W
wanghuancoder 已提交
278
        self._already_create_accumulater = set()
279 280 281 282

    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

283 284 285 286 287 288 289
    def _create_multi_tensor_dict(self):
        n = len(self._param_groups) if self._param_groups is not None else 1
        return {
            'FP32_LODTensor': [[] for _ in range(n)],
            'FP16_LODTensor': [[] for _ in range(n)],
        }

290 291 292
    def _get_auxiliary_var(self, key):
        return self._auxiliary_vars.get(key, None)

M
MRXLT 已提交
293 294 295
    @framework.dygraph_only
    def state_dict(self):
        '''
296
        Get state dict information from optimizer. It contain all the tensor used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be include in state dict.
M
MRXLT 已提交
297 298
        If the optimizer never be called(minimize function), the state_dict is empty.

299
        Args:
M
MRXLT 已提交
300 301 302 303
            None

        Returns:
            state_dict(dict) : dict contains all the Tensor used by optimizer
304

M
MRXLT 已提交
305 306 307 308
        Examples:
            .. code-block:: python

                import paddle
M
MRXLT 已提交
309
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
310 311 312 313 314 315 316 317 318

                adam = paddle.optimizer.Adam(0.001, parameters=emb.parameters())
                state_dict = adam.state_dict()

        '''
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
319 320 321 322
        # if has master weight and then save master weight
        if hasattr(self, "_master_weights"):
            if len(self._master_weights) != 0:
                state_dict["master_weights"] = self._master_weights
M
MRXLT 已提交
323
        # global step if use lr decay
324
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
325 326 327 328 329 330
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
        return state_dict

    @framework.dygraph_only
    def set_state_dict(self, state_dict):
        '''
331
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be changed.
M
MRXLT 已提交
332

333
        Args:
M
MRXLT 已提交
334 335 336
            state_dict(dict) : Dict contains all the Tensor needed by optimizer
        Return:
            None
337

M
MRXLT 已提交
338 339 340 341 342
        Examples:
            .. code-block:: python

                import paddle

343
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
344

345 346
                layer_state_dict = emb.state_dict()
                paddle.save(layer_state_dict, "emb.pdparams")
M
MRXLT 已提交
347

348
                scheduler = paddle.optimizer.lr.NoamDecay(
349 350 351 352 353 354
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
                opt_state_dict = adam.state_dict()
                paddle.save(opt_state_dict, "adam.pdopt")
M
MRXLT 已提交
355

356
                opti_state_dict = paddle.load("adam.pdopt")
M
MRXLT 已提交
357 358 359
                adam.set_state_dict(opti_state_dict)

        '''
360
        if isinstance(self._learning_rate, LRScheduler):
361
            self._learning_rate.set_state_dict(state_dict["LR_Scheduler"])
M
MRXLT 已提交
362

363
        # NOTE: exclude learning rate scheduler's state from
364 365 366 367
        # _accumulators_holder.
        state_dict = state_dict.copy()
        if "LR_Scheduler" in state_dict:
            state_dict.pop("LR_Scheduler")
368 369 370 371
        if "master_weights" in state_dict:
            if hasattr(self, "_master_weights"):
                self._master_weights = state_dict["master_weights"]
            state_dict.pop("master_weights")
M
MRXLT 已提交
372 373 374
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
375 376
                assert (
                    var_tmp.name in state_dict
377
                ), f"optimizer Tensor {var_tmp.name} not found"
M
MRXLT 已提交
378 379 380 381 382 383 384
                var = var_tmp.value()
                tensor = var.get_tensor()
                model_np = np.array(tensor)

                load_para = state_dict[var_tmp.name]

                if isinstance(load_para, Variable):
385
                    load_para_np = np.array(load_para)
W
wanghuancoder 已提交
386
                elif isinstance(load_para, core.eager.Tensor):
387
                    load_para_np = np.array(load_para)
M
MRXLT 已提交
388 389 390
                elif isinstance(load_para, np.ndarray):
                    load_para_np = load_para
                else:
391 392 393 394 395 396 397 398 399 400 401
                    raise RuntimeError(
                        "State dict type {} not supprt".format(
                            str(type(load_para))
                        )
                    )

                assert (
                    model_np.shape == load_para_np.shape
                ), "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                    model_np.name, model_np.shape, load_para_np.shape
                )
M
MRXLT 已提交
402

