analysis_predictor.h 15.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#pragma once
16 17
#include <algorithm>
#include <map>
N
nhzlx 已提交
18
#include <memory>
19 20
#include <string>
#include <vector>
21
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
22 23
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#endif
24
#include "paddle/fluid/framework/naive_executor.h"
25
#include "paddle/fluid/framework/op_compatible_info.h"
Y
Yan Chunwei 已提交
26 27
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/api/api_impl.h"
Y
Yan Chunwei 已提交
28
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
N
nhzlx 已提交
29
#include "paddle/fluid/inference/api/helper.h"
Y
Yan Chunwei 已提交
30
#include "paddle/fluid/inference/api/paddle_inference_api.h"
W
Wilber 已提交
31
#include "paddle/fluid/platform/device/gpu/gpu_types.h"
32
#include "paddle/fluid/platform/float16.h"
33
#include "paddle/fluid/string/printf.h"
34 35 36 37
#ifdef PADDLE_WITH_TESTING
#include <gtest/gtest.h>
#include <gtest/gtest_prod.h>
#endif
38

39 40
namespace paddle_infer {
using float16 = paddle::platform::float16;
W
Wilber 已提交
41 42 43
namespace experimental {
class InternalUtils;
};
44
}
45 46 47 48 49 50 51 52 53 54 55
///
/// \file analysis_predictor.h
///
/// \brief Compared to NativePredictor, AnalysisPredictor is a high-performance
/// predictor that includes many optimizations
///
/// \author paddle-infer@baidu.com
/// \date 2020-01-01
/// \since 1.7.0
///

Y
Yan Chunwei 已提交
56 57 58 59 60
namespace paddle {

using inference::analysis::Argument;
using inference::analysis::Analyzer;
using framework::proto::ProgramDesc;
61
using framework::NaiveExecutor;
Y
Yan Chunwei 已提交
62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
///
/// \class AnalysisPredictor
///
/// \brief The analysis predictor is based on the original native predictor with
/// IR and Analysis support. It will optimize IR and Parameters in the runtime.
///
/// The predictor has the following typical uses:
///
/// Get predictor
/// \code{cpp}
///   auto predictor = CreatePaddlePredictor(config);
/// \endcode
///
/// Get input or output names
/// \code{cpp}
///   auto input_names = predictor->GetInputNames();
///   auto output_names = predictor->GetOutputNames();
/// \endcode
///
/// Get input or output tensors
/// \code{cpp}
///   auto input_t = predictor->GetInputTensor(input_names[0]);
///   auto output_t = predictor->GetOutputTensor(output_names[0]);
/// \endcode
///
/// Run predictor
/// \code{cpp}
///   predictor->ZeroCopyRun();
/// \endcode
///
93
class AnalysisPredictor : public PaddlePredictor {
Y
Yan Chunwei 已提交
94
 public:
95 96 97 98 99
  ///
  /// \brief Construct a new Analysis Predictor object
  ///
  /// \param[in] AnalysisConfig config
  ///
100
  explicit AnalysisPredictor(const AnalysisConfig &config) : config_(config) {
101 102 103 104
    if (config_.shape_range_info_collected()) {
      config_.SwitchIrOptim(false);
      config_.EnableMemoryOptim(false);
    }
105 106
    predictor_id_ = inference::GetUniqueId();
  }
107 108 109
  ///
  /// \brief Destroy the Analysis Predictor object
  ///
F
flame 已提交
110
  ~AnalysisPredictor();
Y
Yan Chunwei 已提交
111

112 113 114 115 116 117 118 119 120 121 122 123
  ///
  /// \brief Initialize predictor
  ///
  /// Initializing predictor mainly includes the following tasks:
  /// preparing scope, creating executor, preparing program, initializing the
  /// variables required by the executor, getting the feed_target_names and
  /// fetch_target_names, etc.
  ///
  /// \param[in] parent_scope parent scope
  /// \param[in] program program
  /// \return Whether the init function executed successfully
  ///
124 125
  bool Init(const std::shared_ptr<framework::Scope> &parent_scope,
            const std::shared_ptr<framework::ProgramDesc> &program = nullptr);
Y
Yan Chunwei 已提交
126

127 128 129 130 131 132 133 134
  ///
  /// \brief Run the prediction engine. Deprecated. Please refer to ZeroCopyRun
  ///
  /// \param[in] inputs input tensors
  /// \param[out] output_data output tensors
  /// \param[in] batch_size data's batch size
  /// \return Whether the function executed successfully
  ///
135 136 137 138
  bool Run(const std::vector<PaddleTensor> &inputs,
           std::vector<PaddleTensor> *output_data,
           int batch_size = -1) override;

