eager_functions.cc 48.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13 14 15 16 17

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif

18
#include <Python.h>
19 20 21 22
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
23 24 25 26 27 28 29 30

#include <string>
#include <vector>

#include "paddle/fluid/eager/accumulation/accumulation_node.h"
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/backward.h"
31
#include "paddle/fluid/eager/custom_operator/custom_operator_node.h"
32
#include "paddle/fluid/eager/utils.h"
33
#include "paddle/fluid/framework/convert_utils.h"
34
#include "paddle/fluid/framework/custom_operator.h"
35
#include "paddle/fluid/framework/phi_utils.h"
36
#include "paddle/fluid/framework/python_headers.h"
37 38
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
W
wanghuancoder 已提交
39
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
40
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
41 42 43 44
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
45
#include "paddle/fluid/pybind/tensor_py.h"
46
#include "paddle/phi/api/ext/op_meta_info.h"
47 48 49 50
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
51 52
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
53 54
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
55

L
Leo Chen 已提交
56 57 58 59
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include "paddle/fluid/pybind/cuda_streams_py.h"
#endif

60
#include "gflags/gflags.h"
61
#include "paddle/phi/api/include/operants_manager.h"
62 63 64 65
#include "paddle/phi/api/include/tensor_operants.h"

DECLARE_string(tensor_operants_mode);

66 67 68 69 70
namespace paddle {
namespace pybind {

namespace py = ::pybind11;

71
extern PyTypeObject* p_tensor_type;
72 73
extern PyTypeObject* g_multidevicefeedreader_pytype;
extern PyTypeObject* g_orderedmultidevicefeedreader_pytype;
74 75 76 77 78 79 80 81 82 83 84

size_t PyArray_Size_(PyObject* numpy_data) {
  size_t res = 1;
  auto dims = pybind11::detail::array_proxy(numpy_data)->dimensions;
  auto nd = pybind11::detail::array_proxy(numpy_data)->nd;
  while (nd--) {
    res *= (*dims++);
  }
  return res;
}

85
class EagerNumpyAllocation : public phi::Allocation {
86
 public:
87
  explicit EagerNumpyAllocation(PyObject* numpy_data, phi::DataType dtype)
88 89
      : Allocation(
            static_cast<void*>(pybind11::detail::array_proxy(numpy_data)->data),
90
            phi::SizeOf(dtype) * PyArray_Size_(numpy_data),
91 92
            paddle::platform::CPUPlace()),
        arr_(numpy_data) {
93 94 95 96
    PADDLE_ENFORCE_NOT_NULL(
        arr_,
        platform::errors::InvalidArgument("The underlying PyObject pointer of "
                                          "numpy array cannot be nullptr"));
97
    PADDLE_ENFORCE_NE(
98 99
        arr_,
        Py_None,
100 101 102 103 104 105 106 107 108 109 110 111 112
        platform::errors::PreconditionNotMet(
            "The underlying PyObject pointer of numpy array cannot be None"));
    Py_INCREF(arr_);
  }
  ~EagerNumpyAllocation() override {
    py::gil_scoped_acquire gil;
    Py_DECREF(arr_);
  }

 private:
  PyObject* arr_;
};

113 114
static PyObject* eager_api_scale(PyObject* self,
                                 PyObject* args,
115 116 117
                                 PyObject* kwargs) {
  EAGER_TRY
  // TODO(jiabin): Sync Tensor and Variable here when we support
W
wanghuancoder 已提交
118 119 120 121 122 123 124

  auto& tensor =
      reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor;
  float scale = CastPyArg2AttrFloat(PyTuple_GET_ITEM(args, 1), 1);
  float bias = CastPyArg2AttrFloat(PyTuple_GET_ITEM(args, 2), 2);
  bool bias_after_scale = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);
  bool trace_backward = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
125
  paddle::Tensor ret;
W
wanghuancoder 已提交
126 127 128 129
  {
    eager_gil_scoped_release guard;
    ret = egr::scale(tensor, scale, bias, bias_after_scale, trace_backward);
  }
130 131 132 133
  return ToPyObject(ret);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

134 135
static PyObject* eager_api_run_backward(PyObject* self,
                                        PyObject* args,
136 137
                                        PyObject* kwargs) {
  EAGER_TRY
138 139
  auto tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 1), 1);
W
wanghuancoder 已提交
140
  bool retain_graph = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 2), 2);
141 142
  {
    eager_gil_scoped_release guard;
W
wanghuancoder 已提交
143
    egr::Backward(tensors, grad_tensors, retain_graph);
144
  }
145
  RETURN_PY_NONE
146 147 148
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

149 150
static PyObject* eager_api_run_partial_grad(PyObject* self,
                                            PyObject* args,
151 152 153 154 155 156 157 158 159 160
                                            PyObject* kwargs) {
  EAGER_TRY
  auto tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0);
  auto inputs = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 1), 1);
  auto grad_tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 2), 2);
  auto retain_graph = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);
  auto create_graph = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
  auto only_inputs = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 5), 5);
  auto allow_unused = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 6), 6);
  auto no_grad_vars = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 7), 7);
161
  std::vector<paddle::Tensor> result;
162 163 164 165 166 167 168 169 170 171
  {
    eager_gil_scoped_release guard;
    result = egr::Grad(tensors,
                       inputs,
                       grad_tensors,
                       retain_graph,
                       create_graph,
                       only_inputs,
                       allow_unused,
                       no_grad_vars);
L
Leo Chen 已提交
172
    VLOG(4) << " in eager_api_run_partial_grad, after runing egr::Grad";
173
  }
174 175 176 177
  return ToPyObject(result, true /* return_py_none_if_not_initialize */);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

178 179
static PyObject* eager_api_tensor_copy(PyObject* self,
                                       PyObject* args,
180 181
                                       PyObject* kwargs) {
  EAGER_TRY
182
  paddle::Tensor& src =
183
      reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor;
184
  paddle::Tensor& dst =
185
      reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 1))->tensor;
186 187 188
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 2), 2);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);

W
wanghuancoder 已提交
189 190 191 192 193 194 195 196
  {
    eager_gil_scoped_release guard;
    dst = src.copy_to(place, blocking);
    egr::EagerUtils::autograd_meta(&dst)->SetStopGradient(
        egr::EagerUtils::autograd_meta(&(src))->StopGradient());
    egr::EagerUtils::autograd_meta(&dst)->SetPersistable(
        egr::EagerUtils::autograd_meta(&(src))->Persistable());
  }
197
  RETURN_PY_NONE
198 199 200
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

