analysis_predictor.h 17.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#pragma once
16 17
#include <algorithm>
#include <map>
N
nhzlx 已提交
18
#include <memory>
19 20
#include <string>
#include <vector>
21
#include "paddle/phi/common/data_type.h"
22
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
23 24
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#endif
25
#include "paddle/fluid/framework/naive_executor.h"
26
#include "paddle/fluid/framework/op_compatible_info.h"
Y
Yan Chunwei 已提交
27 28
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/api/api_impl.h"
Y
Yan Chunwei 已提交
29
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
N
nhzlx 已提交
30
#include "paddle/fluid/inference/api/helper.h"
Y
Yan Chunwei 已提交
31
#include "paddle/fluid/inference/api/paddle_inference_api.h"
32
#include "paddle/fluid/inference/api/resource_manager.h"
W
Wilber 已提交
33
#include "paddle/fluid/platform/device/gpu/gpu_types.h"
34
#include "paddle/fluid/platform/float16.h"
35
#include "paddle/fluid/string/printf.h"
36 37 38 39
#ifdef PADDLE_WITH_TESTING
#include <gtest/gtest.h>
#include <gtest/gtest_prod.h>
#endif
40

41 42
namespace paddle_infer {
using float16 = paddle::platform::float16;
W
Wilber 已提交
43 44 45
namespace experimental {
class InternalUtils;
};
46
}  // namespace paddle_infer
47 48 49 50 51 52 53 54 55 56 57
///
/// \file analysis_predictor.h
///
/// \brief Compared to NativePredictor, AnalysisPredictor is a high-performance
/// predictor that includes many optimizations
///
/// \author paddle-infer@baidu.com
/// \date 2020-01-01
/// \since 1.7.0
///

Y
Yan Chunwei 已提交
58 59
namespace paddle {

60
using framework::NaiveExecutor;
61 62 63
using framework::proto::ProgramDesc;
using inference::analysis::Analyzer;
using inference::analysis::Argument;
Y
Yan Chunwei 已提交
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
///
/// \class AnalysisPredictor
///
/// \brief The analysis predictor is based on the original native predictor with
/// IR and Analysis support. It will optimize IR and Parameters in the runtime.
///
/// The predictor has the following typical uses:
///
/// Get predictor
/// \code{cpp}
///   auto predictor = CreatePaddlePredictor(config);
/// \endcode
///
/// Get input or output names
/// \code{cpp}
///   auto input_names = predictor->GetInputNames();
///   auto output_names = predictor->GetOutputNames();
/// \endcode
///
/// Get input or output tensors
/// \code{cpp}
///   auto input_t = predictor->GetInputTensor(input_names[0]);
///   auto output_t = predictor->GetOutputTensor(output_names[0]);
/// \endcode
///
/// Run predictor
/// \code{cpp}
///   predictor->ZeroCopyRun();
/// \endcode
///
95
class AnalysisPredictor : public PaddlePredictor {
Y
Yan Chunwei 已提交
96
 public:
97 98 99 100 101
  ///
  /// \brief Construct a new Analysis Predictor object
  ///
  /// \param[in] AnalysisConfig config
  ///
102
  explicit AnalysisPredictor(const AnalysisConfig &config) : config_(config) {
103 104 105
    if (config_.shape_range_info_collected()) {
      config_.SwitchIrOptim(false);
    }
106
    int trt_identifier = config_.trt_engine_memory_sharing_identifier_;
107
    if (trt_identifier > 0) {
Y
Yuanle Liu 已提交
108 109 110
      // NOTE(liuyuanle): For convenience, we set the id of the predictor to
      // negative sharing_identifier directly. In the future, this may affect
      // the meaning of negative predictor id.
111
      predictor_id_ = -trt_identifier;
112
      LOG(WARNING)
Y
Yuanle Liu 已提交
113
          << "Since the engine context memory of multiple predictors "
114 115 116
             "is enabled in Paddle-TRT, we set the id of these predictors to "
             "negative sharing_identifier you specified : "
          << predictor_id_;
117 118 119
    } else {
      predictor_id_ = inference::GetUniqueId();
    }
120
  }
121 122 123
  ///
  /// \brief Destroy the Analysis Predictor object
  ///
F
flame 已提交
124
  ~AnalysisPredictor();
Y
Yan Chunwei 已提交
125