139 140 141 142 143
  ///
  /// \brief Get the input names
  ///
  /// \return input names
  ///
N
nhzlx 已提交
144
  std::vector<std::string> GetInputNames();
145 146 147 148 149
  ///
  /// \brief Get the output names
  ///
  /// \return output names
  ///
N
nhzlx 已提交
150 151
  std::vector<std::string> GetOutputNames();

152 153 154 155 156 157
  ///
  /// \brief Get the Input Tensor object
  ///
  /// \param[in] name input name
  /// \return input tensor
  ///
158 159
  std::unique_ptr<ZeroCopyTensor> GetInputTensor(
      const std::string &name) override;
160 161 162 163 164 165
  ///
  /// \brief Get the Output Tensor object
  ///
  /// \param[in] name otuput name
  /// \return output tensor
  ///
166 167
  std::unique_ptr<ZeroCopyTensor> GetOutputTensor(
      const std::string &name) override;
168 169 170 171 172
  ///
  /// \brief Get all input names and their corresponding shapes
  ///
  /// \return the map of input names and shapes
  ///
173 174
  std::map<std::string, std::vector<int64_t>> GetInputTensorShape() override;

175 176 177 178 179
  ///
  /// \brief Run the prediction engine
  ///
  /// \return Whether the function executed successfully
  ///
180 181
  bool ZeroCopyRun() override;

W
Wilber 已提交
182 183 184 185 186
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // Note: Can only be used under thread_local semantics.
  bool ExpRunWithExternalStream(const gpuStream_t stream);
#endif

187 188 189 190 191
  ///
  /// \brief Create feed fetch variables
  ///
  /// \param[in] scope Scope needed to create variables
  ///
192
  void CreateFeedFetchVar(framework::Scope *scope);
193 194 195 196
  ///
  /// \brief Determine the model's inputs and outputs based on the program's
  /// feed fetch op
  ///
197
  void PrepareFeedFetch();
Y
Yan Chunwei 已提交
198

199 200 201 202
  ///
  /// \brief Set predictor's argument according to config, which mainly includes
  /// execution information and graph optimization related pass information
  ///
203
  void PrepareArgument();
204 205 206 207
  ///
  /// \brief According to argument information, execute the relevant pass
  /// to get the optimized model program
  ///
Y
Yan Chunwei 已提交
208 209
  void OptimizeInferenceProgram();

210 211 212 213 214 215
  ///
  /// \brief Clear the intermediate tensors of the predictor
  ///
  ///
  void ClearIntermediateTensor();

216 217 218 219 220 221 222 223 224 225 226
  ///
  /// \brief Release all tmp tensor to compress the size of the memory pool.
  /// The memory pool is considered to be composed of a list of chunks, if
  /// the chunk is not occupied, it can be released.
  ///
  /// \return Number of bytes released. It may be smaller than the actual
  /// released memory, because part of the memory is not managed by the
  /// MemoryPool.
  ///
  uint64_t TryShrinkMemory() override;

227 228 229 230 231
  ///
  /// \brief Get the argument used by predictor
  ///
  /// \return the argument obtained by config
  ///
232
  Argument &analysis_argument() { return argument_; }
233 234 235 236 237
  ///
  /// \brief Clone to get the new predictor. thread safe.
  ///
  /// \return get a new predictor
  ///
238
  std::unique_ptr<PaddlePredictor> Clone() override;
239 240 241 242 243
  ///
  /// \brief Get the scope used by predictor
  ///
  /// \return scope
  ///
244
  framework::Scope *scope() { return scope_.get(); }
245 246 247 248 249
  ///
  /// \brief Get the inference program
  ///
  /// \return the inference program
  ///
250 251
  framework::ProgramDesc &program() { return *inference_program_; }

252 253 254 255 256
  ///
  /// \brief Get the serialized program
  ///
  /// \return the serialized program
  ///
257
  std::string GetSerializedProgram() const override;
Y
Yan Chunwei 已提交
258

259 260 261 262 263
  ///
  /// \brief Initialize mkldnn quantizer and execute mkldnn quantization pass
  ///
  /// \return Whether the function executed successfully
  ///
264 265
  bool MkldnnQuantize();

266 267 268 269 270
  ///
  /// \brief save program to model and save parameters to params
  ///
  /// \param[in] dir path to save the model
  ///
271 272
  void SaveOptimModel(const std::string &dir);

