analysis_predictor.h 17.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#pragma once
16 17
#include <algorithm>
#include <map>
N
nhzlx 已提交
18
#include <memory>
19 20
#include <string>
#include <vector>
21
#include "paddle/phi/common/data_type.h"
22
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
23 24
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#endif
25
#include "paddle/fluid/framework/naive_executor.h"
26
#include "paddle/fluid/framework/op_compatible_info.h"
Y
Yan Chunwei 已提交
27 28
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/api/api_impl.h"
Y
Yan Chunwei 已提交
29
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
N
nhzlx 已提交
30
#include "paddle/fluid/inference/api/helper.h"
Y
Yan Chunwei 已提交
31
#include "paddle/fluid/inference/api/paddle_inference_api.h"
32
#include "paddle/fluid/inference/api/resource_manager.h"
W
Wilber 已提交
33
#include "paddle/fluid/platform/device/gpu/gpu_types.h"
34
#include "paddle/fluid/platform/float16.h"
35
#include "paddle/fluid/string/printf.h"
36 37 38 39
#ifdef PADDLE_WITH_TESTING
#include <gtest/gtest.h>
#include <gtest/gtest_prod.h>
#endif
40

41 42
namespace paddle_infer {
using float16 = paddle::platform::float16;
W
Wilber 已提交
43 44 45
namespace experimental {
class InternalUtils;
};
46
}  // namespace paddle_infer
47 48 49 50 51 52 53 54 55 56 57
///
/// \file analysis_predictor.h
///
/// \brief Compared to NativePredictor, AnalysisPredictor is a high-performance
/// predictor that includes many optimizations
///
/// \author paddle-infer@baidu.com
/// \date 2020-01-01
/// \since 1.7.0
///

Y
Yan Chunwei 已提交
58 59
namespace paddle {

60
using framework::NaiveExecutor;
61 62 63
using framework::proto::ProgramDesc;
using inference::analysis::Analyzer;
using inference::analysis::Argument;
Y
Yan Chunwei 已提交
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
///
/// \class AnalysisPredictor
///
/// \brief The analysis predictor is based on the original native predictor with
/// IR and Analysis support. It will optimize IR and Parameters in the runtime.
///
/// The predictor has the following typical uses:
///
/// Get predictor
/// \code{cpp}
///   auto predictor = CreatePaddlePredictor(config);
/// \endcode
///
/// Get input or output names
/// \code{cpp}
///   auto input_names = predictor->GetInputNames();
///   auto output_names = predictor->GetOutputNames();
/// \endcode
///
/// Get input or output tensors
/// \code{cpp}
///   auto input_t = predictor->GetInputTensor(input_names[0]);
///   auto output_t = predictor->GetOutputTensor(output_names[0]);
/// \endcode
///
/// Run predictor
/// \code{cpp}
///   predictor->ZeroCopyRun();
/// \endcode
///
95
class AnalysisPredictor : public PaddlePredictor {
Y
Yan Chunwei 已提交
96
 public:
97 98 99 100 101
  ///
  /// \brief Construct a new Analysis Predictor object
  ///
  /// \param[in] AnalysisConfig config
  ///
102
  explicit AnalysisPredictor(const AnalysisConfig &config) : config_(config) {
103 104 105
    if (config_.shape_range_info_collected()) {
      config_.SwitchIrOptim(false);
    }
106 107 108 109 110 111
    auto trt_identifier = config_.trt_engine_memory_sharing_identifier_;
    if (trt_identifier > 0) {
      predictor_id_ = -trt_identifier;
    } else {
      predictor_id_ = inference::GetUniqueId();
    }
112
  }
113 114 115
  ///
  /// \brief Destroy the Analysis Predictor object
  ///
F
flame 已提交
116
  ~AnalysisPredictor();
Y
Yan Chunwei 已提交
117