126 127 128 129 130 131 132 133 134 135 136 137
  ///
  /// \brief Initialize predictor
  ///
  /// Initializing predictor mainly includes the following tasks:
  /// preparing scope, creating executor, preparing program, initializing the
  /// variables required by the executor, getting the feed_target_names and
  /// fetch_target_names, etc.
  ///
  /// \param[in] parent_scope parent scope
  /// \param[in] program program
  /// \return Whether the init function executed successfully
  ///
138 139
  bool Init(const std::shared_ptr<framework::Scope> &parent_scope,
            const std::shared_ptr<framework::ProgramDesc> &program = nullptr);
Y
Yan Chunwei 已提交
140

141 142 143 144 145 146 147 148
  ///
  /// \brief Run the prediction engine. Deprecated. Please refer to ZeroCopyRun
  ///
  /// \param[in] inputs input tensors
  /// \param[out] output_data output tensors
  /// \param[in] batch_size data's batch size
  /// \return Whether the function executed successfully
  ///
149 150 151 152
  bool Run(const std::vector<PaddleTensor> &inputs,
           std::vector<PaddleTensor> *output_data,
           int batch_size = -1) override;

153 154 155 156 157
  ///
  /// \brief Get the input names
  ///
  /// \return input names
  ///
158
  std::vector<std::string> GetInputNames() override;
159 160 161 162 163
  ///
  /// \brief Get the output names
  ///
  /// \return output names
  ///
164
  std::vector<std::string> GetOutputNames() override;
N
nhzlx 已提交
165

166 167 168 169 170 171
  ///
  /// \brief Get the Input Tensor object
  ///
  /// \param[in] name input name
  /// \return input tensor
  ///
172 173
  std::unique_ptr<ZeroCopyTensor> GetInputTensor(
      const std::string &name) override;
174 175 176 177 178 179
  ///
  /// \brief Get the Output Tensor object
  ///
  /// \param[in] name otuput name
  /// \return output tensor
  ///
180 181
  std::unique_ptr<ZeroCopyTensor> GetOutputTensor(
      const std::string &name) override;
182 183 184 185 186
  ///
  /// \brief Get all input names and their corresponding shapes
  ///
  /// \return the map of input names and shapes
  ///
187
  std::map<std::string, std::vector<int64_t>> GetInputTensorShape() override;
188 189 190 191 192 193
  ///
  /// \brief Get all input names and their corresponding type
  ///
  /// \return the map of input names and type
  ///
  std::map<std::string, paddle_infer::DataType> GetInputTypes() override;
194 195 196 197 198 199 200 201 202 203 204 205
  ///
  /// \brief Get all output names and their corresponding shapes
  ///
  /// \return the map of output names and shapes
  ///
  std::map<std::string, std::vector<int64_t>> GetOutputTensorShape() override;
  ///
  /// \brief Get all output names and their corresponding type
  ///
  /// \return the map of output names and type
  ///
  std::map<std::string, paddle_infer::DataType> GetOutputTypes() override;
206

207 208 209 210 211
  ///
  /// \brief Run the prediction engine
  ///
  /// \return Whether the function executed successfully
  ///
212 213
  bool ZeroCopyRun() override;

W
Wilber 已提交
214 215 216 217 218
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // Note: Can only be used under thread_local semantics.
  bool ExpRunWithExternalStream(const gpuStream_t stream);
#endif

219 220 221 222 223 224 225 226
  ///
  /// \brief Get the execution stream on devices with a concept of stream,
  /// otherwise returns nullptr.
  ///
  /// \return The execution stream or nullptr (CPU).
  ///
  void *GetExecStream() const override;

227 228 229 230 231
  ///
  /// \brief Create feed fetch variables
  ///
  /// \param[in] scope Scope needed to create variables
  ///
232
  void CreateFeedFetchVar(framework::Scope *scope);
233 234 235 236
  ///
  /// \brief Determine the model's inputs and outputs based on the program's
  /// feed fetch op
  ///
237
  void PrepareFeedFetch();
Y
Yan Chunwei 已提交
238