403 404 405 406 407
                assert (
                    model_np.dtype == load_para_np.dtype
                ), "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                    model_np.name, model_np.dtype, load_para_np.dtype
                )
M
MRXLT 已提交
408 409 410 411 412 413 414

                tensor.set(load_para_np, framework._current_expected_place())

    def get_opti_var_name_list(self):
        return self._opti_name_list

    def _create_global_learning_rate(self):
415 416 417 418 419 420
        def do_create():
            # lr var can't be float16 or bfloat16, for pure fp16 or bf16 training, should extra handle the dtype for lr
            _lr_dtype = (
                paddle.get_default_dtype()
                if self._dtype is None
                else self._dtype
421
            )
422 423 424 425 426 427 428 429 430 431 432
            _lr_dtype = (
                paddle.float32
                if (
                    (
                        paddle.get_default_dtype() != "float16"
                        and _lr_dtype == paddle.float16
                    )
                    or (
                        paddle.get_default_dtype() != "bfloat16"
                        and _lr_dtype == paddle.bfloat16
                    )
433
                )
434
                else _lr_dtype
435
            )
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
            if isinstance(self._learning_rate, LRScheduler):
                lr_var = self._global_learning_rate()
                # only create global lr_var once
                if not isinstance(lr_var, framework.Variable):
                    lr_name = unique_name.generate('learning_rate')
                    self._learning_rate._var_name = lr_name
                    lr_var = self.helper.create_global_variable(
                        name=lr_name,
                        shape=[],
                        persistable=True,
                        stop_gradient=True,
                        dtype=_lr_dtype,
                    )
                    main_prog = framework.default_main_program()
                    main_prog.lr_scheduler = self._learning_rate
                    main_prog.lr_var = lr_var

                    self._learning_rate_map[
                        framework.default_main_program()
                    ] = lr_var

                lr_value = float(self._learning_rate())
                self.helper.set_variable_initializer(
                    lr_var,
                    initializer=paddle.nn.initializer.Constant(value=lr_value),
461
                )
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
            elif isinstance(self._learning_rate, float):
                # only create global lr_var once
                lr = self._global_learning_rate()
                if isinstance(lr, framework.Variable):
                    return
                else:
                    self._learning_rate_map[
                        framework.default_main_program()
                    ] = paddle.static.create_global_var(
                        name=unique_name.generate("learning_rate"),
                        shape=[],
                        value=float(self._learning_rate),
                        dtype=_lr_dtype,
                        persistable=True,
                    )

        with paddle.fluid.framework.dygraph_guard_if_declarative():
            do_create()
M
MRXLT 已提交
480 481 482 483 484

    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
485

486
        Set the value of the learning rate manually in the optimizer. If the optimizer use LRScheduler,
M
MRXLT 已提交
487 488 489
        this API cannot be invoked, because it will lead to conflict.

        Args:
M
MRXLT 已提交
490
            value (float): the value of learning rate
M
MRXLT 已提交
491 492 493

        Returns:
            None
494

M
MRXLT 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(10, 10)

                adam = paddle.optimizer.Adam(0.1, parameters=linear.parameters())

                # set learning rate manually by python float value
                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6

        """
517
        if not isinstance(value, (int, float)):
M
MRXLT 已提交
518
            raise TypeError(
519
                "The type of 'value' in optimizer.set_lr must be float, but received %s."
520 521
                % (type(value))
            )
522
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
523
            raise RuntimeError(
524
                "optimizer's learning rate can't be LRScheduler when invoke this API, because this will lead to conflict."
M
MRXLT 已提交
525
            )
526 527 528
        self._learning_rate = float(value)
        current_lr = self._global_learning_rate()
        if current_lr is not None:
529 530
            if in_dygraph_mode():
                place = _current_expected_place()
531 532 533 534 535 536 537
                _C_ops.full_(
                    current_lr,
                    list(current_lr.shape),
                    float(value),
                    current_lr.dtype,
                    place,
                )
538 539
            else:
                global_block = framework.default_main_program().global_block()
540 541 542 543 544 545 546 547 548 549
                global_block.append_op(
                    type='fill_constant',
                    outputs={'Out': [current_lr]},
                    attrs={
                        'dtype': current_lr.dtype,
                        'shape': list(current_lr.shape),
                        'value': float(value),
                    },
                    stop_gradient=True,
                )
M
MRXLT 已提交
550 551 552

    def get_lr(self):
        """
553
        Get current learning rate of optimizer.
554 555
        If 'LRScheduler' is not used, the return value is all the same.
        If 'LRScheduler' is used, the return value is the current scheduled learing rete.
M
MRXLT 已提交
556

M
MRXLT 已提交
557
        Returns:
558
            float: The current learning rate of optimizer.
M
MRXLT 已提交
559 560 561 562

        Examples:
            .. code-block:: python

563
                # train on default dynamic graph mode
M
MRXLT 已提交
564
                import paddle
565 566 567 568 569 570 571 572 573 574 575
                import numpy as np
                emb = paddle.nn.Embedding(10, 3)

                ## example1: LRScheduler is not used, return the same value is all the same
                adam = paddle.optimizer.Adam(0.01, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.01
                    adam.step()
M
MRXLT 已提交
576

577 578 579 580 581 582 583 584
                ## example2: StepDecay is used, return the scheduled learning rate
                scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                adam = paddle.optimizer.Adam(scheduler, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.5->0.05...
M
MRXLT 已提交
585
                    adam.step()
586
                    scheduler.step()
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605

