eager_functions.cc 48.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13 14 15 16 17

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif

18 19 20 21 22 23 24 25 26
#include <Python.h>

#include <string>
#include <vector>

#include "paddle/fluid/eager/accumulation/accumulation_node.h"
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/backward.h"
27
#include "paddle/fluid/eager/custom_operator/custom_operator_node.h"
28
#include "paddle/fluid/eager/utils.h"
29
#include "paddle/fluid/framework/convert_utils.h"
30 31
#include "paddle/fluid/framework/custom_operator.h"
#include "paddle/fluid/framework/op_meta_info_helper.h"
32
#include "paddle/fluid/framework/python_headers.h"
33 34
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
W
wanghuancoder 已提交
35
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
36
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
37
#include "paddle/fluid/platform/enforce.h"
38 39
#include "paddle/fluid/prim/utils/eager/eager_tensor_operants.h"
#include "paddle/fluid/prim/utils/static/static_tensor_operants.h"
40 41 42
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
43
#include "paddle/fluid/pybind/tensor_py.h"
44
#include "paddle/phi/api/ext/op_meta_info.h"
45 46 47 48 49
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/api/lib/utils/tensor_utils.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
50 51
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
52 53
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
54

L
Leo Chen 已提交
55 56 57 58
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include "paddle/fluid/pybind/cuda_streams_py.h"
#endif

59 60 61 62 63 64
#include "gflags/gflags.h"
#include "paddle/phi/api/include/tensor_operants.h"
#include "paddle/phi/core/operants_manager.h"

DECLARE_string(tensor_operants_mode);

65 66 67 68 69
namespace paddle {
namespace pybind {

namespace py = ::pybind11;

70
extern PyTypeObject* p_tensor_type;
71 72
extern PyTypeObject* g_multidevicefeedreader_pytype;
extern PyTypeObject* g_orderedmultidevicefeedreader_pytype;
73 74 75 76 77 78 79 80 81 82 83

size_t PyArray_Size_(PyObject* numpy_data) {
  size_t res = 1;
  auto dims = pybind11::detail::array_proxy(numpy_data)->dimensions;
  auto nd = pybind11::detail::array_proxy(numpy_data)->nd;
  while (nd--) {
    res *= (*dims++);
  }
  return res;
}

84
class EagerNumpyAllocation : public phi::Allocation {
85
 public:
86
  explicit EagerNumpyAllocation(PyObject* numpy_data, phi::DataType dtype)
87 88
      : Allocation(
            static_cast<void*>(pybind11::detail::array_proxy(numpy_data)->data),
89
            phi::SizeOf(dtype) * PyArray_Size_(numpy_data),
90 91
            paddle::platform::CPUPlace()),
        arr_(numpy_data) {
92 93 94 95
    PADDLE_ENFORCE_NOT_NULL(
        arr_,
        platform::errors::InvalidArgument("The underlying PyObject pointer of "
                                          "numpy array cannot be nullptr"));
96
    PADDLE_ENFORCE_NE(
97 98
        arr_,
        Py_None,
99 100 101 102 103 104 105 106 107 108 109 110 111
        platform::errors::PreconditionNotMet(
            "The underlying PyObject pointer of numpy array cannot be None"));
    Py_INCREF(arr_);
  }
  ~EagerNumpyAllocation() override {
    py::gil_scoped_acquire gil;
    Py_DECREF(arr_);
  }

 private:
  PyObject* arr_;
};

112 113
static PyObject* eager_api_scale(PyObject* self,
                                 PyObject* args,
114 115 116
                                 PyObject* kwargs) {
  EAGER_TRY
  // TODO(jiabin): Sync Tensor and Variable here when we support
W
wanghuancoder 已提交
117 118 119 120 121 122 123 124 125 126 127 128

  auto& tensor =
      reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor;
  float scale = CastPyArg2AttrFloat(PyTuple_GET_ITEM(args, 1), 1);
  float bias = CastPyArg2AttrFloat(PyTuple_GET_ITEM(args, 2), 2);
  bool bias_after_scale = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);
  bool trace_backward = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
  paddle::experimental::Tensor ret;
  {
    eager_gil_scoped_release guard;
    ret = egr::scale(tensor, scale, bias, bias_after_scale, trace_backward);
  }
129 130 131 132
  return ToPyObject(ret);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

133 134
static PyObject* eager_api_run_backward(PyObject* self,
                                        PyObject* args,
135 136
                                        PyObject* kwargs) {
  EAGER_TRY
137 138
  auto tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 1), 1);
W
wanghuancoder 已提交
139
  bool retain_graph = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 2), 2);
140 141
  {
    eager_gil_scoped_release guard;
W
wanghuancoder 已提交
142
    egr::Backward(tensors, grad_tensors, retain_graph);
143
  }
144
  RETURN_PY_NONE
145 146 147
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

