analysis_predictor.h 16.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#pragma once
16 17
#include <algorithm>
#include <map>
N
nhzlx 已提交
18
#include <memory>
19 20
#include <string>
#include <vector>
21
#include "paddle/phi/common/data_type.h"
22
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
23 24
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#endif
25
#include "paddle/fluid/framework/naive_executor.h"
26
#include "paddle/fluid/framework/op_compatible_info.h"
Y
Yan Chunwei 已提交
27 28
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/api/api_impl.h"
Y
Yan Chunwei 已提交
29
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
N
nhzlx 已提交
30
#include "paddle/fluid/inference/api/helper.h"
Y
Yan Chunwei 已提交
31
#include "paddle/fluid/inference/api/paddle_inference_api.h"
32
#include "paddle/fluid/inference/api/resource_manager.h"
W
Wilber 已提交
33
#include "paddle/fluid/platform/device/gpu/gpu_types.h"
34
#include "paddle/fluid/platform/float16.h"
35
#include "paddle/fluid/string/printf.h"
36 37 38 39
#ifdef PADDLE_WITH_TESTING
#include <gtest/gtest.h>
#include <gtest/gtest_prod.h>
#endif
40

41 42
namespace paddle_infer {
using float16 = paddle::platform::float16;
W
Wilber 已提交
43 44 45
namespace experimental {
class InternalUtils;
};
46
}  // namespace paddle_infer
47 48 49 50 51 52 53 54 55 56 57
///
/// \file analysis_predictor.h
///
/// \brief Compared to NativePredictor, AnalysisPredictor is a high-performance
/// predictor that includes many optimizations
///
/// \author paddle-infer@baidu.com
/// \date 2020-01-01
/// \since 1.7.0
///

Y
Yan Chunwei 已提交
58 59
namespace paddle {

60
using framework::NaiveExecutor;
61 62 63
using framework::proto::ProgramDesc;
using inference::analysis::Analyzer;
using inference::analysis::Argument;
Y
Yan Chunwei 已提交
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
///
/// \class AnalysisPredictor
///
/// \brief The analysis predictor is based on the original native predictor with
/// IR and Analysis support. It will optimize IR and Parameters in the runtime.
///
/// The predictor has the following typical uses:
///
/// Get predictor
/// \code{cpp}
///   auto predictor = CreatePaddlePredictor(config);
/// \endcode
///
/// Get input or output names
/// \code{cpp}
///   auto input_names = predictor->GetInputNames();
///   auto output_names = predictor->GetOutputNames();
/// \endcode
///
/// Get input or output tensors
/// \code{cpp}
///   auto input_t = predictor->GetInputTensor(input_names[0]);
///   auto output_t = predictor->GetOutputTensor(output_names[0]);
/// \endcode
///
/// Run predictor
/// \code{cpp}
///   predictor->ZeroCopyRun();
/// \endcode
///
95
class AnalysisPredictor : public PaddlePredictor {
Y
Yan Chunwei 已提交
96
 public:
97 98 99 100 101
  ///
  /// \brief Construct a new Analysis Predictor object
  ///
  /// \param[in] AnalysisConfig config
  ///
102
  explicit AnalysisPredictor(const AnalysisConfig &config) : config_(config) {
103 104 105
    if (config_.shape_range_info_collected()) {
      config_.SwitchIrOptim(false);
    }
106 107
    predictor_id_ = inference::GetUniqueId();
  }
108 109 110
  ///
  /// \brief Destroy the Analysis Predictor object
  ///
F
flame 已提交
111
  ~AnalysisPredictor();
Y
Yan Chunwei 已提交
112

113 114 115 116 117 118 119 120 121 122 123 124
  ///
  /// \brief Initialize predictor
  ///
  /// Initializing predictor mainly includes the following tasks:
  /// preparing scope, creating executor, preparing program, initializing the
  /// variables required by the executor, getting the feed_target_names and
  /// fetch_target_names, etc.
  ///
  /// \param[in] parent_scope parent scope
  /// \param[in] program program
  /// \return Whether the init function executed successfully
  ///
125 126
  bool Init(const std::shared_ptr<framework::Scope> &parent_scope,
            const std::shared_ptr<framework::ProgramDesc> &program = nullptr);
Y
Yan Chunwei 已提交
127