239 240 241 242
  ///
  /// \brief Set predictor's argument according to config, which mainly includes
  /// execution information and graph optimization related pass information
  ///
243
  void PrepareArgument();
244 245 246 247
  ///
  /// \brief According to argument information, execute the relevant pass
  /// to get the optimized model program
  ///
Y
Yan Chunwei 已提交
248 249
  void OptimizeInferenceProgram();

250 251 252 253
  ///
  /// \brief Clear the intermediate tensors of the predictor
  ///
  ///
254
  void ClearIntermediateTensor() override;
255

256 257 258 259 260 261 262 263 264 265 266
  ///
  /// \brief Release all tmp tensor to compress the size of the memory pool.
  /// The memory pool is considered to be composed of a list of chunks, if
  /// the chunk is not occupied, it can be released.
  ///
  /// \return Number of bytes released. It may be smaller than the actual
  /// released memory, because part of the memory is not managed by the
  /// MemoryPool.
  ///
  uint64_t TryShrinkMemory() override;

267 268 269 270 271
  ///
  /// \brief Get the argument used by predictor
  ///
  /// \return the argument obtained by config
  ///
272
  Argument &analysis_argument() { return *argument_; }
273 274 275 276 277
  ///
  /// \brief Clone to get the new predictor. thread safe.
  ///
  /// \return get a new predictor
  ///
278
  std::unique_ptr<PaddlePredictor> Clone(void *stream = nullptr) override;
279 280 281 282 283
  ///
  /// \brief Get the scope used by predictor
  ///
  /// \return scope
  ///
284
  framework::Scope *scope() { return scope_.get(); }
285 286 287 288 289
  ///
  /// \brief Get the inference program
  ///
  /// \return the inference program
  ///
290 291
  framework::ProgramDesc &program() { return *inference_program_; }

292 293 294 295 296
  ///
  /// \brief Get the serialized program
  ///
  /// \return the serialized program
  ///
297
  std::string GetSerializedProgram() const override;
Y
Yan Chunwei 已提交
298

299 300 301 302 303 304 305
  ///
  /// \brief Get the fusion_statis_t
  ///
  /// \return the fusion_statis_t
  ///
  Argument::fusion_statis_t fusion_statis() { return fusion_statis_; }

306 307 308 309 310 311 312 313 314 315
  ///
  /// \brief Register a output hook function to operate the intermediate tensor
  /// of op output. when using this function, memory reuse should be tured off.
  /// The hook function signature is void(const std::string&, const
  /// std::string&, const Tensor&>). Here, the first parameter is op's
  /// type, the second param is output var name of the op, and the third
  /// parameter is output tensor with the var name.
  ///
  void RegisterOutputHook(const Exp_OutputHookFunc &hookfunc) override;

316 317 318 319 320
  ///
  /// \brief Initialize mkldnn quantizer and execute mkldnn quantization pass
  ///
  /// \return Whether the function executed successfully
  ///
321 322
  bool MkldnnQuantize();

323 324 325 326 327
  ///
  /// \brief save program to model and save parameters to params
  ///
  /// \param[in] dir path to save the model
  ///
328 329
  void SaveOptimModel(const std::string &dir);

330
 protected:
331 332 333 334 335 336 337
  ///
  /// \brief Prepare predictor's required programs, including loading model
  /// information, graph optimization, and executor creation variables, etc.
  ///
  /// \param[in] program paddle program
  /// \return Whether the function executed successfully
  ///
338
  bool PrepareProgram(const std::shared_ptr<framework::ProgramDesc> &program);
339 340 341 342 343 344
  ///
  /// \brief Prepare scope environment, each predictor has its own scope
  ///
  /// \param[in] parent_scope The scope of the predictor to be cloned, or null
  /// \return Whether the function executed successfully
  ///
345
  bool PrepareScope(const std::shared_ptr<framework::Scope> &parent_scope);
346 347 348 349 350
  ///
  /// \brief Create an Executor object
  ///
  /// \return Whether the function executed successfully
  ///
351
  bool CreateExecutor();
352 353 354 355 356
  ///
  /// \brief According to the model's program, the executor creates ops
  ///
  /// \return Whether the function executed successfully
  ///
357 358
  bool PrepareExecutor();

359 360 361 362 363
  ///
  /// \brief Load model program.
  ///
  /// \return Whether the function executed successfully
  ///
364
  bool LoadProgramDesc();
365 366 367 368 369
  ///
  /// \brief Load model parameters.
  ///
  /// \return Whether the function executed successfully
  ///
370
  bool LoadParameters();
371