                # train on static graph mode
                paddle.enable_static()
                main_prog = paddle.static.Program()
                start_prog = paddle.static.Program()
                with paddle.static.program_guard(main_prog, start_prog):
                    x = paddle.static.data(name='x', shape=[None, 10])
                    z = paddle.static.nn.fc(x, 100)
                    loss = paddle.mean(z)
                    scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                    adam = paddle.optimizer.Adam(learning_rate=scheduler)
                    adam.minimize(loss)

                exe = paddle.static.Executor()
                exe.run(start_prog)
                for batch in range(10):
                    print("Learning rate of step{}: {}", adam.get_lr())     # 0.5->0.05->0.005...
                    out = exe.run(main_prog, feed={'x': np.random.randn(3, 10).astype('float32')})
                    scheduler.step()
M
MRXLT 已提交
606 607 608 609 610

        """
        if isinstance(self._learning_rate, float):
            return self._learning_rate
        else:
611
            return self._learning_rate()
M
MRXLT 已提交
612 613 614 615 616 617 618 619 620 621 622

    def _global_learning_rate(self, program=None):
        """
        get global decayed learning rate
        :return:
        """
        if program is None:
            program = framework.default_main_program()
        return self._learning_rate_map.get(program, None)

    def _append_optimize_op(self, block, param_and_grad):
623
        """append optimize operator to block and return all the added optimize_op"""
M
MRXLT 已提交
624 625 626 627 628 629 630
        raise NotImplementedError(
            "Class \"Optimizer\" connot be used directly as an optimizer, please use its subclasses such as \"Adam\""
        )

    def _create_param_lr(self, param_and_grad):
        # create learning rate tensor for every parameter
        param = param_and_grad[0]
631 632 633 634
        if hasattr(param, 'optimize_attr'):
            param_lr = param.optimize_attr['learning_rate']
            if type(param_lr) == Variable:
                return param_lr
M
MRXLT 已提交
635
            else:
636 637 638 639
                if param_lr == 1.0:
                    return self._global_learning_rate()
                else:
                    with default_main_program()._lr_schedule_guard(
640 641
                        is_with_opt=True
                    ), framework.name_scope('scale_with_param_lr'):
642 643 644
                        return self._global_learning_rate() * param_lr
        else:
            return self._global_learning_rate()
M
MRXLT 已提交
645

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
    def _create_master_weight(self, param):
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
            var = paddle.static.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
            block = self.helper.startup_program.global_block()
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
            self._master_weights[param.name] = var
        return var

M
MRXLT 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        pass

    def _finish_update(self, block, parameters_and_grads):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer

        Returns:
            None
        """
        pass

696 697 698 699 700 701 702 703 704 705
    def _add_accumulator(
        self,
        name,
        param,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
M
MRXLT 已提交
706 707 708 709 710 711 712 713 714 715 716
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss tensor is present
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be added
            dtype: data type of the accumulator tensor
            fill_value: value to initialize the accumulator tensor
        """
        if self._name is not None:
            name = self._name + "_" + name
717 718 719 720
        if (
            name in self._accumulators
            and param.name in self._accumulators[name]
        ):
J
Jiabin Yang 已提交
721
            if framework._non_static_mode():
M
MRXLT 已提交
722
                return self._accumulators[name][param.name]
723 724
            raise Exception(
                "Accumulator {} already exists for parameter {}".format(
725 726 727
                    name, param.name
                )
            )
728
        if shape is None:
M
MRXLT 已提交
729 730 731 732 733 734 735 736 737 738 739
            shape = param.shape
        assert isinstance(self.helper, LayerHelper)

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype or param.dtype,
740
            type=core.VarDesc.VarType.LOD_TENSOR
741 742
            if framework._in_eager_without_dygraph_check()
            else (param.type if type is None else type),
M
MRXLT 已提交
743
            shape=shape,
744 745
            belong_to_optimizer=True,
        )
M
MRXLT 已提交
746 747
        if device is None:
            device = self._get_device_for_param(param.name)
748

W
wanghuancoder 已提交
749 750 751 752
        if (
            in_dygraph_mode()
            and (device == 'cpu' or isinstance(device, core.CPUPlace))
            and (not core.is_compiled_with_xpu())
753 754 755 756 757 758 759
        ):
            _C_ops.full_(
                var,
                var.shape,
                str(float(fill_value)),
                var.dtype,
                core.CPUPlace(),
760
            )
761 762 763
        else:
            with device_guard(device):
                self.helper.set_variable_initializer(
764 765 766 767
                    var,
                    initializer=paddle.nn.initializer.Constant(
                        value=float(fill_value)
                    ),
768
                )
M
MRXLT 已提交
769

J
Jiabin Yang 已提交
770
        if framework._non_static_mode():
M
MRXLT 已提交
771
            if len(self._accumulators_holder) > 0:
772 773 774 775 776
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
777
                var.set_value(self._accumulators_holder.pop(var_name))
M
MRXLT 已提交
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793

        self._accumulators[name][param.name] = var
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be fetched