128 129 130 131 132 133 134 135
  ///
  /// \brief Run the prediction engine. Deprecated. Please refer to ZeroCopyRun
  ///
  /// \param[in] inputs input tensors
  /// \param[out] output_data output tensors
  /// \param[in] batch_size data's batch size
  /// \return Whether the function executed successfully
  ///
136 137 138 139
  bool Run(const std::vector<PaddleTensor> &inputs,
           std::vector<PaddleTensor> *output_data,
           int batch_size = -1) override;

140 141 142 143 144
  ///
  /// \brief Get the input names
  ///
  /// \return input names
  ///
145
  std::vector<std::string> GetInputNames() override;
146 147 148 149 150
  ///
  /// \brief Get the output names
  ///
  /// \return output names
  ///
151
  std::vector<std::string> GetOutputNames() override;
N
nhzlx 已提交
152

153 154 155 156 157 158
  ///
  /// \brief Get the Input Tensor object
  ///
  /// \param[in] name input name
  /// \return input tensor
  ///
159 160
  std::unique_ptr<ZeroCopyTensor> GetInputTensor(
      const std::string &name) override;
161 162 163 164 165 166
  ///
  /// \brief Get the Output Tensor object
  ///
  /// \param[in] name otuput name
  /// \return output tensor
  ///
167 168
  std::unique_ptr<ZeroCopyTensor> GetOutputTensor(
      const std::string &name) override;
169 170 171 172 173
  ///
  /// \brief Get all input names and their corresponding shapes
  ///
  /// \return the map of input names and shapes
  ///
174
  std::map<std::string, std::vector<int64_t>> GetInputTensorShape() override;
175 176 177 178 179 180
  ///
  /// \brief Get all input names and their corresponding type
  ///
  /// \return the map of input names and type
  ///
  std::map<std::string, paddle_infer::DataType> GetInputTypes() override;
181

182 183 184 185 186
  ///
  /// \brief Run the prediction engine
  ///
  /// \return Whether the function executed successfully
  ///
187 188
  bool ZeroCopyRun() override;

W
Wilber 已提交
189 190 191 192 193
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // Note: Can only be used under thread_local semantics.
  bool ExpRunWithExternalStream(const gpuStream_t stream);
#endif

194 195 196 197 198 199 200 201
  ///
  /// \brief Get the execution stream on devices with a concept of stream,
  /// otherwise returns nullptr.
  ///
  /// \return The execution stream or nullptr (CPU).
  ///
  void *GetExecStream() const override;

202 203 204 205 206
  ///
  /// \brief Create feed fetch variables
  ///
  /// \param[in] scope Scope needed to create variables
  ///
207
  void CreateFeedFetchVar(framework::Scope *scope);
208 209 210 211
  ///
  /// \brief Determine the model's inputs and outputs based on the program's
  /// feed fetch op
  ///
212
  void PrepareFeedFetch();
Y
Yan Chunwei 已提交
213

214 215 216 217
  ///
  /// \brief Set predictor's argument according to config, which mainly includes
  /// execution information and graph optimization related pass information
  ///
218
  void PrepareArgument();
219 220 221 222
  ///
  /// \brief According to argument information, execute the relevant pass
  /// to get the optimized model program
  ///
Y
Yan Chunwei 已提交
223 224
  void OptimizeInferenceProgram();

225 226 227 228
  ///
  /// \brief Clear the intermediate tensors of the predictor
  ///
  ///
229
  void ClearIntermediateTensor() override;
230

