analysis_predictor.h 17.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#pragma once
16 17
#include <algorithm>
#include <map>
N
nhzlx 已提交
18
#include <memory>
19 20
#include <string>
#include <vector>
21
#include "paddle/phi/common/data_type.h"
22
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
23 24
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#endif
25
#include "paddle/fluid/framework/naive_executor.h"
26
#include "paddle/fluid/framework/op_compatible_info.h"
Y
Yan Chunwei 已提交
27 28
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/api/api_impl.h"
Y
Yan Chunwei 已提交
29
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
N
nhzlx 已提交
30
#include "paddle/fluid/inference/api/helper.h"
Y
Yan Chunwei 已提交
31
#include "paddle/fluid/inference/api/paddle_inference_api.h"
32
#include "paddle/fluid/inference/api/resource_manager.h"
W
Wilber 已提交
33
#include "paddle/fluid/platform/device/gpu/gpu_types.h"
34
#include "paddle/fluid/platform/float16.h"
35
#include "paddle/fluid/string/printf.h"
36 37 38 39
#ifdef PADDLE_WITH_TESTING
#include <gtest/gtest.h>
#include <gtest/gtest_prod.h>
#endif
40

41 42
namespace paddle_infer {
using float16 = paddle::platform::float16;
W
Wilber 已提交
43 44 45
namespace experimental {
class InternalUtils;
};
46
}  // namespace paddle_infer
47 48 49 50 51 52 53 54 55 56 57
///
/// \file analysis_predictor.h
///
/// \brief Compared to NativePredictor, AnalysisPredictor is a high-performance
/// predictor that includes many optimizations
///
/// \author paddle-infer@baidu.com
/// \date 2020-01-01
/// \since 1.7.0
///

Y
Yan Chunwei 已提交
58 59
namespace paddle {

60
using framework::NaiveExecutor;
61 62 63
using framework::proto::ProgramDesc;
using inference::analysis::Analyzer;
using inference::analysis::Argument;
Y
Yan Chunwei 已提交
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
///
/// \class AnalysisPredictor
///
/// \brief The analysis predictor is based on the original native predictor with
/// IR and Analysis support. It will optimize IR and Parameters in the runtime.
///
/// The predictor has the following typical uses:
///
/// Get predictor
/// \code{cpp}
///   auto predictor = CreatePaddlePredictor(config);
/// \endcode
///
/// Get input or output names
/// \code{cpp}
///   auto input_names = predictor->GetInputNames();
///   auto output_names = predictor->GetOutputNames();
/// \endcode
///
/// Get input or output tensors
/// \code{cpp}
///   auto input_t = predictor->GetInputTensor(input_names[0]);
///   auto output_t = predictor->GetOutputTensor(output_names[0]);
/// \endcode
///
/// Run predictor
/// \code{cpp}
///   predictor->ZeroCopyRun();
/// \endcode
///
95
class AnalysisPredictor : public PaddlePredictor {
Y
Yan Chunwei 已提交
96
 public:
97 98 99 100 101
  ///
  /// \brief Construct a new Analysis Predictor object
  ///
  /// \param[in] AnalysisConfig config
  ///
102
  explicit AnalysisPredictor(const AnalysisConfig &config) : config_(config) {
103 104 105
    if (config_.shape_range_info_collected()) {
      config_.SwitchIrOptim(false);
    }
106
    int trt_identifier = config_.trt_engine_memory_sharing_identifier_;
107
    if (trt_identifier > 0) {
Y
Yuanle Liu 已提交
108 109 110
      // NOTE(liuyuanle): For convenience, we set the id of the predictor to
      // negative sharing_identifier directly. In the future, this may affect
      // the meaning of negative predictor id.
111
      predictor_id_ = -trt_identifier;
112
      LOG(WARNING)
Y
Yuanle Liu 已提交
113
          << "Since the engine context memory of multiple predictors "
114 115 116
             "is enabled in Paddle-TRT, we set the id of these predictors to "
             "negative sharing_identifier you specified : "
          << predictor_id_;
117 118 119
    } else {
      predictor_id_ = inference::GetUniqueId();
    }
120
  }
121 122 123
  ///
  /// \brief Destroy the Analysis Predictor object
  ///
F
flame 已提交
124
  ~AnalysisPredictor();
Y
Yan Chunwei 已提交
125