148 149
static PyObject* eager_api_run_partial_grad(PyObject* self,
                                            PyObject* args,
150 151 152 153 154 155 156 157 158 159
                                            PyObject* kwargs) {
  EAGER_TRY
  auto tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0);
  auto inputs = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 1), 1);
  auto grad_tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 2), 2);
  auto retain_graph = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);
  auto create_graph = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
  auto only_inputs = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 5), 5);
  auto allow_unused = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 6), 6);
  auto no_grad_vars = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 7), 7);
160 161 162 163 164 165 166 167 168 169 170
  std::vector<paddle::experimental::Tensor> result;
  {
    eager_gil_scoped_release guard;
    result = egr::Grad(tensors,
                       inputs,
                       grad_tensors,
                       retain_graph,
                       create_graph,
                       only_inputs,
                       allow_unused,
                       no_grad_vars);
L
Leo Chen 已提交
171
    VLOG(4) << " in eager_api_run_partial_grad, after runing egr::Grad";
172
  }
173 174 175 176
  return ToPyObject(result, true /* return_py_none_if_not_initialize */);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

177 178
static PyObject* eager_api_tensor_copy(PyObject* self,
                                       PyObject* args,
179 180
                                       PyObject* kwargs) {
  EAGER_TRY
181 182 183 184
  paddle::experimental::Tensor& src =
      reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor;
  paddle::experimental::Tensor& dst =
      reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 1))->tensor;
185 186 187
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 2), 2);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);

W
wanghuancoder 已提交
188 189 190 191 192 193 194 195
  {
    eager_gil_scoped_release guard;
    dst = src.copy_to(place, blocking);
    egr::EagerUtils::autograd_meta(&dst)->SetStopGradient(
        egr::EagerUtils::autograd_meta(&(src))->StopGradient());
    egr::EagerUtils::autograd_meta(&dst)->SetPersistable(
        egr::EagerUtils::autograd_meta(&(src))->Persistable());
  }
196
  RETURN_PY_NONE
197 198 199
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
PyObject* eager_api_get_all_grads(PyObject* self,
                                  PyObject* args,
                                  PyObject* kwargs) {
  EAGER_TRY
  auto tensor_list = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0);

  std::vector<paddle::experimental::Tensor> ret;
  for (auto& tensor : tensor_list) {
    VLOG(6) << "Get grad for tensor: " << tensor.name();
    auto meta = egr::EagerUtils::nullable_autograd_meta(tensor);
    if (!meta || meta->StopGradient()) {
      ret.emplace_back(paddle::experimental::Tensor());
      continue;
    }
    if (meta && meta->Grad().initialized()) {
      ret.emplace_back(meta->Grad());
    } else {
      ret.emplace_back(paddle::experimental::Tensor());
    }
  }
  return ToPyObject(ret, true);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

224 225 226 227 228
PyObject* eager_api_get_grads_lists(PyObject* self,
                                    PyObject* args,
                                    PyObject* kwargs) {
  EAGER_TRY
  auto tensor_list = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0);
229
  // The order of the 3 vectors is: FP16_grads, BF16_grads, FP32_grads
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
  std::vector<std::vector<paddle::experimental::Tensor>> ret(3);

  for (auto& tensor : tensor_list) {
    VLOG(6) << "Get grad for tensor: " << tensor.name();
    auto meta = egr::EagerUtils::nullable_autograd_meta(tensor);
    if (meta && meta->Grad().initialized()) {
      auto& grad = meta->Grad();
      switch (grad.dtype()) {
        case paddle::experimental::DataType::FLOAT16:
          ret[0].emplace_back(grad);
          break;
        case paddle::experimental::DataType::BFLOAT16:
          ret[1].emplace_back(grad);
          break;
        case paddle::experimental::DataType::FLOAT32:
          ret[2].emplace_back(grad);
          break;
        default:
          break;
      }
    }
  }

  return ToPyObject(ret);

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
PyObject* eager_api_get_grads_types(PyObject* self,
                                    PyObject* args,
                                    PyObject* kwargs) {
  EAGER_TRY
  auto tensor_list = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0);

  std::vector<int> ret;

  for (auto& tensor : tensor_list) {
    VLOG(6) << "Get grad for tensor: " << tensor.name();
    auto meta = egr::EagerUtils::nullable_autograd_meta(tensor);
    if (!meta || meta->StopGradient()) {
      ret.emplace_back(-1);
      continue;
    }

    auto& grad = meta->Grad();
    if (meta && grad.initialized()) {
      if (grad.is_dense_tensor() &&
          (tensor.dtype() == paddle::experimental::DataType::FLOAT32 ||
278 279
           tensor.dtype() == paddle::experimental::DataType::FLOAT16 ||
           tensor.dtype() == paddle::experimental::DataType::BFLOAT16)) {
280 281 282 283 284 285 286 287 288 289 290 291 292
        ret.emplace_back(
            paddle::framework::TransToProtoVarType(tensor.dtype()));
      }
    } else {
      ret.emplace_back(-1);
    }
  }

  return ToPyObject(ret);