        Returns:
            accumulator tensor for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
794 795 796 797
        if (
            name not in self._accumulators
            or param.name not in self._accumulators[name]
        ):
798 799
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
800 801 802
                    name, param.name
                )
            )
M
MRXLT 已提交
803 804
        return self._accumulators[name][param.name]

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
    def _get_accumulator_master(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param.dtype
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
        target_name = target_param.name
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
                    name, target_name
                )
            )
        return self._accumulators[name][target_name]

M
MRXLT 已提交
833 834
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
835
            if param_and_grad[0].stop_gradient is False:
M
MRXLT 已提交
836 837
                param_name = param_and_grad[0].name
                ops = target_block.ops
838 839
                device_attr_name = (
                    core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
MRXLT 已提交
840 841 842 843 844
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
845 846
                            device_attr_name
                        )
M
MRXLT 已提交
847 848 849 850 851 852 853 854
                        break

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

855 856 857
    def _create_optimization_pass(
        self, parameters_and_grads, param_group_idx=0
    ):
M
MRXLT 已提交
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
        """Add optimization operators to update gradients to tensors.

        Args:
          parameters_and_grads(list(tuple(Tensor, Tensor))):
            a list of (tensor, gradient) pair to update.

        Returns:
          return_op_list: a list of operators that will complete one step of
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
        """
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
        # for parameters and extend _finish_update method to add custom ops.

        # Allways called under program_guard use global block as loss block
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

        global_block = framework.default_main_program().global_block()
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
885 886 887
            assert (
                current_block.backward_block_idx != -1
            ), "current block is not global_block, but it doesn't have backward block."
M
MRXLT 已提交
888
            target_block = framework.default_main_program().blocks[
889 890
                current_block.backward_block_idx
            ]
M
MRXLT 已提交
891 892 893

        start = len(target_block.ops)
        self.helper = LayerHelper(self.__class__.__name__)
894

M
MRXLT 已提交
895 896
        self._create_global_learning_rate()

Z
zhangbo9674 已提交
897 898
        # NOTE: Multi Tensor support [ Momentum, Adam ] for dygraph mode
        if self._use_multi_tensor and self.__class__.__name__ in [
899 900
            'Momentum',
            'Adam',
Z
zhangbo9674 已提交
901
        ]:
902
            if (
903 904 905
                len(self._param_dict['FP32_LODTensor'][param_group_idx]) == 0
                and len(self._param_dict['FP16_LODTensor'][param_group_idx])
                == 0
906
            ):
907
                if isinstance(parameters_and_grads, list):
908
                    assert param_group_idx == 0
909 910 911 912 913 914 915
                    self._multi_tensor_init(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads
                            if not p[0].stop_gradient
                        ],
916
                        param_group_idx,
917
                    )
918 919
                else:
                    self._update_param_group(parameters_and_grads)
920 921 922 923 924 925 926
                    self._multi_tensor_init(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads['params']
                            if not p[0].stop_gradient
                        ],
927
                        param_group_idx,
928
                    )
J
Jiabin Yang 已提交
929
            if framework._non_static_mode():
930
                self._append_optimize_multi_tensor_op(
931 932 933
                    target_block,
                    parameters_and_grads,
                    param_group_idx=param_group_idx,
934
                )
935
            else:
936 937 938
                self._update_param_device_map(
                    parameters_and_grads, target_block
                )
939 940 941
                # NOTE: Multi Tensor requires all parameters to be in the same device and program.
                # param_grad_list = [p_0,g_0,p_1,g_1,....]
                param_grad_list = []
942
                for param_and_grad in parameters_and_grads:
943 944 945 946
                    if (
                        not param_and_grad[0].stop_gradient
                        and param_and_grad[1] is not None
                    ):
947 948 949
                        param_grad_list.append(param_and_grad[0])
                        param_grad_list.append(param_and_grad[1])
                with param_grad_list[0].block.program._optimized_guard(
950 951
                    param_grad_list
                ), name_scope("optimizer"):
952 953 954
                    device = self._get_device_for_param(param_grad_list[0].name)
                    with device_guard(device):
                        self._append_optimize_multi_tensor_op(
955 956 957
                            target_block,
                            parameters_and_grads,
                            param_group_idx=param_group_idx,
958
                        )
959
        else:
J
Jiabin Yang 已提交
960
            if not framework._non_static_mode():
961 962 963 964 965 966 967 968
                params_grads_device_map = (
                    parameters_and_grads['params']
                    if isinstance(parameters_and_grads, dict)
                    else parameters_and_grads
                )
                self._update_param_device_map(
                    params_grads_device_map, target_block
                )
969

970
            if isinstance(parameters_and_grads, list):
971 972 973 974 975 976 977 978 979
                with paddle.fluid.framework.dygraph_guard_if_declarative():
                    self._create_accumulators(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads
                            if not p[0].stop_gradient
                        ],
                    )
980
            else:
981 982
                params_acc_dict = parameters_and_grads.copy()
                params_acc_dict['params'] = [
983 984
                    p[0]
                    for p in params_acc_dict['params']
985 986
                    if not p[0].stop_gradient
                ]
987 988
                with paddle.fluid.framework.dygraph_guard_if_declarative():
                    self._create_accumulators(target_block, params_acc_dict)
989