126 127 128 129 130 131 132 133 134 135 136 137
  ///
  /// \brief Initialize predictor
  ///
  /// Initializing predictor mainly includes the following tasks:
  /// preparing scope, creating executor, preparing program, initializing the
  /// variables required by the executor, getting the feed_target_names and
  /// fetch_target_names, etc.
  ///
  /// \param[in] parent_scope parent scope
  /// \param[in] program program
  /// \return Whether the init function executed successfully
  ///
138 139
  bool Init(const std::shared_ptr<framework::Scope> &parent_scope,
            const std::shared_ptr<framework::ProgramDesc> &program = nullptr);
Y
Yan Chunwei 已提交
140

141 142 143 144 145 146 147 148
  ///
  /// \brief Run the prediction engine. Deprecated. Please refer to ZeroCopyRun
  ///
  /// \param[in] inputs input tensors
  /// \param[out] output_data output tensors
  /// \param[in] batch_size data's batch size
  /// \return Whether the function executed successfully
  ///
149 150 151 152
  bool Run(const std::vector<PaddleTensor> &inputs,
           std::vector<PaddleTensor> *output_data,
           int batch_size = -1) override;

153 154 155 156 157
  ///
  /// \brief Get the input names
  ///
  /// \return input names
  ///
158
  std::vector<std::string> GetInputNames() override;
159 160 161 162 163
  ///
  /// \brief Get the output names
  ///
  /// \return output names
  ///
164
  std::vector<std::string> GetOutputNames() override;
N
nhzlx 已提交
165

166 167 168 169 170 171
  ///
  /// \brief Get the Input Tensor object
  ///
  /// \param[in] name input name
  /// \return input tensor
  ///
172 173
  std::unique_ptr<ZeroCopyTensor> GetInputTensor(
      const std::string &name) override;
174 175 176 177 178 179
  ///
  /// \brief Get the Output Tensor object
  ///
  /// \param[in] name otuput name
  /// \return output tensor
  ///
180 181
  std::unique_ptr<ZeroCopyTensor> GetOutputTensor(
      const std::string &name) override;
182 183 184 185 186
  ///
  /// \brief Get all input names and their corresponding shapes
  ///
  /// \return the map of input names and shapes
  ///
187
  std::map<std::string, std::vector<int64_t>> GetInputTensorShape() override;
188 189 190 191 192 193
  ///
  /// \brief Get all input names and their corresponding type
  ///
  /// \return the map of input names and type
  ///
  std::map<std::string, paddle_infer::DataType> GetInputTypes() override;
194

195 196 197 198 199
  ///
  /// \brief Run the prediction engine
  ///
  /// \return Whether the function executed successfully
  ///
200 201
  bool ZeroCopyRun() override;

W
Wilber 已提交
202 203 204 205 206
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // Note: Can only be used under thread_local semantics.
  bool ExpRunWithExternalStream(const gpuStream_t stream);
#endif

207 208 209 210 211 212 213 214
  ///
  /// \brief Get the execution stream on devices with a concept of stream,
  /// otherwise returns nullptr.
  ///
  /// \return The execution stream or nullptr (CPU).
  ///
  void *GetExecStream() const override;

215 216 217 218 219
  ///
  /// \brief Create feed fetch variables
  ///
  /// \param[in] scope Scope needed to create variables
  ///
220
  void CreateFeedFetchVar(framework::Scope *scope);
221 222 223 224
  ///
  /// \brief Determine the model's inputs and outputs based on the program's
  /// feed fetch op
  ///
225
  void PrepareFeedFetch();
Y
Yan Chunwei 已提交
226

227 228 229 230
  ///
  /// \brief Set predictor's argument according to config, which mainly includes
  /// execution information and graph optimization related pass information
  ///
231
  void PrepareArgument();
232 233 234 235
  ///
  /// \brief According to argument information, execute the relevant pass
  /// to get the optimized model program
  ///
Y
Yan Chunwei 已提交
236 237
  void OptimizeInferenceProgram();