118 119 120 121 122 123 124 125 126 127 128 129
  ///
  /// \brief Initialize predictor
  ///
  /// Initializing predictor mainly includes the following tasks:
  /// preparing scope, creating executor, preparing program, initializing the
  /// variables required by the executor, getting the feed_target_names and
  /// fetch_target_names, etc.
  ///
  /// \param[in] parent_scope parent scope
  /// \param[in] program program
  /// \return Whether the init function executed successfully
  ///
130 131
  bool Init(const std::shared_ptr<framework::Scope> &parent_scope,
            const std::shared_ptr<framework::ProgramDesc> &program = nullptr);
Y
Yan Chunwei 已提交
132

133 134 135 136 137 138 139 140
  ///
  /// \brief Run the prediction engine. Deprecated. Please refer to ZeroCopyRun
  ///
  /// \param[in] inputs input tensors
  /// \param[out] output_data output tensors
  /// \param[in] batch_size data's batch size
  /// \return Whether the function executed successfully
  ///
141 142 143 144
  bool Run(const std::vector<PaddleTensor> &inputs,
           std::vector<PaddleTensor> *output_data,
           int batch_size = -1) override;

145 146 147 148 149
  ///
  /// \brief Get the input names
  ///
  /// \return input names
  ///
150
  std::vector<std::string> GetInputNames() override;
151 152 153 154 155
  ///
  /// \brief Get the output names
  ///
  /// \return output names
  ///
156
  std::vector<std::string> GetOutputNames() override;
N
nhzlx 已提交
157

158 159 160 161 162 163
  ///
  /// \brief Get the Input Tensor object
  ///
  /// \param[in] name input name
  /// \return input tensor
  ///
164 165
  std::unique_ptr<ZeroCopyTensor> GetInputTensor(
      const std::string &name) override;
166 167 168 169 170 171
  ///
  /// \brief Get the Output Tensor object
  ///
  /// \param[in] name otuput name
  /// \return output tensor
  ///
172 173
  std::unique_ptr<ZeroCopyTensor> GetOutputTensor(
      const std::string &name) override;
174 175 176 177 178
  ///
  /// \brief Get all input names and their corresponding shapes
  ///
  /// \return the map of input names and shapes
  ///
179
  std::map<std::string, std::vector<int64_t>> GetInputTensorShape() override;
180 181 182 183 184 185
  ///
  /// \brief Get all input names and their corresponding type
  ///
  /// \return the map of input names and type
  ///
  std::map<std::string, paddle_infer::DataType> GetInputTypes() override;
186

187 188 189 190 191
  ///
  /// \brief Run the prediction engine
  ///
  /// \return Whether the function executed successfully
  ///
192 193
  bool ZeroCopyRun() override;

W
Wilber 已提交
194 195 196 197 198
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // Note: Can only be used under thread_local semantics.
  bool ExpRunWithExternalStream(const gpuStream_t stream);
#endif

199 200 201 202 203 204 205 206
  ///
  /// \brief Get the execution stream on devices with a concept of stream,
  /// otherwise returns nullptr.
  ///
  /// \return The execution stream or nullptr (CPU).
  ///
  void *GetExecStream() const override;

207 208 209 210 211
  ///
  /// \brief Create feed fetch variables
  ///
  /// \param[in] scope Scope needed to create variables
  ///
212
  void CreateFeedFetchVar(framework::Scope *scope);
213 214 215 216
  ///
  /// \brief Determine the model's inputs and outputs based on the program's
  /// feed fetch op
  ///
217
  void PrepareFeedFetch();
Y
Yan Chunwei 已提交
218

219 220 221 222
  ///
  /// \brief Set predictor's argument according to config, which mainly includes
  /// execution information and graph optimization related pass information
  ///
223
  void PrepareArgument();
224 225 226 227
  ///
  /// \brief According to argument information, execute the relevant pass
  /// to get the optimized model program
  ///
Y
Yan Chunwei 已提交
228 229
  void OptimizeInferenceProgram();

230 231 232 233
  ///
  /// \brief Clear the intermediate tensors of the predictor
  ///
  ///
234
  void ClearIntermediateTensor() override;
235