201 202 203 204 205 206
PyObject* eager_api_get_all_grads(PyObject* self,
                                  PyObject* args,
                                  PyObject* kwargs) {
  EAGER_TRY
  auto tensor_list = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0);

207
  std::vector<paddle::Tensor> ret;
208 209 210 211
  for (auto& tensor : tensor_list) {
    VLOG(6) << "Get grad for tensor: " << tensor.name();
    auto meta = egr::EagerUtils::nullable_autograd_meta(tensor);
    if (!meta || meta->StopGradient()) {
212
      ret.emplace_back(paddle::Tensor());
213 214 215 216 217
      continue;
    }
    if (meta && meta->Grad().initialized()) {
      ret.emplace_back(meta->Grad());
    } else {
218
      ret.emplace_back(paddle::Tensor());
219 220 221 222 223 224
    }
  }
  return ToPyObject(ret, true);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

225 226 227 228 229
PyObject* eager_api_get_grads_lists(PyObject* self,
                                    PyObject* args,
                                    PyObject* kwargs) {
  EAGER_TRY
  auto tensor_list = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0);
230
  // The order of the 3 vectors is: FP16_grads, BF16_grads, FP32_grads
231
  std::vector<std::vector<paddle::Tensor>> ret(3);
232 233 234 235 236 237 238

  for (auto& tensor : tensor_list) {
    VLOG(6) << "Get grad for tensor: " << tensor.name();
    auto meta = egr::EagerUtils::nullable_autograd_meta(tensor);
    if (meta && meta->Grad().initialized()) {
      auto& grad = meta->Grad();
      switch (grad.dtype()) {
239
        case phi::DataType::FLOAT16:
240 241
          ret[0].emplace_back(grad);
          break;
242
        case phi::DataType::BFLOAT16:
243 244
          ret[1].emplace_back(grad);
          break;
245
        case phi::DataType::FLOAT32:
246 247 248 249 250 251 252 253 254 255 256 257 258
          ret[2].emplace_back(grad);
          break;
        default:
          break;
      }
    }
  }

  return ToPyObject(ret);

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
PyObject* eager_api_get_grads_types(PyObject* self,
                                    PyObject* args,
                                    PyObject* kwargs) {
  EAGER_TRY
  auto tensor_list = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0);

  std::vector<int> ret;

  for (auto& tensor : tensor_list) {
    VLOG(6) << "Get grad for tensor: " << tensor.name();
    auto meta = egr::EagerUtils::nullable_autograd_meta(tensor);
    if (!meta || meta->StopGradient()) {
      ret.emplace_back(-1);
      continue;
    }

    auto& grad = meta->Grad();
    if (meta && grad.initialized()) {
      if (grad.is_dense_tensor() &&
278 279 280
          (tensor.dtype() == phi::DataType::FLOAT32 ||
           tensor.dtype() == phi::DataType::FLOAT16 ||
           tensor.dtype() == phi::DataType::BFLOAT16)) {
281 282 283 284 285 286 287 288 289 290 291 292 293
        ret.emplace_back(
            paddle::framework::TransToProtoVarType(tensor.dtype()));
      }
    } else {
      ret.emplace_back(-1);
    }
  }

  return ToPyObject(ret);

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

294 295
static PyObject* eager_api_read_next_tensor_list(PyObject* self,
                                                 PyObject* args,
296
                                                 PyObject* kwargs) {
297
  EAGER_TRY
298 299
  auto tensor_base_list =
      CastPyArg2VectorOfTensorBase(PyTuple_GET_ITEM(args, 0), 0);
300
  std::vector<paddle::Tensor> tensor_list;
301 302 303
  {
    eager_gil_scoped_release guard;
    tensor_list.reserve(tensor_base_list.size());
304
    auto func = [](phi::DenseTensor& tensor_base) {
305
      paddle::Tensor tensor(egr::Controller::Instance().GenerateUniqueName());
306 307 308 309 310 311 312 313 314
      auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor);
      autograd_meta->SetPersistable(false);
      autograd_meta->SetStopGradient(true);
      tensor.set_impl(std::make_shared<phi::DenseTensor>(tensor_base));
      return tensor;
    };
    for (auto& tensor_base : tensor_base_list) {
      tensor_list.emplace_back(func(tensor_base));
    }
315
  }
316
  return ToPyObject(tensor_list);
317 318 319
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

320 321 322 323 324 325 326 327 328
static void ConstructFwdAndBwdMap(
    const std::vector<paddle::OpMetaInfo>& vec_map,
    const std::string& op_type) {
  auto& in_out_map = egr::Controller::Instance().GetCustomEdgesSlotMap();
  if (in_out_map.find(op_type) != in_out_map.end()) {
    VLOG(7) << "Find Exist CustomEdgesSlotMap Skip >>>> ";
    return;
  } else {
    VLOG(7) << "Construct CustomEdgesSlotMap ";
329 330 331 332 333 334
    auto inputs_names = paddle::OpMetaInfoHelper::GetInputs(vec_map[0]);
    auto outputs_names = paddle::OpMetaInfoHelper::GetOutputs(vec_map[0]);
    auto attrs_names = paddle::OpMetaInfoHelper::GetAttrs(vec_map[0]);
    auto grad_outputs_names = paddle::OpMetaInfoHelper::GetOutputs(vec_map[1]);
    auto grad_inputs_names = paddle::OpMetaInfoHelper::GetInputs(vec_map[1]);
    auto grad_attrs_names = paddle::OpMetaInfoHelper::GetAttrs(vec_map[1]);
335
    std::vector<std::unordered_map<int, int>> res(5);
336 337