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

293 294
static PyObject* eager_api_read_next_tensor_list(PyObject* self,
                                                 PyObject* args,
295
                                                 PyObject* kwargs) {
296
  EAGER_TRY
297 298 299
  auto tensor_base_list =
      CastPyArg2VectorOfTensorBase(PyTuple_GET_ITEM(args, 0), 0);
  std::vector<paddle::experimental::Tensor> tensor_list;
300 301 302
  {
    eager_gil_scoped_release guard;
    tensor_list.reserve(tensor_base_list.size());
303
    auto func = [](phi::DenseTensor& tensor_base) {
304 305 306 307 308 309 310 311 312 313 314
      paddle::experimental::Tensor tensor(
          egr::Controller::Instance().GenerateUniqueName());
      auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor);
      autograd_meta->SetPersistable(false);
      autograd_meta->SetStopGradient(true);
      tensor.set_impl(std::make_shared<phi::DenseTensor>(tensor_base));
      return tensor;
    };
    for (auto& tensor_base : tensor_base_list) {
      tensor_list.emplace_back(func(tensor_base));
    }
315
  }
316
  return ToPyObject(tensor_list);
317 318 319
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
static void ConstructFwdAndBwdMap(
    const std::vector<paddle::OpMetaInfo>& vec_map,
    const std::string& op_type) {
  auto& in_out_map = egr::Controller::Instance().GetCustomEdgesSlotMap();
  if (in_out_map.find(op_type) != in_out_map.end()) {
    VLOG(7) << "Find Exist CustomEdgesSlotMap Skip >>>> ";
    return;
  } else {
    VLOG(7) << "Construct CustomEdgesSlotMap ";
    auto inputs_names =
        paddle::framework::OpMetaInfoHelper::GetInputs(vec_map[0]);
    auto outputs_names =
        paddle::framework::OpMetaInfoHelper::GetOutputs(vec_map[0]);
    auto attrs_names =
        paddle::framework::OpMetaInfoHelper::GetAttrs(vec_map[0]);
    auto grad_outputs_names =
        paddle::framework::OpMetaInfoHelper::GetOutputs(vec_map[1]);
    auto grad_inputs_names =
        paddle::framework::OpMetaInfoHelper::GetInputs(vec_map[1]);
    auto grad_attrs_names =
        paddle::framework::OpMetaInfoHelper::GetAttrs(vec_map[1]);
    std::vector<std::unordered_map<int, int>> res(5);
342 343

    in_out_map.insert({op_type, {res}});
344 345 346
    // Prepare pos map for grad_outputs
    VLOG(7) << "Prepare pos map for grad_outputs";
    PADDLE_ENFORCE_LE(
347 348
        grad_outputs_names.size(),
        inputs_names.size(),
349 350 351 352 353
        paddle::platform::errors::InvalidArgument(
            "Grad outputs num should be less equal than forward inputs num."));
    for (size_t i = 0; i < grad_outputs_names.size(); i++) {
      size_t end = grad_outputs_names[i].find("@GRAD");
      PADDLE_ENFORCE_NE(
354 355
          end,
          std::string::npos,
356 357 358 359 360 361 362 363 364
          paddle::platform::errors::NotFound(
              "All Grad outputs should be grad and we got %s is not grad var, "
              "please check your op and change to fit the rule.",
              grad_outputs_names[i]));
      for (size_t j = 0; j < inputs_names.size(); j++) {
        if (grad_outputs_names[i].substr(0, end) == inputs_names[j]) {
          VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                  << " inputs: " << inputs_names[j] << " related to No." << i
                  << " grad_outputs: " << grad_outputs_names[i];
365
          in_out_map[op_type][0][0][j] = i;
366 367 368 369 370 371 372 373 374 375 376 377
        }
      }
    }
    // Prepare pos map for grad_inputs
    for (size_t i = 0; i < grad_inputs_names.size(); i++) {
      size_t end = grad_inputs_names[i].find("@GRAD");
      if (end != std::string::npos) {
        for (size_t j = 0; j < outputs_names.size(); j++) {
          if (grad_inputs_names[i].substr(0, end) == outputs_names[j]) {
            VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                    << " outputs: " << outputs_names[j] << " related to No."
                    << i << " grad_inputs's grad: " << grad_inputs_names[i];
378
            in_out_map[op_type][0][1][j] = i;
379 380 381
          }
        }
      } else {
382 383
        if (std::find(outputs_names.begin(),
                      outputs_names.end(),
384 385 386 387 388 389 390
                      grad_inputs_names[i]) != outputs_names.end()) {
          for (size_t j = 0; j < outputs_names.size(); j++) {
            if (grad_inputs_names[i] == outputs_names[j]) {
              VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                      << " outputs: " << outputs_names[j] << " related to No."
                      << i
                      << " grad_inputs fwd outputs: " << grad_inputs_names[i];
391
              in_out_map[op_type][0][2][j] = i;
392 393 394 395 396 397 398 399 400
            }
          }
        } else {
          for (size_t j = 0; j < inputs_names.size(); j++) {
            if (grad_inputs_names[i] == inputs_names[j]) {
              VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                      << " inputs: " << inputs_names[j] << " related to No."
                      << i
                      << " grad_inputs fwd inputs: " << grad_inputs_names[i];
401
              in_out_map[op_type][0][3][j] = i;
402 403 404 405 406 407 408 409
            }
          }
        }
      }
    }

    // Prepare pos map for grad attrs_
    for (size_t i = 0; i < grad_attrs_names.size(); i++) {
410 411 412 413
      auto end = std::find(
          attrs_names.begin(), attrs_names.end(), grad_attrs_names[i]);
      PADDLE_ENFORCE_NE(end,
                        attrs_names.end(),
414 415 416 417 418 419 420 421 422 423
                        paddle::platform::errors::NotFound(
                            "All Grad attrs should be one of forward attrs and "
                            "we got %s is not one of them, please check your "
                            "op and change to fit the rule.",
                            grad_attrs_names[i]));
      for (size_t j = 0; j < attrs_names.size(); j++) {
        if (grad_attrs_names[i] == attrs_names[j]) {
          VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                  << " attrs: " << attrs_names[j] << " related to No." << i
                  << " grad_attrs: " << grad_attrs_names[i];
424
          in_out_map[op_type][0][4][j] = i;
425 426 427 428 429 430
        }
      }
    }
  }
}