238 239 240 241
  ///
  /// \brief Clear the intermediate tensors of the predictor
  ///
  ///
242
  void ClearIntermediateTensor() override;
243

244 245 246 247 248 249 250 251 252 253 254
  ///
  /// \brief Release all tmp tensor to compress the size of the memory pool.
  /// The memory pool is considered to be composed of a list of chunks, if
  /// the chunk is not occupied, it can be released.
  ///
  /// \return Number of bytes released. It may be smaller than the actual
  /// released memory, because part of the memory is not managed by the
  /// MemoryPool.
  ///
  uint64_t TryShrinkMemory() override;

255 256 257 258 259
  ///
  /// \brief Get the argument used by predictor
  ///
  /// \return the argument obtained by config
  ///
260
  Argument &analysis_argument() { return *argument_; }
261 262 263 264 265
  ///
  /// \brief Clone to get the new predictor. thread safe.
  ///
  /// \return get a new predictor
  ///
266
  std::unique_ptr<PaddlePredictor> Clone(void *stream = nullptr) override;
267 268 269 270 271
  ///
  /// \brief Get the scope used by predictor
  ///
  /// \return scope
  ///
272
  framework::Scope *scope() { return scope_.get(); }
273 274 275 276 277
  ///
  /// \brief Get the inference program
  ///
  /// \return the inference program
  ///
278 279
  framework::ProgramDesc &program() { return *inference_program_; }

280 281 282 283 284
  ///
  /// \brief Get the serialized program
  ///
  /// \return the serialized program
  ///
285
  std::string GetSerializedProgram() const override;
Y
Yan Chunwei 已提交
286

287 288 289 290 291 292 293
  ///
  /// \brief Get the fusion_statis_t
  ///
  /// \return the fusion_statis_t
  ///
  Argument::fusion_statis_t fusion_statis() { return fusion_statis_; }

294 295 296 297 298 299 300 301 302 303
  ///
  /// \brief Register a output hook function to operate the intermediate tensor
  /// of op output. when using this function, memory reuse should be tured off.
  /// The hook function signature is void(const std::string&, const
  /// std::string&, const Tensor&>). Here, the first parameter is op's
  /// type, the second param is output var name of the op, and the third
  /// parameter is output tensor with the var name.
  ///
  void RegisterOutputHook(const Exp_OutputHookFunc &hookfunc) override;

304 305 306 307 308
  ///
  /// \brief Initialize mkldnn quantizer and execute mkldnn quantization pass
  ///
  /// \return Whether the function executed successfully
  ///
309 310
  bool MkldnnQuantize();

311 312 313 314 315
  ///
  /// \brief save program to model and save parameters to params
  ///
  /// \param[in] dir path to save the model
  ///
316 317
  void SaveOptimModel(const std::string &dir);

318
 protected:
319 320 321 322 323 324 325
  ///
  /// \brief Prepare predictor's required programs, including loading model
  /// information, graph optimization, and executor creation variables, etc.
  ///
  /// \param[in] program paddle program
  /// \return Whether the function executed successfully
  ///
326
  bool PrepareProgram(const std::shared_ptr<framework::ProgramDesc> &program);
327 328 329 330 331 332
  ///
  /// \brief Prepare scope environment, each predictor has its own scope
  ///
  /// \param[in] parent_scope The scope of the predictor to be cloned, or null
  /// \return Whether the function executed successfully
  ///
333
  bool PrepareScope(const std::shared_ptr<framework::Scope> &parent_scope);
334 335 336 337 338
  ///
  /// \brief Create an Executor object
  ///
  /// \return Whether the function executed successfully
  ///
339
  bool CreateExecutor();
340 341 342 343 344
  ///
  /// \brief According to the model's program, the executor creates ops
  ///
  /// \return Whether the function executed successfully
  ///
345 346
  bool PrepareExecutor();

347 348 349 350 351
  ///
  /// \brief Load model program.
  ///
  /// \return Whether the function executed successfully
  ///
352
  bool LoadProgramDesc();
353 354 355 356 357
  ///
  /// \brief Load model parameters.
  ///
  /// \return Whether the function executed successfully
  ///
358
  bool LoadParameters();
359