    in_out_map.insert({op_type, {res}});
338 339 340
    // Prepare pos map for grad_outputs
    VLOG(7) << "Prepare pos map for grad_outputs";
    PADDLE_ENFORCE_LE(
341 342
        grad_outputs_names.size(),
        inputs_names.size(),
343 344 345 346 347
        paddle::platform::errors::InvalidArgument(
            "Grad outputs num should be less equal than forward inputs num."));
    for (size_t i = 0; i < grad_outputs_names.size(); i++) {
      size_t end = grad_outputs_names[i].find("@GRAD");
      PADDLE_ENFORCE_NE(
348 349
          end,
          std::string::npos,
350 351 352 353 354 355 356 357 358
          paddle::platform::errors::NotFound(
              "All Grad outputs should be grad and we got %s is not grad var, "
              "please check your op and change to fit the rule.",
              grad_outputs_names[i]));
      for (size_t j = 0; j < inputs_names.size(); j++) {
        if (grad_outputs_names[i].substr(0, end) == inputs_names[j]) {
          VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                  << " inputs: " << inputs_names[j] << " related to No." << i
                  << " grad_outputs: " << grad_outputs_names[i];
359
          in_out_map[op_type][0][0][j] = i;
360 361 362 363 364 365 366 367 368 369 370 371
        }
      }
    }
    // Prepare pos map for grad_inputs
    for (size_t i = 0; i < grad_inputs_names.size(); i++) {
      size_t end = grad_inputs_names[i].find("@GRAD");
      if (end != std::string::npos) {
        for (size_t j = 0; j < outputs_names.size(); j++) {
          if (grad_inputs_names[i].substr(0, end) == outputs_names[j]) {
            VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                    << " outputs: " << outputs_names[j] << " related to No."
                    << i << " grad_inputs's grad: " << grad_inputs_names[i];
372
            in_out_map[op_type][0][1][j] = i;
373 374 375
          }
        }
      } else {
376 377
        if (std::find(outputs_names.begin(),
                      outputs_names.end(),
378 379 380 381 382 383 384
                      grad_inputs_names[i]) != outputs_names.end()) {
          for (size_t j = 0; j < outputs_names.size(); j++) {
            if (grad_inputs_names[i] == outputs_names[j]) {
              VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                      << " outputs: " << outputs_names[j] << " related to No."
                      << i
                      << " grad_inputs fwd outputs: " << grad_inputs_names[i];
385
              in_out_map[op_type][0][2][j] = i;
386 387 388 389 390 391 392 393 394
            }
          }
        } else {
          for (size_t j = 0; j < inputs_names.size(); j++) {
            if (grad_inputs_names[i] == inputs_names[j]) {
              VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                      << " inputs: " << inputs_names[j] << " related to No."
                      << i
                      << " grad_inputs fwd inputs: " << grad_inputs_names[i];
395
              in_out_map[op_type][0][3][j] = i;
396 397 398 399 400 401 402 403
            }
          }
        }
      }
    }

    // Prepare pos map for grad attrs_
    for (size_t i = 0; i < grad_attrs_names.size(); i++) {
404 405 406 407
      auto end = std::find(
          attrs_names.begin(), attrs_names.end(), grad_attrs_names[i]);
      PADDLE_ENFORCE_NE(end,
                        attrs_names.end(),
408 409 410 411 412 413 414 415 416 417
                        paddle::platform::errors::NotFound(
                            "All Grad attrs should be one of forward attrs and "
                            "we got %s is not one of them, please check your "
                            "op and change to fit the rule.",
                            grad_attrs_names[i]));
      for (size_t j = 0; j < attrs_names.size(); j++) {
        if (grad_attrs_names[i] == attrs_names[j]) {
          VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                  << " attrs: " << attrs_names[j] << " related to No." << i
                  << " grad_attrs: " << grad_attrs_names[i];
418
          in_out_map[op_type][0][4][j] = i;
419 420 421 422 423 424
        }
      }
    }
  }
}

H
HongyuJia 已提交
425
static std::vector<paddle::any> CastAttrsToTargetType(
426 427 428
    const std::vector<paddle::any>& src,
    const std::vector<std::string>& attrs_names) {
  std::vector<paddle::any> res;
429 430
  PADDLE_ENFORCE_EQ(src.size(),
                    attrs_names.size(),
431 432 433 434
                    paddle::platform::errors::InvalidArgument(
                        "We Expected same size of attrs and attrs_name list, "
                        "if u got this error indicate your custom op setting "
                        "%s attrs, but you just give %s",
435 436
                        attrs_names.size(),
                        src.size()));
437 438
  for (size_t i = 0; i < src.size(); i++) {
    size_t end = attrs_names[i].find(": ");
439
    std::string type_name = attrs_names[i].substr(end + 2);
440 441 442 443 444 445 446 447 448
    if (type_name == "int") {
      if (src[i].type() == typeid(bool)) {
        res.emplace_back(static_cast<int>(paddle::any_cast<bool>(src[i])));
      } else if (src[i].type() == typeid(int)) {
        res.emplace_back(src[i]);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Your No. %s attrs should only can be bool or int32, other type is "
            "forbidden for now but we got %s. Check your code first please",
449 450
            i,
            src[i].type().name()));
451 452 453 454 455 456 457 458 459 460 461 462 463
      }
    } else if (type_name == "int64_t") {
      if (src[i].type() == typeid(bool)) {
        res.emplace_back(static_cast<int64_t>(paddle::any_cast<bool>(src[i])));
      } else if (src[i].type() == typeid(int)) {
        res.emplace_back(static_cast<int64_t>(paddle::any_cast<int>(src[i])));
      } else if (src[i].type() == typeid(int64_t)) {
        res.emplace_back(src[i]);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Your No. %s attrs should only can be bool or int32 or int64_t, "
            "other type is forbidden for now but we got %s. Check your code "
            "first please",
464 465
            i,
            src[i].type().name()));
466 467 468 469 470 471 472 473
      }
    } else {
      res.emplace_back(src[i]);
    }
  }
  return res;
}

474 475 476 477
static PyObject* eager_api_jit_function_call(PyObject* self,
                                             PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
478 479 480

  std::shared_ptr<jit::Function> function =
      CastPyArg2JitFunction(PyTuple_GET_ITEM(args, 0), 0);
481
  std::vector<paddle::Tensor> ins =
482
      CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 1), 1);
483
  std::vector<paddle::Tensor> outs;
W
wanghuancoder 已提交
484 485 486 487
  {
    eager_gil_scoped_release guard;
    outs = (*function)(ins);
  }
488 489 490 491
  return ToPyObject(outs);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

H
HongyuJia 已提交
492
static PyObject* eager_api_run_custom_op(PyObject* self,
493
                                         PyObject* args,
494 495
                                         PyObject* kwargs) {
  EAGER_TRY
496
  FLAGS_tensor_operants_mode = "phi";
497 498
  if (paddle::OperantsManager::Instance().phi_operants.get() == nullptr) {
    paddle::OperantsManager::Instance().phi_operants.reset(
499 500 501 502
        new paddle::operants::PhiTensorOperants());
    VLOG(4) << "Initialize phi tensor operants successfully";
  }