H
HongyuJia 已提交
431
static std::vector<paddle::any> CastAttrsToTargetType(
432 433 434
    const std::vector<paddle::any>& src,
    const std::vector<std::string>& attrs_names) {
  std::vector<paddle::any> res;
435 436
  PADDLE_ENFORCE_EQ(src.size(),
                    attrs_names.size(),
437 438 439 440
                    paddle::platform::errors::InvalidArgument(
                        "We Expected same size of attrs and attrs_name list, "
                        "if u got this error indicate your custom op setting "
                        "%s attrs, but you just give %s",
441 442
                        attrs_names.size(),
                        src.size()));
443 444
  for (size_t i = 0; i < src.size(); i++) {
    size_t end = attrs_names[i].find(": ");
445
    std::string type_name = attrs_names[i].substr(end + 2);
446 447 448 449 450 451 452 453 454
    if (type_name == "int") {
      if (src[i].type() == typeid(bool)) {
        res.emplace_back(static_cast<int>(paddle::any_cast<bool>(src[i])));
      } else if (src[i].type() == typeid(int)) {
        res.emplace_back(src[i]);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Your No. %s attrs should only can be bool or int32, other type is "
            "forbidden for now but we got %s. Check your code first please",
455 456
            i,
            src[i].type().name()));
457 458 459 460 461 462 463 464 465 466 467 468 469
      }
    } else if (type_name == "int64_t") {
      if (src[i].type() == typeid(bool)) {
        res.emplace_back(static_cast<int64_t>(paddle::any_cast<bool>(src[i])));
      } else if (src[i].type() == typeid(int)) {
        res.emplace_back(static_cast<int64_t>(paddle::any_cast<int>(src[i])));
      } else if (src[i].type() == typeid(int64_t)) {
        res.emplace_back(src[i]);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Your No. %s attrs should only can be bool or int32 or int64_t, "
            "other type is forbidden for now but we got %s. Check your code "
            "first please",
470 471
            i,
            src[i].type().name()));
472 473 474 475 476 477 478 479
      }
    } else {
      res.emplace_back(src[i]);
    }
  }
  return res;
}

480 481 482 483
static PyObject* eager_api_jit_function_call(PyObject* self,
                                             PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
484 485 486

  std::shared_ptr<jit::Function> function =
      CastPyArg2JitFunction(PyTuple_GET_ITEM(args, 0), 0);
487 488
  std::vector<paddle::experimental::Tensor> ins =
      CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 1), 1);
W
wanghuancoder 已提交
489 490 491 492 493
  std::vector<paddle::experimental::Tensor> outs;
  {
    eager_gil_scoped_release guard;
    outs = (*function)(ins);
  }
494 495 496 497
  return ToPyObject(outs);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

498 499 500 501 502 503 504 505 506 507 508 509 510 511
static PyObject* eager_api_init_eager_and_static_tensor_operants(
    PyObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY

  paddle::operants::OperantsManager::Instance().eager_operants.reset(
      new paddle::operants::EagerTensorOperants());
  paddle::operants::OperantsManager::Instance().static_operants.reset(
      new paddle::operants::StaticTensorOperants());
  VLOG(4) << "Initialize eager and static tensor operants successfully";

  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

H
HongyuJia 已提交
512
static PyObject* eager_api_run_custom_op(PyObject* self,
513
                                         PyObject* args,
514 515
                                         PyObject* kwargs) {
  EAGER_TRY
516 517 518 519 520 521 522 523
  FLAGS_tensor_operants_mode = "phi";
  if (paddle::operants::OperantsManager::Instance().phi_operants.get() ==
      nullptr) {
    paddle::operants::OperantsManager::Instance().phi_operants.reset(
        new paddle::operants::PhiTensorOperants());
    VLOG(4) << "Initialize phi tensor operants successfully";
  }

524 525 526 527
  paddle::CustomOpKernelContext ctx =
      CastPyArg2CustomOpKernelContext(PyTuple_GET_ITEM(args, 0), 0);
  std::string op_type = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 1), 1);
  bool trace_backward = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 2), 2);
W
wanghuancoder 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
  {
    eager_gil_scoped_release guard;
    VLOG(7) << "Get things for python for Custom Op: " << op_type
            << ", trace_backward is: " << trace_backward;
    auto meta_info_map = egr::Controller::Instance().GetOpMetaInfoMap();
    PADDLE_ENFORCE_NE(
        meta_info_map.find(op_type),
        meta_info_map.end(),
        paddle::platform::errors::NotFound(
            "Can't find %s in Eager OpMetaInfoMap which should be "
            "created by LoadOpMetaInfoAndRegisterOp, please make "
            "sure you registered your op first and try again. ",
            op_type));
    VLOG(7) << "Run Kernel of Custom Op: " << op_type;
    std::vector<paddle::any> res_attrs =
H
HongyuJia 已提交
543
        CastAttrsToTargetType(ctx.Attrs(),
W
wanghuancoder 已提交
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
                              paddle::framework::OpMetaInfoHelper::GetAttrs(
                                  meta_info_map.at(op_type)[0]));
    ctx.EmplaceBackAttrs(res_attrs);
    const auto& vec_map = meta_info_map.at(op_type);
    (*paddle::framework::OpMetaInfoHelper::GetKernelFn(vec_map[0]))(&ctx);