236 237 238 239 240 241 242 243 244 245 246
  ///
  /// \brief Release all tmp tensor to compress the size of the memory pool.
  /// The memory pool is considered to be composed of a list of chunks, if
  /// the chunk is not occupied, it can be released.
  ///
  /// \return Number of bytes released. It may be smaller than the actual
  /// released memory, because part of the memory is not managed by the
  /// MemoryPool.
  ///
  uint64_t TryShrinkMemory() override;

247 248 249 250 251
  ///
  /// \brief Get the argument used by predictor
  ///
  /// \return the argument obtained by config
  ///
252
  Argument &analysis_argument() { return *argument_; }
253 254 255 256 257
  ///
  /// \brief Clone to get the new predictor. thread safe.
  ///
  /// \return get a new predictor
  ///
258
  std::unique_ptr<PaddlePredictor> Clone(void *stream = nullptr) override;
259 260 261 262 263
  ///
  /// \brief Get the scope used by predictor
  ///
  /// \return scope
  ///
264
  framework::Scope *scope() { return scope_.get(); }
265 266 267 268 269
  ///
  /// \brief Get the inference program
  ///
  /// \return the inference program
  ///
270 271
  framework::ProgramDesc &program() { return *inference_program_; }

272 273 274 275 276
  ///
  /// \brief Get the serialized program
  ///
  /// \return the serialized program
  ///
277
  std::string GetSerializedProgram() const override;
Y
Yan Chunwei 已提交
278

279 280 281 282 283 284 285
  ///
  /// \brief Get the fusion_statis_t
  ///
  /// \return the fusion_statis_t
  ///
  Argument::fusion_statis_t fusion_statis() { return fusion_statis_; }

286 287 288 289 290 291 292 293 294 295
  ///
  /// \brief Register a output hook function to operate the intermediate tensor
  /// of op output. when using this function, memory reuse should be tured off.
  /// The hook function signature is void(const std::string&, const
  /// std::string&, const Tensor&>). Here, the first parameter is op's
  /// type, the second param is output var name of the op, and the third
  /// parameter is output tensor with the var name.
  ///
  void RegisterOutputHook(const Exp_OutputHookFunc &hookfunc) override;

296 297 298 299 300
  ///
  /// \brief Initialize mkldnn quantizer and execute mkldnn quantization pass
  ///
  /// \return Whether the function executed successfully
  ///
301 302
  bool MkldnnQuantize();

303 304 305 306 307
  ///
  /// \brief save program to model and save parameters to params
  ///
  /// \param[in] dir path to save the model
  ///
308 309
  void SaveOptimModel(const std::string &dir);

310
 protected:
311 312 313 314 315 316 317
  ///
  /// \brief Prepare predictor's required programs, including loading model
  /// information, graph optimization, and executor creation variables, etc.
  ///
  /// \param[in] program paddle program
  /// \return Whether the function executed successfully
  ///
318
  bool PrepareProgram(const std::shared_ptr<framework::ProgramDesc> &program);
319 320 321 322 323 324
  ///
  /// \brief Prepare scope environment, each predictor has its own scope
  ///
  /// \param[in] parent_scope The scope of the predictor to be cloned, or null
  /// \return Whether the function executed successfully
  ///
325
  bool PrepareScope(const std::shared_ptr<framework::Scope> &parent_scope);
326 327 328 329 330
  ///
  /// \brief Create an Executor object
  ///
  /// \return Whether the function executed successfully
  ///
331
  bool CreateExecutor();
332 333 334 335 336
  ///
  /// \brief According to the model's program, the executor creates ops
  ///
  /// \return Whether the function executed successfully
  ///
337 338
  bool PrepareExecutor();

339 340 341 342 343
  ///
  /// \brief Load model program.
  ///
  /// \return Whether the function executed successfully
  ///
344
  bool LoadProgramDesc();
345 346 347 348 349
  ///
  /// \brief Load model parameters.
  ///
  /// \return Whether the function executed successfully
  ///
350
  bool LoadParameters();
351