372 373 374 375 376 377 378
  ///
  /// \brief Prepare input data, only used in Run()
  ///
  /// \param[in] input_datas inpute tensors
  /// \param[in] scope the scope used by predictor
  /// \return Whether the function executed successfully
  ///
379 380
  bool SetFeed(const std::vector<PaddleTensor> &input_datas,
               framework::Scope *scope);
381 382 383 384 385 386 387
  ///
  /// \brief Get the output data, only used in Run()
  ///
  /// \param[out] output_data output tensors
  /// \param[in] scope the scope used by predictor
  /// \return Whether the function executed successfully
  ///
388 389
  bool GetFetch(std::vector<PaddleTensor> *output_data,
                framework::Scope *scope);
390 391 392 393 394 395
  ///
  /// \brief Get the output data, only used in GetFetch()
  ///
  /// \param[in] tensor for fetch op
  /// \param[out] output_data output tensor
  ///
396
  template <typename T>
397
  void GetFetchOne(const phi::DenseTensor &fetchs, PaddleTensor *output_data);
398 399 400 401 402 403 404 405
  ///
  /// \brief PreSet for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
  /// \param[in] inputs tensors
  ///
406
  void MkldnnPreSet(const std::vector<PaddleTensor> &inputs);
W
Wilber 已提交
407 408 409 410 411 412 413 414 415 416 417

  ///
  /// \brief PreSet for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
  /// \param[in] inputs tensor shape
  ///
  void MkldnnPreSet(const std::vector<std::vector<int>> &inputs_shape);

418 419 420 421 422 423
  ///
  /// \brief PostReset for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
424
  void MkldnnPostReset();
Y
Yan Chunwei 已提交
425

426
#ifdef PADDLE_WITH_TENSORRT
427 428 429 430 431 432 433 434 435 436 437 438 439 440
  ///
  /// \brief save calibration table
  ///
  /// When we use Paddle-TRT INT8 engine, we need to generate calibration table
  /// data first,
  /// the calibration table contains the range for each op's input and output,
  /// this whole process can be divided into several steps:
  /// 1. Builds a 32-bit engine, runs it on the calibration set, and records a
  ///  histogram for each tensor of the distribution of activation values.
  /// 2. Builds a calibration table from the histograms.
  /// After step 2, we need to store the calibration table on disk.
  ///
  /// \return Whether the function executed successfully
  ///
N
nhzlx 已提交
441
  bool SaveTrtCalibToDisk();
N
nhzlx 已提交
442
#endif
N
nhzlx 已提交
443

444 445 446 447 448 449 450 451
// Some more detailed tests, they are made the friends of the predictor, so that
// the all the details can be tested.
#if PADDLE_WITH_TESTING
  FRIEND_TEST(AnalysisPredictor, analysis_off);
  FRIEND_TEST(AnalysisPredictor, analysis_on);
  FRIEND_TEST(AnalysisPredictor, with_gpu);
#endif

452 453 454
 protected:
  const void *GetDeviceContexts() const override;

455 456 457 458
 private:
  void StatisticShapeRangeInfo();
  void CollectShapeRangeInfo();

459 460 461 462
  void InitPlace();
  void InitDeviceContexts();
  void InitResourceManager(void *stream);

463
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
  // fleet exe related

  ///
  /// \brief prepare for fleet executor to run
  ///
  /// Used in AnalysisPredictor::Init(),
  ///
  bool PrepareFleetExecutor();

  ///
  /// \brief init NCCL env for multi gpus inference
  ///
  /// Used in AnalysisPredictor::PrepareFleetExecutor()
  ///
  bool CommInit();

  ///
  /// \brief read the config to init NCCL env
  ///
  /// Used in AnalysisPredictor::CommInit()
  ///
  /// \param[in] ring_id_to_ranks: a ptr to ring_id_to_ranks
  /// \param[in] rank_to_ring_ids: a ptr to rank_to_ring_ids
  ///
  bool LoadConverterConfig(
      std::map<int64_t, std::vector<int64_t>> *ring_id_to_ranks,
      std::map<int64_t, std::vector<int64_t>> *rank_to_ring_ids);