503 504 505 506
  paddle::CustomOpKernelContext ctx =
      CastPyArg2CustomOpKernelContext(PyTuple_GET_ITEM(args, 0), 0);
  std::string op_type = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 1), 1);
  bool trace_backward = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 2), 2);
W
wanghuancoder 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520
  {
    eager_gil_scoped_release guard;
    VLOG(7) << "Get things for python for Custom Op: " << op_type
            << ", trace_backward is: " << trace_backward;
    auto meta_info_map = egr::Controller::Instance().GetOpMetaInfoMap();
    PADDLE_ENFORCE_NE(
        meta_info_map.find(op_type),
        meta_info_map.end(),
        paddle::platform::errors::NotFound(
            "Can't find %s in Eager OpMetaInfoMap which should be "
            "created by LoadOpMetaInfoAndRegisterOp, please make "
            "sure you registered your op first and try again. ",
            op_type));
    VLOG(7) << "Run Kernel of Custom Op: " << op_type;
521
    // TODO(HongyuJia): Optimize Attrs Cast naming and implementation
522 523 524
    std::vector<paddle::any> res_attrs = CastAttrsToTargetType(
        ctx.Attrs(),
        paddle::OpMetaInfoHelper::GetAttrs(meta_info_map.at(op_type)[0]));
W
wanghuancoder 已提交
525 526
    ctx.EmplaceBackAttrs(res_attrs);
    const auto& vec_map = meta_info_map.at(op_type);
527

528 529 530 531
    const auto& inputs =
        paddle::OpMetaInfoHelper::GetInputs(meta_info_map.at(op_type)[0]);
    const auto& outputs =
        paddle::OpMetaInfoHelper::GetOutputs(meta_info_map.at(op_type)[0]);
532
    const auto& inplace_map =
533 534
        paddle::OpMetaInfoHelper::GetInplaceMap(meta_info_map.at(op_type)[0]);
    // handle inplace map
535
    ctx.MapPlainOutputs(inputs, outputs, inplace_map);
536
    (*paddle::OpMetaInfoHelper::GetKernelFn(vec_map[0]))(&ctx);
537
    ctx.AssignInplaceOutputs();
W
wanghuancoder 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550

    VLOG(7) << "Get AutogradMeta for inputs and outputs for Custom Op";
    std::vector<std::vector<egr::AutogradMeta*>> ins_auto_grad_metas;
    std::vector<std::vector<egr::AutogradMeta*>> outs_auto_grad_metas;
    VLOG(7) << "We got slot num of ins is: " << ctx.InputRange().size();
    ins_auto_grad_metas.resize(ctx.InputRange().size());
    VLOG(7) << "We got slot num of outs is: " << ctx.OutputRange().size();
    outs_auto_grad_metas.resize(ctx.OutputRange().size());

    for (size_t i = 0; i < ctx.InputRange().size(); i++) {
      ins_auto_grad_metas[i] =
          egr::EagerUtils::nullable_autograd_meta(ctx.InputsBetween(
              ctx.InputRangeAt(i).first, ctx.InputRangeAt(i).second));
551
    }
W
wanghuancoder 已提交
552 553 554 555
    for (size_t i = 0; i < ctx.OutputRange().size(); i++) {
      outs_auto_grad_metas[i] =
          egr::EagerUtils::unsafe_autograd_meta(ctx.OutputsBetweeen(
              ctx.OutputRangeAt(i).first, ctx.OutputRangeAt(i).second));
556
    }
W
wanghuancoder 已提交
557 558 559 560 561
    bool require_any_grad = false;
    for (size_t i = 0; i < ins_auto_grad_metas.size(); i++) {
      require_any_grad =
          require_any_grad || egr::EagerUtils::ComputeRequireGrad(
                                  trace_backward, &(ins_auto_grad_metas[i]));
562
    }
563

564
    // handle inplace map
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
    for (size_t i = 0; i < ctx.InputRange().size(); i++) {
      if (inplace_map.find(inputs[i]) != inplace_map.end()) {
        size_t input_size =
            ctx.InputRangeAt(i).second - ctx.InputRangeAt(i).first;
        size_t start_idx = ctx.InputRangeAt(i).first;
        for (size_t j = 0; j < input_size; j++) {
          egr::EagerUtils::CheckInplace(ctx.InputAt(start_idx + j),
                                        ins_auto_grad_metas[i][j],
                                        require_any_grad);
          // Bump Inplace Version
          ctx.MutableInputAt(start_idx + j).bump_inplace_version();
          VLOG(3) << "Custom operator: Tensor("
                  << ctx.InputAt(start_idx + j).name()
                  << ") uses Inplace Strategy.";
        }
      }
    }

W
wanghuancoder 已提交
583 584 585 586 587 588
    if (require_any_grad && (vec_map.size() > 1)) {
      VLOG(6) << " Construct Grad for Custom Op: " << op_type;
      ConstructFwdAndBwdMap(vec_map, op_type);
      for (size_t i = 0; i < outs_auto_grad_metas.size(); i++) {
        egr::EagerUtils::PassStopGradient(false, &(outs_auto_grad_metas[i]));
      }
589 590 591 592 593 594 595 596 597 598 599
      // Note(HongyuJia): In dygraph eager mode, CheckInplace makes sure leaf
      // nodes set stop_gradient=True. However, dygraph mode can also outputs
      // lead nodes' gradients (For example, we can get x.grad after x.add_(y)).
      // To be consistent with dygraph mode, we have to PassStopGradient for all
      // inplaced ins_auto_grad_metas.
      std::unordered_map<size_t, size_t> inplace_tensor_map =
          ctx.GetInplaceTensorMap();
      for (auto pair : inplace_tensor_map) {
        egr::EagerUtils::PassStopGradient(false,
                                          &(ins_auto_grad_metas[pair.first]));
      }
W
wanghuancoder 已提交
600 601 602 603 604 605 606
      auto grad_node = std::make_shared<egr::RunCustomOpNode>(
          outs_auto_grad_metas.size(), ins_auto_grad_metas.size(), op_type);
      auto slot_map =
          egr::Controller::Instance().GetCustomEdgesSlotMap().at(op_type);
      // Prepare Grad outputs
      size_t no_grad_cnt = 0;
      for (size_t i = 0; i < ins_auto_grad_metas.size(); i++) {
607 608
        const std::vector<paddle::Tensor>& in_tensors = ctx.InputsBetween(
            ctx.InputRangeAt(i).first, ctx.InputRangeAt(i).second);
W
wanghuancoder 已提交
609 610 611 612 613 614 615 616 617 618 619