    VLOG(7) << "Get AutogradMeta for inputs and outputs for Custom Op";
    std::vector<std::vector<egr::AutogradMeta*>> ins_auto_grad_metas;
    std::vector<std::vector<egr::AutogradMeta*>> outs_auto_grad_metas;
    VLOG(7) << "We got slot num of ins is: " << ctx.InputRange().size();
    ins_auto_grad_metas.resize(ctx.InputRange().size());
    VLOG(7) << "We got slot num of outs is: " << ctx.OutputRange().size();
    outs_auto_grad_metas.resize(ctx.OutputRange().size());

    for (size_t i = 0; i < ctx.InputRange().size(); i++) {
      ins_auto_grad_metas[i] =
          egr::EagerUtils::nullable_autograd_meta(ctx.InputsBetween(
              ctx.InputRangeAt(i).first, ctx.InputRangeAt(i).second));
562
    }
W
wanghuancoder 已提交
563 564 565 566
    for (size_t i = 0; i < ctx.OutputRange().size(); i++) {
      outs_auto_grad_metas[i] =
          egr::EagerUtils::unsafe_autograd_meta(ctx.OutputsBetweeen(
              ctx.OutputRangeAt(i).first, ctx.OutputRangeAt(i).second));
567
    }
W
wanghuancoder 已提交
568 569 570 571 572
    bool require_any_grad = false;
    for (size_t i = 0; i < ins_auto_grad_metas.size(); i++) {
      require_any_grad =
          require_any_grad || egr::EagerUtils::ComputeRequireGrad(
                                  trace_backward, &(ins_auto_grad_metas[i]));
573
    }
W
wanghuancoder 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
    if (require_any_grad && (vec_map.size() > 1)) {
      VLOG(6) << " Construct Grad for Custom Op: " << op_type;
      ConstructFwdAndBwdMap(vec_map, op_type);
      for (size_t i = 0; i < outs_auto_grad_metas.size(); i++) {
        egr::EagerUtils::PassStopGradient(false, &(outs_auto_grad_metas[i]));
      }
      auto grad_node = std::make_shared<egr::RunCustomOpNode>(
          outs_auto_grad_metas.size(), ins_auto_grad_metas.size(), op_type);
      auto slot_map =
          egr::Controller::Instance().GetCustomEdgesSlotMap().at(op_type);
      // Prepare Grad outputs
      size_t no_grad_cnt = 0;
      for (size_t i = 0; i < ins_auto_grad_metas.size(); i++) {
        const std::vector<paddle::experimental::Tensor>& in_tensors =
            ctx.InputsBetween(ctx.InputRangeAt(i).first,
                              ctx.InputRangeAt(i).second);

        if (slot_map[0][0].find(i) != slot_map[0][0].end()) {
          grad_node->SetGradOutMeta(in_tensors, slot_map[0][0][i]);
        } else {
          grad_node->SetGradOutMeta(
              in_tensors, ins_auto_grad_metas.size() - 1 - no_grad_cnt);
          no_grad_cnt++;
        }
      }
      // Prepare Grad inputs with grad of fwd outputs
      for (size_t i = 0; i < outs_auto_grad_metas.size(); i++) {
        const std::vector<paddle::experimental::Tensor>& out_tensors =
            ctx.OutputsBetweeen(ctx.OutputRangeAt(i).first,
                                ctx.OutputRangeAt(i).second);

        egr::EagerUtils::SetOutRankWithSlot(&(outs_auto_grad_metas[i]), i);
        egr::EagerUtils::SetHistory(&(outs_auto_grad_metas[i]), grad_node);
        grad_node->SetGradInMeta(out_tensors, i);
      }
609

W
wanghuancoder 已提交
610 611 612 613 614 615 616 617 618
      // Prepare Grad inputs with fwd outputs
      for (auto it = slot_map[0][2].begin(); it != slot_map[0][2].end(); it++) {
        VLOG(7) << "Prepare fwd_outs: " << it->first
                << " to grad_inputs: " << it->second;
        grad_node->fwd_outs[it->second] =
            egr::RunCustomOpNode::ConstructTensorWrapper(
                ctx.OutputsBetweeen(ctx.OutputRangeAt(it->first).first,
                                    ctx.OutputRangeAt(it->first).second));
      }
619

W
wanghuancoder 已提交
620 621 622 623 624 625 626 627 628
      // Prepare Grad inputs with fwd inputs
      for (auto it = slot_map[0][3].begin(); it != slot_map[0][3].end(); it++) {
        VLOG(7) << "Prepare fwd_ins: " << it->first
                << " to grad_inputs: " << it->second;
        grad_node->fwd_ins[it->second] =
            egr::RunCustomOpNode::ConstructTensorWrapper(
                ctx.InputsBetween(ctx.InputRangeAt(it->first).first,
                                  ctx.InputRangeAt(it->first).second));
      }
629