273
 protected:
274 275 276 277 278 279 280
  ///
  /// \brief Prepare predictor's required programs, including loading model
  /// information, graph optimization, and executor creation variables, etc.
  ///
  /// \param[in] program paddle program
  /// \return Whether the function executed successfully
  ///
281
  bool PrepareProgram(const std::shared_ptr<framework::ProgramDesc> &program);
282 283 284 285 286 287
  ///
  /// \brief Prepare scope environment, each predictor has its own scope
  ///
  /// \param[in] parent_scope The scope of the predictor to be cloned, or null
  /// \return Whether the function executed successfully
  ///
288
  bool PrepareScope(const std::shared_ptr<framework::Scope> &parent_scope);
289 290 291 292 293
  ///
  /// \brief Create an Executor object
  ///
  /// \return Whether the function executed successfully
  ///
294
  bool CreateExecutor();
295 296 297 298 299
  ///
  /// \brief According to the model's program, the executor creates ops
  ///
  /// \return Whether the function executed successfully
  ///
300 301
  bool PrepareExecutor();

302 303 304 305 306
  ///
  /// \brief Load model program.
  ///
  /// \return Whether the function executed successfully
  ///
307
  bool LoadProgramDesc();
308 309 310 311 312
  ///
  /// \brief Load model parameters.
  ///
  /// \return Whether the function executed successfully
  ///
313
  bool LoadParameters();
314

315 316 317 318 319 320 321
  ///
  /// \brief Prepare input data, only used in Run()
  ///
  /// \param[in] input_datas inpute tensors
  /// \param[in] scope the scope used by predictor
  /// \return Whether the function executed successfully
  ///
322 323
  bool SetFeed(const std::vector<PaddleTensor> &input_datas,
               framework::Scope *scope);
324 325 326 327 328 329 330
  ///
  /// \brief Get the output data, only used in Run()
  ///
  /// \param[out] output_data output tensors
  /// \param[in] scope the scope used by predictor
  /// \return Whether the function executed successfully
  ///
331 332
  bool GetFetch(std::vector<PaddleTensor> *output_data,
                framework::Scope *scope);
333 334 335 336 337 338
  ///
  /// \brief Get the output data, only used in GetFetch()
  ///
  /// \param[in] tensor for fetch op
  /// \param[out] output_data output tensor
  ///
339 340 341
  template <typename T>
  void GetFetchOne(const framework::LoDTensor &fetchs,
                   PaddleTensor *output_data);
342 343 344 345 346 347 348 349
  ///
  /// \brief PreSet for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
  /// \param[in] inputs tensors
  ///
350
  void MkldnnPreSet(const std::vector<PaddleTensor> &inputs);
W
Wilber 已提交
351 352 353 354 355 356 357 358 359 360 361

  ///
  /// \brief PreSet for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
  /// \param[in] inputs tensor shape
  ///
  void MkldnnPreSet(const std::vector<std::vector<int>> &inputs_shape);

362 363 364 365 366 367
  ///
  /// \brief PostReset for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
368
  void MkldnnPostReset();
Y
Yan Chunwei 已提交
369

N
nhzlx 已提交
370
#if PADDLE_WITH_TENSORRT
371 372 373 374 375 376 377 378 379 380 381 382 383 384
  ///
  /// \brief save calibration table
  ///
  /// When we use Paddle-TRT INT8 engine, we need to generate calibration table
  /// data first,
  /// the calibration table contains the range for each op's input and output,
  /// this whole process can be divided into several steps:
  /// 1. Builds a 32-bit engine, runs it on the calibration set, and records a
  ///  histogram for each tensor of the distribution of activation values.
  /// 2. Builds a calibration table from the histograms.
  /// After step 2, we need to store the calibration table on disk.
  ///
  /// \return Whether the function executed successfully
  ///
N
nhzlx 已提交
385
  bool SaveTrtCalibToDisk();
N
nhzlx 已提交
386
#endif
N
nhzlx 已提交
387

388 389 390 391 392 393 394 395
// Some more detailed tests, they are made the friends of the predictor, so that
// the all the details can be tested.
#if PADDLE_WITH_TESTING
  FRIEND_TEST(AnalysisPredictor, analysis_off);
  FRIEND_TEST(AnalysisPredictor, analysis_on);
  FRIEND_TEST(AnalysisPredictor, with_gpu);
#endif

396 397 398 399
 private:
  void StatisticShapeRangeInfo();
  void CollectShapeRangeInfo();