352 353 354 355 356 357 358
  ///
  /// \brief Prepare input data, only used in Run()
  ///
  /// \param[in] input_datas inpute tensors
  /// \param[in] scope the scope used by predictor
  /// \return Whether the function executed successfully
  ///
359 360
  bool SetFeed(const std::vector<PaddleTensor> &input_datas,
               framework::Scope *scope);
361 362 363 364 365 366 367
  ///
  /// \brief Get the output data, only used in Run()
  ///
  /// \param[out] output_data output tensors
  /// \param[in] scope the scope used by predictor
  /// \return Whether the function executed successfully
  ///
368 369
  bool GetFetch(std::vector<PaddleTensor> *output_data,
                framework::Scope *scope);
370 371 372 373 374 375
  ///
  /// \brief Get the output data, only used in GetFetch()
  ///
  /// \param[in] tensor for fetch op
  /// \param[out] output_data output tensor
  ///
376
  template <typename T>
377
  void GetFetchOne(const phi::DenseTensor &fetchs, PaddleTensor *output_data);
378 379 380 381 382 383 384 385
  ///
  /// \brief PreSet for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
  /// \param[in] inputs tensors
  ///
386
  void MkldnnPreSet(const std::vector<PaddleTensor> &inputs);
W
Wilber 已提交
387 388 389 390 391 392 393 394 395 396 397

  ///
  /// \brief PreSet for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
  /// \param[in] inputs tensor shape
  ///
  void MkldnnPreSet(const std::vector<std::vector<int>> &inputs_shape);

398 399 400 401 402 403
  ///
  /// \brief PostReset for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
404
  void MkldnnPostReset();
Y
Yan Chunwei 已提交
405

406
#ifdef PADDLE_WITH_TENSORRT
407 408 409 410 411 412 413 414 415 416 417 418 419 420
  ///
  /// \brief save calibration table
  ///
  /// When we use Paddle-TRT INT8 engine, we need to generate calibration table
  /// data first,
  /// the calibration table contains the range for each op's input and output,
  /// this whole process can be divided into several steps:
  /// 1. Builds a 32-bit engine, runs it on the calibration set, and records a
  ///  histogram for each tensor of the distribution of activation values.
  /// 2. Builds a calibration table from the histograms.
  /// After step 2, we need to store the calibration table on disk.
  ///
  /// \return Whether the function executed successfully
  ///
N
nhzlx 已提交
421
  bool SaveTrtCalibToDisk();
N
nhzlx 已提交
422
#endif
N
nhzlx 已提交
423

424 425 426 427 428 429 430 431
// Some more detailed tests, they are made the friends of the predictor, so that
// the all the details can be tested.
#if PADDLE_WITH_TESTING
  FRIEND_TEST(AnalysisPredictor, analysis_off);
  FRIEND_TEST(AnalysisPredictor, analysis_on);
  FRIEND_TEST(AnalysisPredictor, with_gpu);
#endif

432 433 434
 protected:
  const void *GetDeviceContexts() const override;

435 436 437 438
 private:
  void StatisticShapeRangeInfo();
  void CollectShapeRangeInfo();

439 440 441 442
  void InitPlace();
  void InitDeviceContexts();
  void InitResourceManager(void *stream);

443
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
  // fleet exe related

  ///
  /// \brief prepare for fleet executor to run
  ///
  /// Used in AnalysisPredictor::Init(),
  ///
  bool PrepareFleetExecutor();

  ///
  /// \brief init NCCL env for multi gpus inference
  ///
  /// Used in AnalysisPredictor::PrepareFleetExecutor()
  ///
  bool CommInit();

  ///
  /// \brief read the config to init NCCL env
  ///
  /// Used in AnalysisPredictor::CommInit()
  ///
  /// \param[in] ring_id_to_ranks: a ptr to ring_id_to_ranks
  /// \param[in] rank_to_ring_ids: a ptr to rank_to_ring_ids
  ///
  bool LoadConverterConfig(
      std::map<int64_t, std::vector<int64_t>> *ring_id_to_ranks,
      std::map<int64_t, std::vector<int64_t>> *rank_to_ring_ids);