  ///
  /// \brief add ops and run them with NaiveExecutor to init NCCL env
  ///
  /// Used in AnalysisPredictor::CommInit()
  ///
  /// \param[in] tmp_var_name: var name to hold NCCL unique id
  /// \param[in] nranks: number of ranks in one comm group
  /// \param[in] rank: relative rank of current rank in the comm group
  /// \param[in] peer_endpoints: group's peers' endpoints
  /// \param[in] block: the block to insert comm ops
  /// \param[in] ring_id: the ring id to be used to init NCCL env
  ///
504 505 506
  void InsertCommOp(std::string tmp_var_name,
                    int nranks,
                    int rank,
507
                    const std::vector<std::string> &peer_endpoints,
508 509
                    framework::BlockDesc *block,
                    int ring_id);
510 511
#endif

Y
Yan Chunwei 已提交
512
 private:
513
  AnalysisConfig config_;
514 515
  std::unique_ptr<Argument> argument_;
  Argument::fusion_statis_t fusion_statis_;
516 517 518 519 520
  std::unique_ptr<NaiveExecutor> executor_;
  platform::Place place_;
  std::shared_ptr<framework::Scope> scope_;
  framework::Scope *sub_scope_{nullptr};
  std::shared_ptr<framework::ProgramDesc> inference_program_;
521
  framework::OpCompatibleMap op_compatible_map_;
522 523
  std::vector<framework::OpDesc *> feeds_;
  std::map<std::string, size_t> feed_names_;
N
nhzlx 已提交
524 525
  // Sorted according to the idx.
  std::map<size_t, std::string> idx2feeds_;
Y
Yan Chunwei 已提交
526
  std::vector<framework::OpDesc *> fetches_;
N
nhzlx 已提交
527 528
  std::map<size_t, std::string> idx2fetches_;

529 530
  phi::DataType model_precision_{phi::DataType::FLOAT32};

531 532 533 534 535 536 537 538 539 540
#if PADDLE_WITH_MKLDNN
  // Helper class to perform quantization
  class MkldnnQuantizer;
  MkldnnQuantizer *mkldnn_quantizer_{nullptr};

#if PADDLE_WITH_TESTING
  friend class MkldnnQuantizerTest;
#endif
#endif

541
  // Memory buffer for feed inputs. The temporary LoDTensor will cause serious
542
  // concurrency problems, wrong results and memory leak, so cache them.
543
  std::vector<phi::DenseTensor> feed_tensors_;
Y
Yan Chunwei 已提交
544
  details::TensorArrayBatchCleaner tensor_array_batch_cleaner_;
Y
Yan Chunwei 已提交
545 546
  // A mutex help to make Clone thread safe.
  std::mutex clone_mutex_;
547

Y
Yan Chunwei 已提交
548 549 550 551
  // For memory optimization.
  const size_t max_shape_collect_count_{1000};
  int need_collect_var_shapes_{-1};  // -1 for default, 0 for false, 1 for true.
  std::vector<std::map<std::string, std::vector<int>>> batch_var_shapes_;
552
  int predictor_id_;
553
  int root_predictor_id_{-1};
Y
Yan Chunwei 已提交
554

555
 private:
556 557
  std::vector<Exp_OutputHookFunc> hookfuncs_;

558 559
  // Some status here that help to determine the status inside the predictor.
  bool status_is_cloned_{false};
560 561

  std::map<std::string, std::vector<std::vector<int32_t>>> shape_info_;
562
  std::map<std::string, std::vector<std::vector<int32_t>>> shape_tensor_value_;
563
  static int clone_num_;
564

565 566 567 568 569
  bool private_context_{false};
  void *predictor_stream_{nullptr};
  std::map<phi::Place, std::shared_future<std::unique_ptr<phi::DeviceContext>>>
      device_contexts_;

570
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
571 572 573 574 575
  // fleet executor related
  distributed::FleetExecutorDesc executor_desc_;
  std::shared_ptr<distributed::FleetExecutor> fleet_exe_;
  std::shared_ptr<distributed::TaskNode> task_node_;
#endif
W
Wilber 已提交
576
  friend class paddle_infer::experimental::InternalUtils;
Y
Yan Chunwei 已提交
577 578 579
};

}  // namespace paddle