J
Jiabin Yang 已提交
990
            if framework._non_static_mode():
W
wanghuancoder 已提交
991 992 993 994
                found_inf = self._get_auxiliary_var('found_inf')
                if found_inf:
                    if isinstance(found_inf, core.eager.Tensor):
                        self._set_auxiliary_var('found_inf', True)
995
                else:
W
wanghuancoder 已提交
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
                    if isinstance(found_inf, core.eager.Tensor):
                        self._set_auxiliary_var('found_inf', False)
                    if isinstance(parameters_and_grads, list):
                        for param_and_grad in parameters_and_grads:
                            if param_and_grad[1] is None:
                                continue
                            if param_and_grad[0].stop_gradient is False:
                                self._append_optimize_op(
                                    target_block, param_and_grad
                                )
                    else:
                        for param_and_grad in parameters_and_grads['params']:
                            if param_and_grad[1] is None:
                                continue
                            if param_and_grad[0].stop_gradient is False:
1011
                                param_grad_dict = {}
W
wanghuancoder 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
                                param_grad_dict['params'] = param_and_grad
                                param_grad_dict.update(
                                    {
                                        k: v
                                        for k, v in parameters_and_grads.items()
                                        if k != 'params'
                                    }
                                )
                                self._append_optimize_op(
                                    target_block, param_grad_dict
                                )
1023 1024
            else:
                for param_and_grad in parameters_and_grads:
1025 1026
                    if param_and_grad[1] is None:
                        continue
1027
                    with param_and_grad[0].block.program._optimized_guard(
1028 1029
                        param_and_grad
                    ), name_scope("optimizer"):
1030
                        if param_and_grad[0].stop_gradient is False:
1031
                            device = self._get_device_for_param(
1032 1033
                                param_and_grad[0].name
                            )
1034 1035
                            with device_guard(device):
                                optimize_op = self._append_optimize_op(
1036 1037
                                    target_block, param_and_grad
                                )
M
MRXLT 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        self._finish_update(target_block, parameters_and_grads)

        end = len(target_block.ops)
        return target_block._slice_ops(start, end)

    def _append_dgc_ops(self, param_and_grad):
        pass

1049 1050 1051 1052 1053 1054 1055 1056
    def backward(
        self,
        loss,
        startup_program=None,
        parameters=None,
        no_grad_set=None,
        callbacks=None,
    ):
M
MRXLT 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
        """
        The first part of ``minimize``, do auto-diff to append backward operations for
        the current program.

        Args:
            loss (Tensor): ``loss`` tensor to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.

        Return:
            list: list of (param, grad) tensor pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.

        Examples:
            .. code-block:: python

                import paddle
1082 1083
                x = paddle.arange(26, dtype="float32").reshape([2, 13])

M
MRXLT 已提交
1084
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1085
                # This can be any optimizer supported by dygraph.
1086
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
M
MRXLT 已提交
1087
                                            parameters = linear.parameters())
1088
                out = linear(x)
M
MRXLT 已提交
1089 1090 1091 1092 1093
                out.backward()
                adam.step()
                adam.clear_grad()
        """
        act_no_grad_set = None
J
Jiabin Yang 已提交
1094
        if framework._non_static_mode():
M
MRXLT 已提交
1095 1096 1097 1098
            pass
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)

L
Leo Chen 已提交
1099 1100 1101 1102
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

1103
        if framework.in_dygraph_mode():
1104
            parameter_list = parameters if parameters else self._parameter_list
1105

1106 1107 1108 1109 1110 1111 1112
            # It is very time-consuming to call c++ functions in a loop on the python side.
            # We put this part of the code on the c++ side to improve the speed in eager mode.
            params_grads = []
            grads = core.eager.get_all_grads(parameter_list)
            for index, grad in enumerate(grads):
                if grad is not None:
                    params_grads.append((parameter_list[index], grad))
M
MRXLT 已提交
1113 1114
        else:
            if callbacks is None:
1115
                callbacks = [paddle.nn.clip.error_clip_callback]
M
MRXLT 已提交
1116
            else:
1117
                assert isinstance(callbacks, list)
M
MRXLT 已提交
1118
            program = loss.block.program
zhouweiwei2014's avatar
zhouweiwei2014 已提交
1119 1120
            assert np.prod(loss.shape) == 1, (
                "The number of elements of loss should be 1, but the current loss.shape is {}, whose number of elements is not 1. "
M
MRXLT 已提交
1121
                "Maybe that you should call paddle.mean to process the current loss.".format(
1122 1123 1124 1125
                    loss.shape
                )
            )
            parameter_list = parameters if parameters else self._parameter_list
M
MRXLT 已提交
1126
            with program_guard(program, startup_program):
1127
                from paddle.incubate.autograd.utils import prim_enabled
1128