400
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
  // fleet exe related

  ///
  /// \brief prepare for fleet executor to run
  ///
  /// Used in AnalysisPredictor::Init(),
  ///
  bool PrepareFleetExecutor();

  ///
  /// \brief init NCCL env for multi gpus inference
  ///
  /// Used in AnalysisPredictor::PrepareFleetExecutor()
  ///
  bool CommInit();

  ///
  /// \brief read the config to init NCCL env
  ///
  /// Used in AnalysisPredictor::CommInit()
  ///
  /// \param[in] ring_id_to_ranks: a ptr to ring_id_to_ranks
  /// \param[in] rank_to_ring_ids: a ptr to rank_to_ring_ids
  ///
  bool LoadConverterConfig(
      std::map<int64_t, std::vector<int64_t>> *ring_id_to_ranks,
      std::map<int64_t, std::vector<int64_t>> *rank_to_ring_ids);

  ///
  /// \brief add ops and run them with NaiveExecutor to init NCCL env
  ///
  /// Used in AnalysisPredictor::CommInit()
  ///
  /// \param[in] tmp_var_name: var name to hold NCCL unique id
  /// \param[in] nranks: number of ranks in one comm group
  /// \param[in] rank: relative rank of current rank in the comm group
  /// \param[in] peer_endpoints: group's peers' endpoints
  /// \param[in] block: the block to insert comm ops
  /// \param[in] ring_id: the ring id to be used to init NCCL env
  ///
  void InsertCommOp(std::string tmp_var_name, int nranks, int rank,
                    const std::vector<std::string> &peer_endpoints,
                    framework::BlockDesc *block, int ring_id);
#endif

Y
Yan Chunwei 已提交
446
 private:
447
  AnalysisConfig config_;
Y
Yan Chunwei 已提交
448
  Argument argument_;
449 450 451 452 453
  std::unique_ptr<NaiveExecutor> executor_;
  platform::Place place_;
  std::shared_ptr<framework::Scope> scope_;
  framework::Scope *sub_scope_{nullptr};
  std::shared_ptr<framework::ProgramDesc> inference_program_;
454
  framework::OpCompatibleMap op_compatible_map_;
455 456
  std::vector<framework::OpDesc *> feeds_;
  std::map<std::string, size_t> feed_names_;
N
nhzlx 已提交
457 458
  // Sorted according to the idx.
  std::map<size_t, std::string> idx2feeds_;
Y
Yan Chunwei 已提交
459
  std::vector<framework::OpDesc *> fetches_;
N
nhzlx 已提交
460 461
  std::map<size_t, std::string> idx2fetches_;

462 463 464 465 466 467 468 469 470 471
#if PADDLE_WITH_MKLDNN
  // Helper class to perform quantization
  class MkldnnQuantizer;
  MkldnnQuantizer *mkldnn_quantizer_{nullptr};

#if PADDLE_WITH_TESTING
  friend class MkldnnQuantizerTest;
#endif
#endif

472
  // Memory buffer for feed inputs. The temporary LoDTensor will cause serious
473
  // concurrency problems, wrong results and memory leak, so cache them.
474
  std::vector<framework::LoDTensor> feed_tensors_;
Y
Yan Chunwei 已提交
475
  details::TensorArrayBatchCleaner tensor_array_batch_cleaner_;
Y
Yan Chunwei 已提交
476 477
  // A mutex help to make Clone thread safe.
  std::mutex clone_mutex_;
478

Y
Yan Chunwei 已提交
479 480 481 482
  // For memory optimization.
  const size_t max_shape_collect_count_{1000};
  int need_collect_var_shapes_{-1};  // -1 for default, 0 for false, 1 for true.
  std::vector<std::map<std::string, std::vector<int>>> batch_var_shapes_;
483
  int predictor_id_;
Y
Yan Chunwei 已提交
484

485 486 487
 private:
  // Some status here that help to determine the status inside the predictor.
  bool status_is_cloned_{false};
488 489

  std::map<std::string, std::vector<std::vector<int32_t>>> shape_info_;
490
  static int clone_num_;
491

492
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
493 494 495 496 497
  // fleet executor related
  distributed::FleetExecutorDesc executor_desc_;
  std::shared_ptr<distributed::FleetExecutor> fleet_exe_;
  std::shared_ptr<distributed::TaskNode> task_node_;
#endif
W
Wilber 已提交
498
  friend class paddle_infer::experimental::InternalUtils;
Y
Yan Chunwei 已提交
499 500 501
};

}  // namespace paddle