W
wanghuancoder 已提交
630 631 632 633 634 635 636 637 638 639
      auto attrs_names = paddle::framework::OpMetaInfoHelper::GetAttrs(
          meta_info_map.at(op_type)[1]);
      std::vector<paddle::any> attrs(attrs_names.size());
      // Prepare attrs for Grad node
      for (auto it = slot_map[0][4].begin(); it != slot_map[0][4].end(); it++) {
        VLOG(7) << "Prepare fwd attrs: " << it->first
                << " to grad_attrs: " << it->second;
        attrs[it->second] = res_attrs[it->first];
      }
      grad_node->SetAttrs(attrs);
640 641
    }
  }
642
  RETURN_PY_NONE
643 644 645
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

646 647
static PyObject* eager_api_sparse_coo_tensor(PyObject* self,
                                             PyObject* args,
648 649 650 651 652 653 654
                                             PyObject* kwargs) {
  EAGER_TRY
  auto non_zero_indices = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  auto non_zero_elements = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 1), 1);
  auto dense_shape = CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 2), 2);
  auto stop_gradient = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);
  paddle::experimental::Tensor tensor;
W
wanghuancoder 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE(non_zero_indices.is_dense_tensor(),
                   paddle::platform::errors::Fatal(
                       "the non-zero indices must be a DenseTensor."));
    PADDLE_ENFORCE(non_zero_elements.is_dense_tensor(),
                   paddle::platform::errors::Fatal(
                       "the non-zero elements must be a DenseTensor."));
    auto dense_indices =
        std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_indices.impl());
    auto dense_elements =
        std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_elements.impl());
    // TODO(zhangkaihuo): After creating SparseCooTensor, call coalesced() to
    // sort and merge duplicate indices
    std::shared_ptr<phi::SparseCooTensor> coo_tensor =
        std::make_shared<phi::SparseCooTensor>(
            *dense_indices, *dense_elements, phi::make_ddim(dense_shape));
    tensor.set_impl(coo_tensor);
    auto name =
        egr::Controller::Instance().GenerateUniqueName("generated_tensor");
    tensor.set_name(name);
    auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor);
    autograd_meta->SetStopGradient(static_cast<bool>(stop_gradient));
    if (!autograd_meta->GetMutableGradNode()) {
      VLOG(3) << "Tensor(" << name
              << ") doesn't have GradNode, add GradNodeAccumulation to it.";
      autograd_meta->SetGradNode(
          std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
    }
684 685 686 687 688
  }
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

689 690
static PyObject* eager_api_sparse_csr_tensor(PyObject* self,
                                             PyObject* args,
691 692 693 694 695 696 697 698
                                             PyObject* kwargs) {
  EAGER_TRY
  auto non_zero_crows = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  auto non_zero_cols = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 1), 1);
  auto non_zero_elements = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 2), 2);
  auto dense_shape = CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 3), 3);
  auto stop_gradient = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
  paddle::experimental::Tensor tensor;
W
wanghuancoder 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE(non_zero_crows.is_dense_tensor(),
                   paddle::platform::errors::Fatal(
                       "the compressed non-zero rows must be a DenseTensor."));
    PADDLE_ENFORCE(non_zero_cols.is_dense_tensor(),
                   paddle::platform::errors::Fatal(
                       "the non-zero cols must be a DenseTensor."));
    PADDLE_ENFORCE(non_zero_elements.is_dense_tensor(),
                   paddle::platform::errors::Fatal(
                       "the non-zero elements must be a DenseTensor."));

    auto dense_crows =
        std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_crows.impl());
    auto dense_cols =
        std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_cols.impl());
    auto dense_elements =
        std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_elements.impl());
    std::shared_ptr<phi::SparseCsrTensor> csr_tensor =
        std::make_shared<phi::SparseCsrTensor>(*dense_crows,
                                               *dense_cols,
                                               *dense_elements,
                                               phi::make_ddim(dense_shape));
    tensor.set_impl(csr_tensor);
    auto name =
        egr::Controller::Instance().GenerateUniqueName("generated_tensor");
    tensor.set_name(name);
    auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor);
    autograd_meta->SetStopGradient(static_cast<bool>(stop_gradient));
    if (!autograd_meta->GetMutableGradNode()) {
      VLOG(3) << "Tensor(" << name
              << ") have not GradNode, add GradNodeAccumulation for it.";
      autograd_meta->SetGradNode(
          std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
    }
734 735 736 737
  }
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
738 739 740 741 742 743 744 745