        if (slot_map[0][0].find(i) != slot_map[0][0].end()) {
          grad_node->SetGradOutMeta(in_tensors, slot_map[0][0][i]);
        } else {
          grad_node->SetGradOutMeta(
              in_tensors, ins_auto_grad_metas.size() - 1 - no_grad_cnt);
          no_grad_cnt++;
        }
      }
      // Prepare Grad inputs with grad of fwd outputs
      for (size_t i = 0; i < outs_auto_grad_metas.size(); i++) {
620 621
        const std::vector<paddle::Tensor>& out_tensors = ctx.OutputsBetweeen(
            ctx.OutputRangeAt(i).first, ctx.OutputRangeAt(i).second);
W
wanghuancoder 已提交
622 623 624 625 626

        egr::EagerUtils::SetOutRankWithSlot(&(outs_auto_grad_metas[i]), i);
        egr::EagerUtils::SetHistory(&(outs_auto_grad_metas[i]), grad_node);
        grad_node->SetGradInMeta(out_tensors, i);
      }
627

W
wanghuancoder 已提交
628 629 630 631 632 633 634 635 636
      // Prepare Grad inputs with fwd outputs
      for (auto it = slot_map[0][2].begin(); it != slot_map[0][2].end(); it++) {
        VLOG(7) << "Prepare fwd_outs: " << it->first
                << " to grad_inputs: " << it->second;
        grad_node->fwd_outs[it->second] =
            egr::RunCustomOpNode::ConstructTensorWrapper(
                ctx.OutputsBetweeen(ctx.OutputRangeAt(it->first).first,
                                    ctx.OutputRangeAt(it->first).second));
      }
637

W
wanghuancoder 已提交
638 639 640 641 642 643 644 645 646
      // Prepare Grad inputs with fwd inputs
      for (auto it = slot_map[0][3].begin(); it != slot_map[0][3].end(); it++) {
        VLOG(7) << "Prepare fwd_ins: " << it->first
                << " to grad_inputs: " << it->second;
        grad_node->fwd_ins[it->second] =
            egr::RunCustomOpNode::ConstructTensorWrapper(
                ctx.InputsBetween(ctx.InputRangeAt(it->first).first,
                                  ctx.InputRangeAt(it->first).second));
      }
647

648 649
      auto attrs_names =
          paddle::OpMetaInfoHelper::GetAttrs(meta_info_map.at(op_type)[1]);
W
wanghuancoder 已提交
650 651 652 653 654 655 656 657
      std::vector<paddle::any> attrs(attrs_names.size());
      // Prepare attrs for Grad node
      for (auto it = slot_map[0][4].begin(); it != slot_map[0][4].end(); it++) {
        VLOG(7) << "Prepare fwd attrs: " << it->first
                << " to grad_attrs: " << it->second;
        attrs[it->second] = res_attrs[it->first];
      }
      grad_node->SetAttrs(attrs);
658 659
    }
  }
660
  RETURN_PY_NONE
661 662 663
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

664 665
static PyObject* eager_api_sparse_coo_tensor(PyObject* self,
                                             PyObject* args,
666 667 668 669 670 671
                                             PyObject* kwargs) {
  EAGER_TRY
  auto non_zero_indices = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  auto non_zero_elements = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 1), 1);
  auto dense_shape = CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 2), 2);
  auto stop_gradient = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);
672
  paddle::Tensor tensor;
W
wanghuancoder 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE(non_zero_indices.is_dense_tensor(),
                   paddle::platform::errors::Fatal(
                       "the non-zero indices must be a DenseTensor."));
    PADDLE_ENFORCE(non_zero_elements.is_dense_tensor(),
                   paddle::platform::errors::Fatal(
                       "the non-zero elements must be a DenseTensor."));
    auto dense_indices =
        std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_indices.impl());
    auto dense_elements =
        std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_elements.impl());
    // TODO(zhangkaihuo): After creating SparseCooTensor, call coalesced() to
    // sort and merge duplicate indices
    std::shared_ptr<phi::SparseCooTensor> coo_tensor =
        std::make_shared<phi::SparseCooTensor>(
            *dense_indices, *dense_elements, phi::make_ddim(dense_shape));
    tensor.set_impl(coo_tensor);
    auto name =
        egr::Controller::Instance().GenerateUniqueName("generated_tensor");
    tensor.set_name(name);
    auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor);
    autograd_meta->SetStopGradient(static_cast<bool>(stop_gradient));
    if (!autograd_meta->GetMutableGradNode()) {
      VLOG(3) << "Tensor(" << name
              << ") doesn't have GradNode, add GradNodeAccumulation to it.";
      autograd_meta->SetGradNode(
          std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
    }
702 703 704 705 706
  }
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

707 708
static PyObject* eager_api_sparse_csr_tensor(PyObject* self,
                                             PyObject* args,
709 710 711 712 713 714 715
                                             PyObject* kwargs) {
  EAGER_TRY
  auto non_zero_crows = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  auto non_zero_cols = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 1), 1);
  auto non_zero_elements = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 2), 2);
  auto dense_shape = CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 3), 3);
  auto stop_gradient = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
716
  paddle::Tensor tensor;
W
wanghuancoder 已提交
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE(non_zero_crows.is_dense_tensor(),
                   paddle::platform::errors::Fatal(
                       "the compressed non-zero rows must be a DenseTensor."));
    PADDLE_ENFORCE(non_zero_cols.is_dense_tensor(),
                   paddle::platform::errors::Fatal(
                       "the non-zero cols must be a DenseTensor."));
    PADDLE_ENFORCE(non_zero_elements.is_dense_tensor(),
                   paddle::platform::errors::Fatal(
                       "the non-zero elements must be a DenseTensor."));