1129
                if prim_enabled():
1130 1131 1132
                    params_grads = append_backward_new(
                        [loss], parameter_list, act_no_grad_set, callbacks
                    )
1133
                else:
1134 1135 1136
                    params_grads = append_backward(
                        loss, parameter_list, act_no_grad_set, callbacks
                    )
M
MRXLT 已提交
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
                # Note: since we can't use all_reduce_op now,
                #  dgc_op should be the last op of one grad.
                self._append_dgc_ops(params_grads)
        return params_grads

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle

1158
                inp = paddle.uniform([10, 10], dtype="float32", min=-0.1, max=0.1)
M
MRXLT 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
                linear = paddle.nn.Linear(10, 10)
                out = linear(inp)
                loss = paddle.mean(out)
                optimizer = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters())
                params_grads = optimizer.backward(loss)
                optimizer.apply_gradients(params_grads)

        """

        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        # 'optimizer(grad_clip)' or 'set_gradient_clip'
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:

1176
            params_grads = paddle.nn.clip.append_gradient_clip_ops(params_grads)
M
MRXLT 已提交
1177 1178

        # Add regularization if any
1179 1180 1181
        params_grads = self.append_regularization_ops(
            params_grads, self.regularization
        )
M
MRXLT 已提交
1182 1183 1184 1185

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

1186 1187 1188
    def _apply_optimize(
        self, loss, startup_program, params_grads, param_group_idx=0
    ):
M
MRXLT 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Tensor): loss tensor to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameters`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
J
Jiabin Yang 已提交
1200
        if framework._non_static_mode():
1201 1202 1203 1204
            with program_guard(
                framework.default_main_program(),
                framework.default_startup_program(),
            ):
1205 1206 1207
                if isinstance(params_grads, list):
                    if self._grad_clip is not None:
                        params_grads = self._grad_clip(params_grads)
1208
                    params_grads = self.append_regularization_ops(
1209 1210
                        params_grads, self.regularization
                    )
1211 1212 1213
                else:
                    grad_clip = params_grads['grad_clip']
                    if grad_clip is not None:
1214
                        params_grads['params'] = grad_clip(
1215 1216
                            params_grads['params']
                        )
1217

1218
                    params_grads['params'] = self.append_regularization_ops(
1219 1220
                        params_grads['params'], self.regularization
                    )
1221 1222 1223
                optimize_ops = self._create_optimization_pass(
                    params_grads, param_group_idx=param_group_idx
                )
M
MRXLT 已提交
1224
        else:
1225
            assert param_group_idx == 0
M
MRXLT 已提交
1226 1227 1228 1229 1230
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

1231
    def _create_regularization_of_grad(self, param, grad, regularization=None):
1232
        """Create and add backward regularization Operators
1233

1234 1235 1236
        Function helper of append_regularization_ops.
        """
        # If no gradient or no regularization is specified,  then we don't need to do anything
1237
        if grad is None or (
1238 1239 1240 1241 1242 1243
            (
                not hasattr(param, 'regularizer')
                or (hasattr(param, 'regularizer') and param.regularizer is None)
            )
            and regularization is None
        ):
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
            return grad
        regularization_term = None
        if hasattr(param, 'regularizer') and param.regularizer is not None:
            # Add variable for regularization term in grad block
            regularization_term = param.regularizer(param, grad, grad.block)
        elif regularization is not None:
            regularization_term = regularization(param, grad, grad.block)

        assert regularization_term is not None

1254
        if framework.in_dygraph_mode():
Y
YuanRisheng 已提交
1255
            return _C_ops.add_n([grad, regularization_term])
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
        else:
            new_grad = grad
            if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
                # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
                # the grad's type and name will be changed. But the gradient's name
                # is used in ParallelExecutor Reduce mode, so I add a flag for
                # the new_grad here.
                new_grad = grad.block.create_var(
                    name=grad.name + core.kNewGradSuffix(),
                    dtype=param.dtype,
                    shape=param.shape,
                    lod_level=param.lod_level,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                )
1270

1271 1272 1273
            inputs = {"X": [grad, regularization_term]}
            outputs = {"Out": [new_grad]}
            grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
1274

1275
            return new_grad
1276

1277 1278 1279
    def append_regularization_ops(
        self, parameters_and_grads, regularization=None
    ):
1280
        r"""Create and add backward regularization Operators
1281

1282 1283 1284 1285
        Creates and adds backward regularization operators in the BlockDesc.
        This will add gradients of the regularizer function to the gradients
        of the parameters and return these modified gradients. This is the
        same as implementing weight decay in optimizers for regularization.
1286

1287 1288 1289 1290 1291
        Args:
            parameters_and_grads: A list of (parameters, gradients) pairs
                                  that need to be regularized.
            regularization: A global regularizer. If the parameter is not
                            set. It will be applied with regularizer.
1292

1293 1294 1295
        Returns:
            list[(Variable, Variable)]: list of (parameters, gradients) \
            pair with the regularized gradient
1296