231 232 233 234 235 236 237 238 239 240 241
  ///
  /// \brief Release all tmp tensor to compress the size of the memory pool.
  /// The memory pool is considered to be composed of a list of chunks, if
  /// the chunk is not occupied, it can be released.
  ///
  /// \return Number of bytes released. It may be smaller than the actual
  /// released memory, because part of the memory is not managed by the
  /// MemoryPool.
  ///
  uint64_t TryShrinkMemory() override;

242 243 244 245 246
  ///
  /// \brief Get the argument used by predictor
  ///
  /// \return the argument obtained by config
  ///
247
  Argument &analysis_argument() { return argument_; }
248 249 250 251 252
  ///
  /// \brief Clone to get the new predictor. thread safe.
  ///
  /// \return get a new predictor
  ///
253
  std::unique_ptr<PaddlePredictor> Clone(void *stream = nullptr) override;
254 255 256 257 258
  ///
  /// \brief Get the scope used by predictor
  ///
  /// \return scope
  ///
259
  framework::Scope *scope() { return scope_.get(); }
260 261 262 263 264
  ///
  /// \brief Get the inference program
  ///
  /// \return the inference program
  ///
265 266
  framework::ProgramDesc &program() { return *inference_program_; }

267 268 269 270 271
  ///
  /// \brief Get the serialized program
  ///
  /// \return the serialized program
  ///
272
  std::string GetSerializedProgram() const override;
Y
Yan Chunwei 已提交
273

274 275 276 277 278 279 280 281 282 283
  ///
  /// \brief Register a output hook function to operate the intermediate tensor
  /// of op output. when using this function, memory reuse should be tured off.
  /// The hook function signature is void(const std::string&, const
  /// std::string&, const Tensor&>). Here, the first parameter is op's
  /// type, the second param is output var name of the op, and the third
  /// parameter is output tensor with the var name.
  ///
  void RegisterOutputHook(const Exp_OutputHookFunc &hookfunc) override;

284 285 286 287 288
  ///
  /// \brief Initialize mkldnn quantizer and execute mkldnn quantization pass
  ///
  /// \return Whether the function executed successfully
  ///
289 290
  bool MkldnnQuantize();

291 292 293 294 295
  ///
  /// \brief save program to model and save parameters to params
  ///
  /// \param[in] dir path to save the model
  ///
296 297
  void SaveOptimModel(const std::string &dir);

298
 protected:
299 300 301 302 303 304 305
  ///
  /// \brief Prepare predictor's required programs, including loading model
  /// information, graph optimization, and executor creation variables, etc.
  ///
  /// \param[in] program paddle program
  /// \return Whether the function executed successfully
  ///
306
  bool PrepareProgram(const std::shared_ptr<framework::ProgramDesc> &program);
307 308 309 310 311 312
  ///
  /// \brief Prepare scope environment, each predictor has its own scope
  ///
  /// \param[in] parent_scope The scope of the predictor to be cloned, or null
  /// \return Whether the function executed successfully
  ///
313
  bool PrepareScope(const std::shared_ptr<framework::Scope> &parent_scope);
314 315 316 317 318
  ///
  /// \brief Create an Executor object
  ///
  /// \return Whether the function executed successfully
  ///
319
  bool CreateExecutor();
320 321 322 323 324
  ///
  /// \brief According to the model's program, the executor creates ops
  ///
  /// \return Whether the function executed successfully
  ///
325 326
  bool PrepareExecutor();

327 328 329 330 331
  ///
  /// \brief Load model program.
  ///
  /// \return Whether the function executed successfully
  ///
332
  bool LoadProgramDesc();
333 334 335 336 337
  ///
  /// \brief Load model parameters.
  ///
  /// \return Whether the function executed successfully
  ///
338
  bool LoadParameters();
339