    auto dense_crows =
        std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_crows.impl());
    auto dense_cols =
        std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_cols.impl());
    auto dense_elements =
        std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_elements.impl());
    std::shared_ptr<phi::SparseCsrTensor> csr_tensor =
        std::make_shared<phi::SparseCsrTensor>(*dense_crows,
                                               *dense_cols,
                                               *dense_elements,
                                               phi::make_ddim(dense_shape));
    tensor.set_impl(csr_tensor);
    auto name =
        egr::Controller::Instance().GenerateUniqueName("generated_tensor");
    tensor.set_name(name);
    auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor);
    autograd_meta->SetStopGradient(static_cast<bool>(stop_gradient));
    if (!autograd_meta->GetMutableGradNode()) {
      VLOG(3) << "Tensor(" << name
              << ") have not GradNode, add GradNodeAccumulation for it.";
      autograd_meta->SetGradNode(
          std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
    }
752 753 754 755
  }
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
756 757 758 759 760 761 762 763

static PyObject* eager_api_register_saved_tensors_hooks(PyObject* self,
                                                        PyObject* args,
                                                        PyObject* kwargs) {
  EAGER_TRY
  if (egr::Controller::Instance().HasGrad()) {
    auto pack_hook = PyTuple_GET_ITEM(args, 0);
    auto unpack_hook = PyTuple_GET_ITEM(args, 1);
764 765 766
    egr::SavedTensorsHooks::GetInstance().SetHooks(
        std::make_shared<PackHook>(pack_hook),
        std::make_shared<UnPackHook>(unpack_hook));
767 768 769 770 771 772 773 774 775 776 777 778 779 780
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_api_reset_saved_tensors_hooks(PyObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  egr::SavedTensorsHooks::GetInstance().ResetHooks();
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
781
#if defined(PADDLE_WITH_CUDA)
782 783
static PyObject* eager_api_async_read(PyObject* self,
                                      PyObject* args,
W
wanghuancoder 已提交
784 785 786 787 788 789 790 791
                                      PyObject* kwargs) {
  EAGER_TRY
  auto& src = GetTensorFromArgs("async_read", "src", args, 0, false);
  auto& dst = GetTensorFromArgs("async_read", "dst", args, 1, false);
  auto& index = GetTensorFromArgs("async_read", "index", args, 2, false);
  auto& buffer = GetTensorFromArgs("async_read", "buffer", args, 3, false);
  auto& offset = GetTensorFromArgs("async_read", "offset", args, 4, false);
  auto& count = GetTensorFromArgs("async_read", "count", args, 5, false);
W
wanghuancoder 已提交
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE_EQ(
        src.is_gpu_pinned(),
        true,
        platform::errors::InvalidArgument("Required `src` device should be "
                                          "CUDAPinnedPlace, but received %d.",
                                          src.place()));
    PADDLE_ENFORCE_EQ(
        dst.is_gpu(),
        true,
        platform::errors::InvalidArgument(
            "Required `dst` device should be CUDAPlace, but received %d.",
            dst.place()));
    PADDLE_ENFORCE_EQ(
        index.is_cpu(),
        true,
        platform::errors::InvalidArgument(
            "Required `index` device should be CPUPlace, but received %d.",
            index.place()));
    PADDLE_ENFORCE_EQ(buffer.is_gpu_pinned(),
                      true,
W
wanghuancoder 已提交
814
                      platform::errors::InvalidArgument(
W
wanghuancoder 已提交
815 816 817 818 819 820 821 822 823
                          "Required `buffer` device should be CUDAPinnedPlace, "
                          "but received %d.",
                          buffer.place()));
    PADDLE_ENFORCE_EQ(
        offset.is_cpu(),
        true,
        platform::errors::InvalidArgument(
            "Required `offset` device should be CPUPlace, but received %d.",
            offset.place()));
W
wanghuancoder 已提交
824
    PADDLE_ENFORCE_EQ(
W
wanghuancoder 已提交
825 826
        count.is_cpu(),
        true,
W
wanghuancoder 已提交
827
        platform::errors::InvalidArgument(
W
wanghuancoder 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
            "Required `count` device should be CPUPlace, but received %d.",
            count.place()));

    auto& src_tensor = src;
    auto* dst_tensor = &dst;
    auto& index_tensor = index;
    auto* buffer_tensor = &buffer;
    auto& offset_tensor = offset;
    auto& count_tensor = count;
    auto* dst_data = dst_tensor->mutable_data<float>(dst.place());
    const auto& deviceId = paddle::platform::GetCurrentDeviceId();

    PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                      dst_tensor->dims().size(),
                      platform::errors::InvalidArgument(
                          "`src` and `dst` should have same tensor shape, "
                          "except for the first dimension."));
    PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                      buffer_tensor->dims().size(),
                      platform::errors::InvalidArgument(
                          "`src` and `buffer` should have same tensor shape, "
                          "except for the first dimension."));
    for (int i = 1; i < src_tensor.dims().size(); i++) {
      PADDLE_ENFORCE_EQ(
          src_tensor.dims()[i],
          dst_tensor->dims()[i],
          platform::errors::InvalidArgument(
              "`src` and `dst` should have the same tensor shape, "
              "except for the first dimension."));
      PADDLE_ENFORCE_EQ(
          src_tensor.dims()[i],
          buffer_tensor->dims()[i],
          platform::errors::InvalidArgument(
              "`src` and `buffer` should have the same tensor shape, "
              "except for the first dimension."));
    }
    PADDLE_ENFORCE_EQ(index_tensor.dims().size(),
                      1,
                      platform::errors::InvalidArgument(
                          "`index` tensor should be one-dimensional."));

    auto stream = paddle::platform::get_current_stream(deviceId)->raw_stream();

    int64_t numel = 0;  // total copy length
    int64_t copy_flag = offset_tensor.dims()[0];
    int64_t size = src_tensor.numel() / src_tensor.dims()[0];

    if (copy_flag != 0) {
      PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                        1,
                        platform::errors::InvalidArgument(
                            "`offset` tensor should be one-dimensional."));
      PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                        1,
                        platform::errors::InvalidArgument(
                            "`count` tensor should be one-dimensional."));
      PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                        count_tensor.numel(),
                        platform::errors::InvalidArgument(
                            "`offset` and `count` tensor size dismatch."));
      auto* offset_data = offset_tensor.data<int64_t>();
      auto* count_data = count_tensor.data<int64_t>();
      for (int64_t i = 0; i < count_tensor.numel(); i++) {
        numel += count_data[i];
      }
      PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                        buffer_tensor->dims()[0],
                        platform::errors::InvalidArgument(
                            "Buffer tensor size is too small."));
      PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                        dst_tensor->dims()[0],
                        platform::errors::InvalidArgument(
                            "Target tensor size is too small."));