1297 1298 1299 1300
        Raises:
            Exception: Unknown regularization type
        """
        params_and_grads = []
J
Jiabin Yang 已提交
1301
        if framework._non_static_mode():
1302
            for param, grad in parameters_and_grads:
1303
                new_grad = self._create_regularization_of_grad(
1304 1305
                    param, grad, regularization
                )
1306 1307 1308 1309 1310
                params_and_grads.append((param, new_grad))
        else:
            repeate_regularizer = False
            with framework.name_scope('regularization'):
                for param, grad in parameters_and_grads:
1311 1312 1313 1314 1315
                    if (
                        not repeate_regularizer
                        and param.regularizer is not None
                        and regularization is not None
                    ):
1316 1317 1318 1319
                        repeate_regularizer = True
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
1320 1321
                            % regularization.__str__()
                        )
1322 1323
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = self._create_regularization_of_grad(
1324 1325
                            param, grad, regularization
                        )
1326 1327 1328
                        params_and_grads.append((param, new_grad))
        return params_and_grads

M
MRXLT 已提交
1329 1330 1331
    def _get_no_grad_set(self, loss, no_grad_set=None):
        no_grad_set = _get_no_grad_set_name(no_grad_set)
        parameters = loss.block.program.global_block().all_parameters()
1332 1333 1334
        param_no_trainable = {
            param.name for param in parameters if param.stop_gradient is True
        }
M
MRXLT 已提交
1335 1336 1337 1338 1339
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

1340
    @framework.non_static_only
1341
    def clear_grad(self, set_to_zero=True):
M
MRXLT 已提交
1342 1343
        """
        Clear the gradients of all optimized parameters for model.
1344 1345

        If not, new gradient will accumulat on previous gradient.
1346 1347

        There are two method to clear grad: set_to_zero or delete grad.
1348

1349 1350
        Args:
            set_to_zero (bool, optional): If set grads to zero or not, default is True.
1351

M
MRXLT 已提交
1352 1353
        Returns:
            None
1354

M
MRXLT 已提交
1355 1356 1357 1358
        Examples:
            .. code-block:: python

                import paddle
1359

1360
                a = paddle.arange(26, dtype="float32").reshape([2, 13])
M
MRXLT 已提交
1361
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1362
                # This can be any optimizer supported by dygraph.
1363
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
M
MRXLT 已提交
1364 1365 1366 1367 1368 1369 1370
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()

        """
1371
        param_list = []
1372
        if self._parameter_list is None or not isinstance(
1373 1374
            self._parameter_list[0], dict
        ):
1375 1376
            for p in self._parameter_list:
                if not p.stop_gradient:
1377
                    param_list.append(p)
1378 1379 1380 1381
        else:
            for param_group in self._param_groups:
                for p in param_group['params']:
                    if not p.stop_gradient:
1382
                        param_list.append(p)
1383

J
Jiabin Yang 已提交
1384
        if _in_eager_without_dygraph_check():
1385
            for p in param_list:
1386
                p.clear_gradient(set_to_zero)
1387 1388
        else:
            core.clear_gradients(param_list, set_to_zero)
M
MRXLT 已提交
1389

1390
    @imperative_base.no_grad()
1391 1392 1393
    def minimize(
        self, loss, startup_program=None, parameters=None, no_grad_set=None
    ):
M
MRXLT 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
        """
        Add operations to minimize ``loss`` by updating ``parameters``.

        Args:
            loss (Tensor): A ``Tensor`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) tensor pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1412 1413
            In static graph mode, the returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
M
MRXLT 已提交
1414 1415 1416 1417
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
            .. code-block:: python
1418

M
MRXLT 已提交
1419
                import paddle
M
MRXLT 已提交
1420
                linear = paddle.nn.Linear(10, 10)
1421 1422
                input = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
                out = linear(input)
M
MRXLT 已提交
1423 1424 1425 1426 1427 1428 1429 1430
                loss = paddle.mean(out)

                beta1 = paddle.to_tensor([0.9], dtype="float32")
                beta2 = paddle.to_tensor([0.99], dtype="float32")

                adam = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters(),
                        weight_decay=0.01)
R
Roc 已提交
1431
                loss.backward()
M
MRXLT 已提交
1432 1433 1434
                adam.minimize(loss)
                adam.clear_grad()

M
MRXLT 已提交
1435 1436 1437
        """
        assert isinstance(loss, Variable), "The loss should be an Tensor."