340 341 342 343 344 345 346
  ///
  /// \brief Prepare input data, only used in Run()
  ///
  /// \param[in] input_datas inpute tensors
  /// \param[in] scope the scope used by predictor
  /// \return Whether the function executed successfully
  ///
347 348
  bool SetFeed(const std::vector<PaddleTensor> &input_datas,
               framework::Scope *scope);
349 350 351 352 353 354 355
  ///
  /// \brief Get the output data, only used in Run()
  ///
  /// \param[out] output_data output tensors
  /// \param[in] scope the scope used by predictor
  /// \return Whether the function executed successfully
  ///
356 357
  bool GetFetch(std::vector<PaddleTensor> *output_data,
                framework::Scope *scope);
358 359 360 361 362 363
  ///
  /// \brief Get the output data, only used in GetFetch()
  ///
  /// \param[in] tensor for fetch op
  /// \param[out] output_data output tensor
  ///
364
  template <typename T>
365
  void GetFetchOne(const phi::DenseTensor &fetchs, PaddleTensor *output_data);
366 367 368 369 370 371 372 373
  ///
  /// \brief PreSet for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
  /// \param[in] inputs tensors
  ///
374
  void MkldnnPreSet(const std::vector<PaddleTensor> &inputs);
W
Wilber 已提交
375 376 377 378 379 380 381 382 383 384 385

  ///
  /// \brief PreSet for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
  /// \param[in] inputs tensor shape
  ///
  void MkldnnPreSet(const std::vector<std::vector<int>> &inputs_shape);

386 387 388 389 390 391
  ///
  /// \brief PostReset for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
392
  void MkldnnPostReset();
Y
Yan Chunwei 已提交
393

394
#ifdef PADDLE_WITH_TENSORRT
395 396 397 398 399 400 401 402 403 404 405 406 407 408
  ///
  /// \brief save calibration table
  ///
  /// When we use Paddle-TRT INT8 engine, we need to generate calibration table
  /// data first,
  /// the calibration table contains the range for each op's input and output,
  /// this whole process can be divided into several steps:
  /// 1. Builds a 32-bit engine, runs it on the calibration set, and records a
  ///  histogram for each tensor of the distribution of activation values.
  /// 2. Builds a calibration table from the histograms.
  /// After step 2, we need to store the calibration table on disk.
  ///
  /// \return Whether the function executed successfully
  ///
N
nhzlx 已提交
409
  bool SaveTrtCalibToDisk();
N
nhzlx 已提交
410
#endif
N
nhzlx 已提交
411

412 413 414 415 416 417 418 419
// Some more detailed tests, they are made the friends of the predictor, so that
// the all the details can be tested.
#if PADDLE_WITH_TESTING
  FRIEND_TEST(AnalysisPredictor, analysis_off);
  FRIEND_TEST(AnalysisPredictor, analysis_on);
  FRIEND_TEST(AnalysisPredictor, with_gpu);
#endif

420 421 422
 protected:
  const void *GetDeviceContexts() const override;

423 424 425 426
 private:
  void StatisticShapeRangeInfo();
  void CollectShapeRangeInfo();

427 428 429 430
  void InitPlace();
  void InitDeviceContexts();
  void InitResourceManager(void *stream);

431
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
  // fleet exe related

  ///
  /// \brief prepare for fleet executor to run
  ///
  /// Used in AnalysisPredictor::Init(),
  ///
  bool PrepareFleetExecutor();

  ///
  /// \brief init NCCL env for multi gpus inference
  ///
  /// Used in AnalysisPredictor::PrepareFleetExecutor()
  ///
  bool CommInit();

  ///
  /// \brief read the config to init NCCL env
  ///
  /// Used in AnalysisPredictor::CommInit()
  ///
  /// \param[in] ring_id_to_ranks: a ptr to ring_id_to_ranks
  /// \param[in] rank_to_ring_ids: a ptr to rank_to_ring_ids
  ///
  bool LoadConverterConfig(
      std::map<int64_t, std::vector<int64_t>> *ring_id_to_ranks,
      std::map<int64_t, std::vector<int64_t>> *rank_to_ring_ids);