360 361 362 363 364 365 366
  ///
  /// \brief Prepare input data, only used in Run()
  ///
  /// \param[in] input_datas inpute tensors
  /// \param[in] scope the scope used by predictor
  /// \return Whether the function executed successfully
  ///
367 368
  bool SetFeed(const std::vector<PaddleTensor> &input_datas,
               framework::Scope *scope);
369 370 371 372 373 374 375
  ///
  /// \brief Get the output data, only used in Run()
  ///
  /// \param[out] output_data output tensors
  /// \param[in] scope the scope used by predictor
  /// \return Whether the function executed successfully
  ///
376 377
  bool GetFetch(std::vector<PaddleTensor> *output_data,
                framework::Scope *scope);
378 379 380 381 382 383
  ///
  /// \brief Get the output data, only used in GetFetch()
  ///
  /// \param[in] tensor for fetch op
  /// \param[out] output_data output tensor
  ///
384
  template <typename T>
385
  void GetFetchOne(const phi::DenseTensor &fetchs, PaddleTensor *output_data);
386 387 388 389 390 391 392 393
  ///
  /// \brief PreSet for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
  /// \param[in] inputs tensors
  ///
394
  void MkldnnPreSet(const std::vector<PaddleTensor> &inputs);
W
Wilber 已提交
395 396 397 398 399 400 401 402 403 404 405

  ///
  /// \brief PreSet for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
  /// \param[in] inputs tensor shape
  ///
  void MkldnnPreSet(const std::vector<std::vector<int>> &inputs_shape);

406 407 408 409 410 411
  ///
  /// \brief PostReset for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
412
  void MkldnnPostReset();
Y
Yan Chunwei 已提交
413

414
#ifdef PADDLE_WITH_TENSORRT
415 416 417 418 419 420 421 422 423 424 425 426 427 428
  ///
  /// \brief save calibration table
  ///
  /// When we use Paddle-TRT INT8 engine, we need to generate calibration table
  /// data first,
  /// the calibration table contains the range for each op's input and output,
  /// this whole process can be divided into several steps:
  /// 1. Builds a 32-bit engine, runs it on the calibration set, and records a
  ///  histogram for each tensor of the distribution of activation values.
  /// 2. Builds a calibration table from the histograms.
  /// After step 2, we need to store the calibration table on disk.
  ///
  /// \return Whether the function executed successfully
  ///
N
nhzlx 已提交
429
  bool SaveTrtCalibToDisk();
N
nhzlx 已提交
430
#endif
N
nhzlx 已提交
431

432 433 434 435 436 437 438 439
// Some more detailed tests, they are made the friends of the predictor, so that
// the all the details can be tested.
#if PADDLE_WITH_TESTING
  FRIEND_TEST(AnalysisPredictor, analysis_off);
  FRIEND_TEST(AnalysisPredictor, analysis_on);
  FRIEND_TEST(AnalysisPredictor, with_gpu);
#endif

440 441 442
 protected:
  const void *GetDeviceContexts() const override;

443 444 445 446
 private:
  void StatisticShapeRangeInfo();
  void CollectShapeRangeInfo();

447 448 449 450
  void InitPlace();
  void InitDeviceContexts();
  void InitResourceManager(void *stream);

451
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
  // fleet exe related

  ///
  /// \brief prepare for fleet executor to run
  ///
  /// Used in AnalysisPredictor::Init(),
  ///
  bool PrepareFleetExecutor();

  ///
  /// \brief init NCCL env for multi gpus inference
  ///
  /// Used in AnalysisPredictor::PrepareFleetExecutor()
  ///
  bool CommInit();

  ///
  /// \brief read the config to init NCCL env
  ///
  /// Used in AnalysisPredictor::CommInit()
  ///
  /// \param[in] ring_id_to_ranks: a ptr to ring_id_to_ranks
  /// \param[in] rank_to_ring_ids: a ptr to rank_to_ring_ids
  ///
  bool LoadConverterConfig(
      std::map<int64_t, std::vector<int64_t>> *ring_id_to_ranks,
      std::map<int64_t, std::vector<int64_t>> *rank_to_ring_ids);