1438
        parameter_list = parameters if parameters else self._parameter_list
1439

1440 1441 1442 1443 1444 1445
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameters=parameter_list,
            no_grad_set=no_grad_set,
        )
M
MRXLT 已提交
1446

1447 1448 1449
        optimize_ops = self._apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
MRXLT 已提交
1450 1451 1452

        return optimize_ops, params_grads

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
    def _declarative_step(self):
        """
        In declarative mode, we forward `call step` to `call apply_gradients`
        """
        params = (
            paddle.static.default_main_program().global_block().all_parameters()
        )
        assert not isinstance(
            self._parameter_list[0], dict
        ), "Only list of parameters is supported while using optimizer in @paddle.jit.static."
        selected_params = {param.name for param in self._parameter_list}
        parameters = [param for param in params if param.trainable]
        parameters = list(
            filter(
                lambda x: x.name in selected_params and hasattr(x, "grad"),
                parameters,
            )
        )
        params_grads = [(param, param.grad) for param in parameters]
        optimize_ops = self.apply_gradients(params_grads)
        return

1475
    @imperative_base.no_grad()
1476
    @framework.non_static_only
M
MRXLT 已提交
1477 1478
    def step(self):
        """
M
MRXLT 已提交
1479
        Execute the optimizer and update parameters once.
1480

M
MRXLT 已提交
1481 1482 1483 1484 1485 1486 1487
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
1488

1489
                a = paddle.arange(26, dtype="float32").reshape([2, 13])
M
MRXLT 已提交
1490
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1491
                # This can be any optimizer supported by dygraph.
1492
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
1493
                                        parameters = linear.parameters())
M
MRXLT 已提交
1494 1495 1496 1497 1498
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()
        """
1499 1500 1501
        if paddle.fluid.dygraph.base.in_declarative_mode():
            self._declarative_step()
            return
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511

        if not isinstance(self._param_groups[0], dict):
            params_grads = []
            for param in self._param_groups:
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    grad_var = param._grad_ivar()
                    params_grads.append((param, grad_var))

1512
            self._apply_optimize(
1513 1514 1515 1516
                loss=None,
                startup_program=None,
                params_grads=params_grads,
                param_group_idx=0,
1517
            )
1518 1519 1520

        else:
            # optimize parameters in groups
1521
            for idx, param_group in enumerate(self._param_groups):
1522
                params_grads = defaultdict(lambda: [])
1523 1524 1525 1526 1527 1528 1529
                for param in param_group['params']:
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        grad_var = param._grad_ivar()
                        params_grads['params'].append((param, grad_var))
                params_grads.update(
1530 1531 1532
                    {k: v for k, v in param_group.items() if k != 'params'}
                )
                self._apply_optimize(
1533 1534 1535 1536
                    loss=None,
                    startup_program=None,
                    params_grads=params_grads,
                    param_group_idx=idx,
1537
                )
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552

    def _add_param_group(self, param_group):
        """
        Add a param group to parameter_list.

        Args:
            param_group (dict): The group of Tensors to be optimzed with
            different optimization options.
        """
        params = param_group['params']
        if isinstance(params, Parameter):
            param_group['params'] = [params]
        elif isinstance(params, set):
            raise TypeError(
                "optimizer parameters should be in ordered collections,"
1553 1554
                "but received set, please use list instead."
            )
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
        else:
            param_group['params'] = list(params)

        # Update optimization options for each groups
        for k, v in self._default_dict.items():
            param_group.setdefault(k, v)

        param_set = set()
        for group in self._param_groups:
            param_set.update(set(group['params']))

        if not param_set.isdisjoint(set(param_group['params'])):
            raise ValueError(
1568 1569
                "some parameters appear in more than one parameter group"
            )
1570 1571 1572 1573 1574

        for param in param_group['params']:
            weight_decay = param_group['weight_decay']
            if isinstance(weight_decay, float):
                from ..fluid.regularizer import L2Decay
1575

1576 1577 1578 1579
                regularization = L2Decay(weight_decay)
            else:
                regularization = weight_decay
            param.regularizer = regularization
W
wangguanzhong 已提交
1580
            param.optimize_attr['learning_rate'] = param_group.get(
1581 1582
                'learning_rate', 1.0
            )
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593

        self._param_groups.append(param_group)

    def _update_param_group(self, parameters):
        """
        Update the param group with new entry
        Args:
            parameters (dict): The extra group of Tensors to be optimzed with
            different optimization options. Only used in child class.
        """
        pass
1594 1595

    @framework.dygraph_only
1596
    def _multi_tensor_init(self, target_block, parameters, param_group_idx):
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
        """
        All parameters used for optimizer (such as: parameters, master_weight, velocity_acc for momentum) calculations are grouped into a python list by data type (float16, float32).
        This function will be overridden in the corresponding optimizer file.

        Args:
            target_block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        pass

    @framework.dygraph_only
1608
    def _append_optimize_multi_tensor_op(
1609
        self, target_block, parameters_and_grads, param_group_idx
1610
    ):
1611
        """
1612 1613 1614
        For Multi Tensor, append optimize merged_operator to block.
        """
        pass
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628

    def _is_dtype_fp16_or_bf16(self, dtype):
        """
        check the dtype is fp16 or the dtype is bf16
        :param dtype: instance of core.VarDesc.VarType
        :return: True if dtype is one of fp16 or bf16, False otherwise
        """
        assert isinstance(
            dtype, core.VarDesc.VarType
        ), "The dtype should be an instance of core.VarDesc.VarType."
        return (
            dtype == core.VarDesc.VarType.FP16
            or dtype == core.VarDesc.VarType.BF16
        )