      int64_t src_offset, dst_offset = 0, c;
      auto* src_data = src_tensor.data<float>();
      for (int64_t i = 0; i < offset_tensor.numel(); i++) {
        src_offset = offset_data[i], c = count_data[i];
        PADDLE_ENFORCE_LE(src_offset + c,
                          src_tensor.dims()[0],
                          platform::errors::InvalidArgument(
                              "Invalid offset or count index."));
        PADDLE_ENFORCE_LE(dst_offset + c,
                          dst_tensor->dims()[0],
                          platform::errors::InvalidArgument(
                              "Invalid offset or count index."));
        cudaMemcpyAsync(dst_data + (dst_offset * size),
                        src_data + (src_offset * size),
                        c * size * sizeof(float),
                        cudaMemcpyHostToDevice,
                        stream);
        dst_offset += c;
      }
    } else {
      PADDLE_ENFORCE_LE(index_tensor.numel(),
                        buffer_tensor->dims()[0],
                        platform::errors::InvalidArgument(
                            "Buffer tensor size is too small."));
    }

    // Select the index data to the buffer
929 930 931
    auto index_select = [](const paddle::Tensor& src_tensor,
                           const paddle::Tensor& index_tensor,
                           paddle::Tensor* buffer_tensor) {
W
wanghuancoder 已提交
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
      auto* src_data = src_tensor.data<float>();
      auto* index_data = index_tensor.data<int64_t>();
      auto* buffer_data = buffer_tensor->data<float>();
      const int& slice_size = src_tensor.numel() / src_tensor.dims()[0];
      const int& copy_bytes = slice_size * sizeof(float);
      int64_t c = 0;
      for (int64_t i = 0; i < index_tensor.numel(); i++) {
        std::memcpy(buffer_data + c * slice_size,
                    src_data + index_data[i] * slice_size,
                    copy_bytes);
        c += 1;
      }
    };
    index_select(src_tensor, index_tensor, buffer_tensor);

    // Copy the data to device memory
    cudaMemcpyAsync(dst_data + (numel * size),
                    buffer_tensor->data<float>(),
                    index_tensor.numel() * size * sizeof(float),
                    cudaMemcpyHostToDevice,
                    stream);
W
wanghuancoder 已提交
953
  }
W
wanghuancoder 已提交
954 955 956
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
W
wanghuancoder 已提交
957

W
wanghuancoder 已提交
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
static PyObject* eager_api_async_write(PyObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  auto& src = GetTensorFromArgs("async_write", "src", args, 0, false);
  auto& dst = GetTensorFromArgs("async_write", "dst", args, 1, false);
  auto& offset = GetTensorFromArgs("async_write", "offset", args, 2, false);
  auto& count = GetTensorFromArgs("async_write", "count", args, 3, false);
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE_EQ(
        src.is_gpu(),
        true,
        platform::errors::InvalidArgument(
            "Required `src` device should be CUDAPlace, but received %d. ",
            src.place()));
    PADDLE_ENFORCE_EQ(dst.is_gpu_pinned(),
                      true,
                      platform::errors::InvalidArgument(
                          "Required `dst` device should be CUDAPinnedPlace, "
                          "but received %d. ",
                          dst.place()));
    PADDLE_ENFORCE_EQ(
        offset.is_cpu(),
        true,
        platform::errors::InvalidArgument("Required `offset` device should "
                                          "be CPUPlace, but received %d. ",
                                          offset.place()));
    PADDLE_ENFORCE_EQ(
        count.is_cpu(),
        true,
        platform::errors::InvalidArgument(
            "Required `count` device should be CPUPlace, but received %d. ",
            count.place()));
W
wanghuancoder 已提交
992

W
wanghuancoder 已提交
993 994 995 996 997 998 999
    // TODO(daisiming): In future, add index as arguments following
    // async_read.
    auto& src_tensor = src;
    auto* dst_tensor = &dst;
    auto& offset_tensor = offset;
    auto& count_tensor = count;
    const auto& deviceId = paddle::platform::GetCurrentDeviceId();
W
wanghuancoder 已提交
1000

1001 1002
    PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                      1,
W
wanghuancoder 已提交
1003 1004
                      platform::errors::InvalidArgument(
                          "`offset` tensor should be one-dimensional."));
1005 1006
    PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                      1,
W
wanghuancoder 已提交
1007 1008
                      platform::errors::InvalidArgument(
                          "`count` tensor should be one-dimensional."));
1009 1010
    PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                      count_tensor.numel(),
W
wanghuancoder 已提交
1011 1012
                      platform::errors::InvalidArgument(
                          "`offset` and `count` tensor size dismatch."));
W
wanghuancoder 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
    PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                      dst_tensor->dims().size(),
                      platform::errors::InvalidArgument(
                          "`src` and `dst` should have the same tensor shape, "
                          "except for the first dimension."));
    for (int i = 1; i < src_tensor.dims().size(); i++) {
      PADDLE_ENFORCE_EQ(
          src_tensor.dims()[i],
          dst_tensor->dims()[i],
          platform::errors::InvalidArgument(
              "`src` and `dst` should have the same tensor shape, "
              "except for the first dimension."));
W
wanghuancoder 已提交
1025 1026
    }