  ///
  /// \brief add ops and run them with NaiveExecutor to init NCCL env
  ///
  /// Used in AnalysisPredictor::CommInit()
  ///
  /// \param[in] tmp_var_name: var name to hold NCCL unique id
  /// \param[in] nranks: number of ranks in one comm group
  /// \param[in] rank: relative rank of current rank in the comm group
  /// \param[in] peer_endpoints: group's peers' endpoints
  /// \param[in] block: the block to insert comm ops
  /// \param[in] ring_id: the ring id to be used to init NCCL env
  ///
484 485 486
  void InsertCommOp(std::string tmp_var_name,
                    int nranks,
                    int rank,
487
                    const std::vector<std::string> &peer_endpoints,
488 489
                    framework::BlockDesc *block,
                    int ring_id);
490 491
#endif

Y
Yan Chunwei 已提交
492
 private:
493
  AnalysisConfig config_;
494 495
  std::unique_ptr<Argument> argument_;
  Argument::fusion_statis_t fusion_statis_;
496 497 498 499 500
  std::unique_ptr<NaiveExecutor> executor_;
  platform::Place place_;
  std::shared_ptr<framework::Scope> scope_;
  framework::Scope *sub_scope_{nullptr};
  std::shared_ptr<framework::ProgramDesc> inference_program_;
501
  framework::OpCompatibleMap op_compatible_map_;
502 503
  std::vector<framework::OpDesc *> feeds_;
  std::map<std::string, size_t> feed_names_;
N
nhzlx 已提交
504 505
  // Sorted according to the idx.
  std::map<size_t, std::string> idx2feeds_;
Y
Yan Chunwei 已提交
506
  std::vector<framework::OpDesc *> fetches_;
N
nhzlx 已提交
507 508
  std::map<size_t, std::string> idx2fetches_;

509 510
  phi::DataType model_precision_{phi::DataType::FLOAT32};

511 512 513 514 515 516 517 518 519 520
#if PADDLE_WITH_MKLDNN
  // Helper class to perform quantization
  class MkldnnQuantizer;
  MkldnnQuantizer *mkldnn_quantizer_{nullptr};

#if PADDLE_WITH_TESTING
  friend class MkldnnQuantizerTest;
#endif
#endif

521
  // Memory buffer for feed inputs. The temporary LoDTensor will cause serious
522
  // concurrency problems, wrong results and memory leak, so cache them.
523
  std::vector<phi::DenseTensor> feed_tensors_;
Y
Yan Chunwei 已提交
524
  details::TensorArrayBatchCleaner tensor_array_batch_cleaner_;
Y
Yan Chunwei 已提交
525 526
  // A mutex help to make Clone thread safe.
  std::mutex clone_mutex_;
527

Y
Yan Chunwei 已提交
528 529 530 531
  // For memory optimization.
  const size_t max_shape_collect_count_{1000};
  int need_collect_var_shapes_{-1};  // -1 for default, 0 for false, 1 for true.
  std::vector<std::map<std::string, std::vector<int>>> batch_var_shapes_;
532
  int predictor_id_;
533
  int root_predictor_id_{-1};
Y
Yan Chunwei 已提交
534

535
 private:
536 537
  std::vector<Exp_OutputHookFunc> hookfuncs_;

538 539
  // Some status here that help to determine the status inside the predictor.
  bool status_is_cloned_{false};
540 541

  std::map<std::string, std::vector<std::vector<int32_t>>> shape_info_;
542
  std::map<std::string, std::vector<std::vector<int32_t>>> shape_tensor_value_;
543
  static int clone_num_;
544

545 546 547 548 549
  bool private_context_{false};
  void *predictor_stream_{nullptr};
  std::map<phi::Place, std::shared_future<std::unique_ptr<phi::DeviceContext>>>
      device_contexts_;

550
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
551 552 553 554 555
  // fleet executor related
  distributed::FleetExecutorDesc executor_desc_;
  std::shared_ptr<distributed::FleetExecutor> fleet_exe_;
  std::shared_ptr<distributed::TaskNode> task_node_;
#endif
W
Wilber 已提交
556
  friend class paddle_infer::experimental::InternalUtils;
Y
Yan Chunwei 已提交
557 558 559
};

}  // namespace paddle