static PyObject* eager_api_register_saved_tensors_hooks(PyObject* self,
                                                        PyObject* args,
                                                        PyObject* kwargs) {
  EAGER_TRY
  if (egr::Controller::Instance().HasGrad()) {
    auto pack_hook = PyTuple_GET_ITEM(args, 0);
    auto unpack_hook = PyTuple_GET_ITEM(args, 1);
746 747 748
    egr::SavedTensorsHooks::GetInstance().SetHooks(
        std::make_shared<PackHook>(pack_hook),
        std::make_shared<UnPackHook>(unpack_hook));
749 750 751 752 753 754 755 756 757 758 759 760 761 762
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_api_reset_saved_tensors_hooks(PyObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  egr::SavedTensorsHooks::GetInstance().ResetHooks();
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
763
#if defined(PADDLE_WITH_CUDA)
764 765
static PyObject* eager_api_async_read(PyObject* self,
                                      PyObject* args,
W
wanghuancoder 已提交
766 767 768 769 770 771 772 773
                                      PyObject* kwargs) {
  EAGER_TRY
  auto& src = GetTensorFromArgs("async_read", "src", args, 0, false);
  auto& dst = GetTensorFromArgs("async_read", "dst", args, 1, false);
  auto& index = GetTensorFromArgs("async_read", "index", args, 2, false);
  auto& buffer = GetTensorFromArgs("async_read", "buffer", args, 3, false);
  auto& offset = GetTensorFromArgs("async_read", "offset", args, 4, false);
  auto& count = GetTensorFromArgs("async_read", "count", args, 5, false);
W
wanghuancoder 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE_EQ(
        src.is_gpu_pinned(),
        true,
        platform::errors::InvalidArgument("Required `src` device should be "
                                          "CUDAPinnedPlace, but received %d.",
                                          src.place()));
    PADDLE_ENFORCE_EQ(
        dst.is_gpu(),
        true,
        platform::errors::InvalidArgument(
            "Required `dst` device should be CUDAPlace, but received %d.",
            dst.place()));
    PADDLE_ENFORCE_EQ(
        index.is_cpu(),
        true,
        platform::errors::InvalidArgument(
            "Required `index` device should be CPUPlace, but received %d.",
            index.place()));
    PADDLE_ENFORCE_EQ(buffer.is_gpu_pinned(),
                      true,
W
wanghuancoder 已提交
796
                      platform::errors::InvalidArgument(
W
wanghuancoder 已提交
797 798 799 800 801 802 803 804 805
                          "Required `buffer` device should be CUDAPinnedPlace, "
                          "but received %d.",
                          buffer.place()));
    PADDLE_ENFORCE_EQ(
        offset.is_cpu(),
        true,
        platform::errors::InvalidArgument(
            "Required `offset` device should be CPUPlace, but received %d.",
            offset.place()));
W
wanghuancoder 已提交
806
    PADDLE_ENFORCE_EQ(
W
wanghuancoder 已提交
807 808
        count.is_cpu(),
        true,
W
wanghuancoder 已提交
809
        platform::errors::InvalidArgument(
W
wanghuancoder 已提交
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
            "Required `count` device should be CPUPlace, but received %d.",
            count.place()));

    auto& src_tensor = src;
    auto* dst_tensor = &dst;
    auto& index_tensor = index;
    auto* buffer_tensor = &buffer;
    auto& offset_tensor = offset;
    auto& count_tensor = count;
    auto* dst_data = dst_tensor->mutable_data<float>(dst.place());
    const auto& deviceId = paddle::platform::GetCurrentDeviceId();

    PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                      dst_tensor->dims().size(),
                      platform::errors::InvalidArgument(
                          "`src` and `dst` should have same tensor shape, "
                          "except for the first dimension."));
    PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                      buffer_tensor->dims().size(),
                      platform::errors::InvalidArgument(
                          "`src` and `buffer` should have same tensor shape, "
                          "except for the first dimension."));
    for (int i = 1; i < src_tensor.dims().size(); i++) {
      PADDLE_ENFORCE_EQ(
          src_tensor.dims()[i],
          dst_tensor->dims()[i],
          platform::errors::InvalidArgument(
              "`src` and `dst` should have the same tensor shape, "
              "except for the first dimension."));
      PADDLE_ENFORCE_EQ(
          src_tensor.dims()[i],
          buffer_tensor->dims()[i],
          platform::errors::InvalidArgument(
              "`src` and `buffer` should have the same tensor shape, "
              "except for the first dimension."));
    }
    PADDLE_ENFORCE_EQ(index_tensor.dims().size(),
                      1,
                      platform::errors::InvalidArgument(
                          "`index` tensor should be one-dimensional."));

    auto stream = paddle::platform::get_current_stream(deviceId)->raw_stream();

    int64_t numel = 0;  // total copy length
    int64_t copy_flag = offset_tensor.dims()[0];
    int64_t size = src_tensor.numel() / src_tensor.dims()[0];

    if (copy_flag != 0) {
      PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                        1,
                        platform::errors::InvalidArgument(
                            "`offset` tensor should be one-dimensional."));
      PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                        1,
                        platform::errors::InvalidArgument(
                            "`count` tensor should be one-dimensional."));
      PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                        count_tensor.numel(),
                        platform::errors::InvalidArgument(
                            "`offset` and `count` tensor size dismatch."));
      auto* offset_data = offset_tensor.data<int64_t>();
      auto* count_data = count_tensor.data<int64_t>();
      for (int64_t i = 0; i < count_tensor.numel(); i++) {
        numel += count_data[i];
      }
      PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                        buffer_tensor->dims()[0],
                        platform::errors::InvalidArgument(
                            "Buffer tensor size is too small."));
      PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                        dst_tensor->dims()[0],
                        platform::errors::InvalidArgument(
                            "Target tensor size is too small."));

      int64_t src_offset, dst_offset = 0, c;
      auto* src_data = src_tensor.data<float>();
      for (int64_t i = 0; i < offset_tensor.numel(); i++) {
        src_offset = offset_data[i], c = count_data[i];
        PADDLE_ENFORCE_LE(src_offset + c,
                          src_tensor.dims()[0],
                          platform::errors::InvalidArgument(
                              "Invalid offset or count index."));
        PADDLE_ENFORCE_LE(dst_offset + c,
                          dst_tensor->dims()[0],
                          platform::errors::InvalidArgument(
                              "Invalid offset or count index."));
        cudaMemcpyAsync(dst_data + (dst_offset * size),
                        src_data + (src_offset * size),
                        c * size * sizeof(float),
                        cudaMemcpyHostToDevice,
                        stream);
        dst_offset += c;
      }
    } else {
      PADDLE_ENFORCE_LE(index_tensor.numel(),
                        buffer_tensor->dims()[0],
                        platform::errors::InvalidArgument(
                            "Buffer tensor size is too small."));
    }