  ///
  /// \brief add ops and run them with NaiveExecutor to init NCCL env
  ///
  /// Used in AnalysisPredictor::CommInit()
  ///
  /// \param[in] tmp_var_name: var name to hold NCCL unique id
  /// \param[in] nranks: number of ranks in one comm group
  /// \param[in] rank: relative rank of current rank in the comm group
  /// \param[in] peer_endpoints: group's peers' endpoints
  /// \param[in] block: the block to insert comm ops
  /// \param[in] ring_id: the ring id to be used to init NCCL env
  ///
492 493 494
  void InsertCommOp(std::string tmp_var_name,
                    int nranks,
                    int rank,
495
                    const std::vector<std::string> &peer_endpoints,
496 497
                    framework::BlockDesc *block,
                    int ring_id);
498 499
#endif

Y
Yan Chunwei 已提交
500
 private:
501
  AnalysisConfig config_;
502 503
  std::unique_ptr<Argument> argument_;
  Argument::fusion_statis_t fusion_statis_;
504 505 506 507 508
  std::unique_ptr<NaiveExecutor> executor_;
  platform::Place place_;
  std::shared_ptr<framework::Scope> scope_;
  framework::Scope *sub_scope_{nullptr};
  std::shared_ptr<framework::ProgramDesc> inference_program_;
509
  framework::OpCompatibleMap op_compatible_map_;
510 511
  std::vector<framework::OpDesc *> feeds_;
  std::map<std::string, size_t> feed_names_;
N
nhzlx 已提交
512 513
  // Sorted according to the idx.
  std::map<size_t, std::string> idx2feeds_;
Y
Yan Chunwei 已提交
514
  std::vector<framework::OpDesc *> fetches_;
N
nhzlx 已提交
515 516
  std::map<size_t, std::string> idx2fetches_;

517 518
  phi::DataType model_precision_{phi::DataType::FLOAT32};

519 520 521 522 523 524 525 526 527 528
#if PADDLE_WITH_MKLDNN
  // Helper class to perform quantization
  class MkldnnQuantizer;
  MkldnnQuantizer *mkldnn_quantizer_{nullptr};

#if PADDLE_WITH_TESTING
  friend class MkldnnQuantizerTest;
#endif
#endif

529
  // Memory buffer for feed inputs. The temporary LoDTensor will cause serious
530
  // concurrency problems, wrong results and memory leak, so cache them.
531
  std::vector<phi::DenseTensor> feed_tensors_;
Y
Yan Chunwei 已提交
532
  details::TensorArrayBatchCleaner tensor_array_batch_cleaner_;
Y
Yan Chunwei 已提交
533 534
  // A mutex help to make Clone thread safe.
  std::mutex clone_mutex_;
535

Y
Yan Chunwei 已提交
536 537 538 539
  // For memory optimization.
  const size_t max_shape_collect_count_{1000};
  int need_collect_var_shapes_{-1};  // -1 for default, 0 for false, 1 for true.
  std::vector<std::map<std::string, std::vector<int>>> batch_var_shapes_;
540
  int predictor_id_;
541
  int root_predictor_id_{-1};
Y
Yan Chunwei 已提交
542

543
 private:
544 545
  std::vector<Exp_OutputHookFunc> hookfuncs_;

546 547
  // Some status here that help to determine the status inside the predictor.
  bool status_is_cloned_{false};
548 549

  std::map<std::string, std::vector<std::vector<int32_t>>> shape_info_;
550
  std::map<std::string, std::vector<std::vector<int32_t>>> shape_tensor_value_;
551
  static int clone_num_;
552

553 554 555 556 557
  bool private_context_{false};
  void *predictor_stream_{nullptr};
  std::map<phi::Place, std::shared_future<std::unique_ptr<phi::DeviceContext>>>
      device_contexts_;

558
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
559 560 561 562 563
  // fleet executor related
  distributed::FleetExecutorDesc executor_desc_;
  std::shared_ptr<distributed::FleetExecutor> fleet_exe_;
  std::shared_ptr<distributed::TaskNode> task_node_;
#endif
W
Wilber 已提交
564
  friend class paddle_infer::experimental::InternalUtils;
Y
Yan Chunwei 已提交
565 566 567
};

}  // namespace paddle