  ///
  /// \brief add ops and run them with NaiveExecutor to init NCCL env
  ///
  /// Used in AnalysisPredictor::CommInit()
  ///
  /// \param[in] tmp_var_name: var name to hold NCCL unique id
  /// \param[in] nranks: number of ranks in one comm group
  /// \param[in] rank: relative rank of current rank in the comm group
  /// \param[in] peer_endpoints: group's peers' endpoints
  /// \param[in] block: the block to insert comm ops
  /// \param[in] ring_id: the ring id to be used to init NCCL env
  ///
472 473 474
  void InsertCommOp(std::string tmp_var_name,
                    int nranks,
                    int rank,
475
                    const std::vector<std::string> &peer_endpoints,
476 477
                    framework::BlockDesc *block,
                    int ring_id);
478 479
#endif

Y
Yan Chunwei 已提交
480
 private:
481
  AnalysisConfig config_;
Y
Yan Chunwei 已提交
482
  Argument argument_;
483 484 485 486 487
  std::unique_ptr<NaiveExecutor> executor_;
  platform::Place place_;
  std::shared_ptr<framework::Scope> scope_;
  framework::Scope *sub_scope_{nullptr};
  std::shared_ptr<framework::ProgramDesc> inference_program_;
488
  framework::OpCompatibleMap op_compatible_map_;
489 490
  std::vector<framework::OpDesc *> feeds_;
  std::map<std::string, size_t> feed_names_;
N
nhzlx 已提交
491 492
  // Sorted according to the idx.
  std::map<size_t, std::string> idx2feeds_;
Y
Yan Chunwei 已提交
493
  std::vector<framework::OpDesc *> fetches_;
N
nhzlx 已提交
494 495
  std::map<size_t, std::string> idx2fetches_;

496 497
  phi::DataType model_precision_{phi::DataType::FLOAT32};

498 499 500 501 502 503 504 505 506 507
#if PADDLE_WITH_MKLDNN
  // Helper class to perform quantization
  class MkldnnQuantizer;
  MkldnnQuantizer *mkldnn_quantizer_{nullptr};

#if PADDLE_WITH_TESTING
  friend class MkldnnQuantizerTest;
#endif
#endif

508
  // Memory buffer for feed inputs. The temporary LoDTensor will cause serious
509
  // concurrency problems, wrong results and memory leak, so cache them.
510
  std::vector<phi::DenseTensor> feed_tensors_;
Y
Yan Chunwei 已提交
511
  details::TensorArrayBatchCleaner tensor_array_batch_cleaner_;
Y
Yan Chunwei 已提交
512 513
  // A mutex help to make Clone thread safe.
  std::mutex clone_mutex_;
514

Y
Yan Chunwei 已提交
515 516 517 518
  // For memory optimization.
  const size_t max_shape_collect_count_{1000};
  int need_collect_var_shapes_{-1};  // -1 for default, 0 for false, 1 for true.
  std::vector<std::map<std::string, std::vector<int>>> batch_var_shapes_;
519
  int predictor_id_;
520
  int root_predictor_id_{-1};
Y
Yan Chunwei 已提交
521

522
 private:
523 524
  std::vector<Exp_OutputHookFunc> hookfuncs_;

525 526
  // Some status here that help to determine the status inside the predictor.
  bool status_is_cloned_{false};
527 528

  std::map<std::string, std::vector<std::vector<int32_t>>> shape_info_;
529
  std::map<std::string, std::vector<std::vector<int32_t>>> shape_tensor_value_;
530
  static int clone_num_;
531

532 533 534 535 536
  bool private_context_{false};
  void *predictor_stream_{nullptr};
  std::map<phi::Place, std::shared_future<std::unique_ptr<phi::DeviceContext>>>
      device_contexts_;

537
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
538 539 540 541 542
  // fleet executor related
  distributed::FleetExecutorDesc executor_desc_;
  std::shared_ptr<distributed::FleetExecutor> fleet_exe_;
  std::shared_ptr<distributed::TaskNode> task_node_;
#endif
W
Wilber 已提交
543
  friend class paddle_infer::experimental::InternalUtils;
Y
Yan Chunwei 已提交
544 545 546
};

}  // namespace paddle