W
wanghuancoder 已提交
1027 1028 1029
    auto stream = paddle::platform::get_current_stream(deviceId)->raw_stream();

    int64_t size = src_tensor.numel() / src_tensor.dims()[0];
W
wanghuancoder 已提交
1030
    auto* src_data = src_tensor.data<float>();
W
wanghuancoder 已提交
1031 1032 1033 1034
    auto* dst_data = dst_tensor->data<float>();
    const int64_t* offset_data = offset_tensor.data<int64_t>();
    const int64_t* count_data = count_tensor.data<int64_t>();
    int64_t src_offset = 0, dst_offset, c;
W
wanghuancoder 已提交
1035
    for (int64_t i = 0; i < offset_tensor.numel(); i++) {
W
wanghuancoder 已提交
1036
      dst_offset = offset_data[i], c = count_data[i];
W
wanghuancoder 已提交
1037
      PADDLE_ENFORCE_LE(
1038 1039
          src_offset + c,
          src_tensor.dims()[0],
W
wanghuancoder 已提交
1040
          platform::errors::InvalidArgument("Invalid offset or count index"));
W
wanghuancoder 已提交
1041
      PADDLE_ENFORCE_LE(
1042 1043
          dst_offset + c,
          dst_tensor->dims()[0],
W
wanghuancoder 已提交
1044
          platform::errors::InvalidArgument("Invalid offset or count index"));
W
wanghuancoder 已提交
1045
      cudaMemcpyAsync(dst_data + (dst_offset * size),
1046 1047
                      src_data + (src_offset * size),
                      c * size * sizeof(float),
W
wanghuancoder 已提交
1048
                      cudaMemcpyDeviceToHost,
1049
                      stream);
W
wanghuancoder 已提交
1050
      src_offset += c;
W
wanghuancoder 已提交
1051 1052
    }
  }
1053
  RETURN_PY_NONE
W
wanghuancoder 已提交
1054 1055
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1056

1057 1058
static PyObject* eager_api_to_uva_tensor(PyObject* self,
                                         PyObject* args,
1059 1060 1061
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in eager_api_to_uva_tensor.";
1062 1063
  auto new_tensor = std::shared_ptr<paddle::Tensor>(
      new paddle::Tensor(egr::Controller::Instance().GenerateUniqueName()));
1064 1065 1066
  PyObject* obj = PyTuple_GET_ITEM(args, 0);
  auto array = py::cast<py::array>(py::handle(obj));

1067 1068 1069 1070 1071 1072 1073
  Py_ssize_t args_num = PyTuple_Size(args);
  int64_t device_id = 0;
  if (args_num > 1) {
    PyObject* Py_device_id = PyTuple_GET_ITEM(args, 1);
    if (Py_device_id) {
      device_id = CastPyArg2AttrLong(Py_device_id, 1);
    }
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
  }

  if (py::isinstance<py::array_t<int32_t>>(array)) {
    SetUVATensorFromPyArray<int32_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<int64_t>>(array)) {
    SetUVATensorFromPyArray<int64_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<float>>(array)) {
    SetUVATensorFromPyArray<float>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<double>>(array)) {
    SetUVATensorFromPyArray<double>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<int8_t>>(array)) {
    SetUVATensorFromPyArray<int8_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<int16_t>>(array)) {
    SetUVATensorFromPyArray<int16_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<paddle::platform::float16>>(array)) {
1089 1090
    SetUVATensorFromPyArray<paddle::platform::float16>(
        new_tensor, array, device_id);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
  } else if (py::isinstance<py::array_t<bool>>(array)) {
    SetUVATensorFromPyArray<bool>(new_tensor, array, device_id);
  } else {
    // obj may be any type, obj.cast<py::array>() may be failed,
    // then the array.dtype will be string of unknown meaning.
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Input object type error or incompatible array data type. "
        "tensor.set() supports array with bool, float16, float32, "
        "float64, int8, int16, int32, int64,"
        "please check your input or input array data type."));
  }
  return ToPyObject(*(new_tensor.get()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
W
wanghuancoder 已提交
1105
#endif
1106

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
static PyObject* eager_api__add_backward_final_hook(PyObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);
  egr::Controller::Instance().RegisterBackwardFinalHook(
      std::make_shared<PyVoidHook>(hook_func));
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1118
PyMethodDef variable_functions[] = {
1119
    // TODO(jiabin): Remove scale when we have final state tests
1120 1121 1122 1123
    {"scale",
     (PyCFunction)(void (*)(void))eager_api_scale,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1124 1125 1126 1127
    {"_add_backward_final_hook",
     (PyCFunction)(void (*)(void))eager_api__add_backward_final_hook,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1128 1129 1130 1131
    {"run_backward",
     (PyCFunction)(void (*)(void))eager_api_run_backward,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1132 1133
    {"run_partial_grad",
     (PyCFunction)(void (*)(void))eager_api_run_partial_grad,
1134 1135 1136
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_run_custom_op",
H
HongyuJia 已提交
1137
     (PyCFunction)(void (*)(void))eager_api_run_custom_op,
1138 1139 1140 1141 1142 1143
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"tensor_copy",
     (PyCFunction)(void (*)(void))eager_api_tensor_copy,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1144 1145 1146 1147
    {"get_all_grads",
     (PyCFunction)(void (*)(void))eager_api_get_all_grads,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1148 1149 1150 1151
    {"get_grads_lists",
     (PyCFunction)(void (*)(void))eager_api_get_grads_lists,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1152 1153 1154 1155
    {"get_grads_types",
     (PyCFunction)(void (*)(void))eager_api_get_grads_types,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1156 1157
    {"read_next_tensor_list",
     (PyCFunction)(void (*)(void))eager_api_read_next_tensor_list,
1158 1159
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1160 1161 1162 1163
    {"jit_function_call",
     (PyCFunction)(void (*)(void))eager_api_jit_function_call,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1164 1165 1166
    /**sparse functions**/
    {"sparse_coo_tensor",
     (PyCFunction)(void (*)(void))eager_api_sparse_coo_tensor,
1167 1168
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1169 1170
    {"sparse_csr_tensor",
     (PyCFunction)(void (*)(void))eager_api_sparse_csr_tensor,
1171 1172
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1173 1174 1175 1176 1177 1178 1179 1180
    {"register_saved_tensors_hooks",
     (PyCFunction)(void (*)(void))eager_api_register_saved_tensors_hooks,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"reset_saved_tensors_hooks",
     (PyCFunction)(void (*)(void))eager_api_reset_saved_tensors_hooks,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1181
/**sparse functions**/
W
wanghuancoder 已提交
1182
#if defined(PADDLE_WITH_CUDA)
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
    {"async_read",
     (PyCFunction)(void (*)(void))eager_api_async_read,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"async_write",
     (PyCFunction)(void (*)(void))eager_api_async_write,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"to_uva_tensor",
     (PyCFunction)(void (*)(void))eager_api_to_uva_tensor,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
1195
#endif
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
    {NULL, NULL, 0, NULL}};

void BindFunctions(PyObject* module) {
  if (PyModule_AddFunctions(module, variable_functions) < 0) {
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle erroe in BindFunctions(PyModule_AddFunctions)."));
    return;
  }
}

}  // namespace pybind
}  // namespace paddle