    // Select the index data to the buffer
    auto index_select = [](const paddle::experimental::Tensor& src_tensor,
                           const paddle::experimental::Tensor& index_tensor,
                           paddle::experimental::Tensor* buffer_tensor) {
      auto* src_data = src_tensor.data<float>();
      auto* index_data = index_tensor.data<int64_t>();
      auto* buffer_data = buffer_tensor->data<float>();
      const int& slice_size = src_tensor.numel() / src_tensor.dims()[0];
      const int& copy_bytes = slice_size * sizeof(float);
      int64_t c = 0;
      for (int64_t i = 0; i < index_tensor.numel(); i++) {
        std::memcpy(buffer_data + c * slice_size,
                    src_data + index_data[i] * slice_size,
                    copy_bytes);
        c += 1;
      }
    };
    index_select(src_tensor, index_tensor, buffer_tensor);

    // Copy the data to device memory
    cudaMemcpyAsync(dst_data + (numel * size),
                    buffer_tensor->data<float>(),
                    index_tensor.numel() * size * sizeof(float),
                    cudaMemcpyHostToDevice,
                    stream);
W
wanghuancoder 已提交
935
  }
W
wanghuancoder 已提交
936 937 938
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
W
wanghuancoder 已提交
939

W
wanghuancoder 已提交
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
static PyObject* eager_api_async_write(PyObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  auto& src = GetTensorFromArgs("async_write", "src", args, 0, false);
  auto& dst = GetTensorFromArgs("async_write", "dst", args, 1, false);
  auto& offset = GetTensorFromArgs("async_write", "offset", args, 2, false);
  auto& count = GetTensorFromArgs("async_write", "count", args, 3, false);
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE_EQ(
        src.is_gpu(),
        true,
        platform::errors::InvalidArgument(
            "Required `src` device should be CUDAPlace, but received %d. ",
            src.place()));
    PADDLE_ENFORCE_EQ(dst.is_gpu_pinned(),
                      true,
                      platform::errors::InvalidArgument(
                          "Required `dst` device should be CUDAPinnedPlace, "
                          "but received %d. ",
                          dst.place()));
    PADDLE_ENFORCE_EQ(
        offset.is_cpu(),
        true,
        platform::errors::InvalidArgument("Required `offset` device should "
                                          "be CPUPlace, but received %d. ",
                                          offset.place()));
    PADDLE_ENFORCE_EQ(
        count.is_cpu(),
        true,
        platform::errors::InvalidArgument(
            "Required `count` device should be CPUPlace, but received %d. ",
            count.place()));
W
wanghuancoder 已提交
974

W
wanghuancoder 已提交
975 976 977 978 979 980 981
    // TODO(daisiming): In future, add index as arguments following
    // async_read.
    auto& src_tensor = src;
    auto* dst_tensor = &dst;
    auto& offset_tensor = offset;
    auto& count_tensor = count;
    const auto& deviceId = paddle::platform::GetCurrentDeviceId();
W
wanghuancoder 已提交
982

983 984
    PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                      1,
W
wanghuancoder 已提交
985 986
                      platform::errors::InvalidArgument(
                          "`offset` tensor should be one-dimensional."));
987 988
    PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                      1,
W
wanghuancoder 已提交
989 990
                      platform::errors::InvalidArgument(
                          "`count` tensor should be one-dimensional."));
991 992
    PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                      count_tensor.numel(),
W
wanghuancoder 已提交
993 994
                      platform::errors::InvalidArgument(
                          "`offset` and `count` tensor size dismatch."));
W
wanghuancoder 已提交
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
    PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                      dst_tensor->dims().size(),
                      platform::errors::InvalidArgument(
                          "`src` and `dst` should have the same tensor shape, "
                          "except for the first dimension."));
    for (int i = 1; i < src_tensor.dims().size(); i++) {
      PADDLE_ENFORCE_EQ(
          src_tensor.dims()[i],
          dst_tensor->dims()[i],
          platform::errors::InvalidArgument(
              "`src` and `dst` should have the same tensor shape, "
              "except for the first dimension."));
W
wanghuancoder 已提交
1007 1008
    }

W
wanghuancoder 已提交
1009 1010 1011
    auto stream = paddle::platform::get_current_stream(deviceId)->raw_stream();

    int64_t size = src_tensor.numel() / src_tensor.dims()[0];
W
wanghuancoder 已提交
1012
    auto* src_data = src_tensor.data<float>();
W
wanghuancoder 已提交
1013 1014 1015 1016
    auto* dst_data = dst_tensor->data<float>();
    const int64_t* offset_data = offset_tensor.data<int64_t>();
    const int64_t* count_data = count_tensor.data<int64_t>();
    int64_t src_offset = 0, dst_offset, c;
W
wanghuancoder 已提交
1017
    for (int64_t i = 0; i < offset_tensor.numel(); i++) {
W
wanghuancoder 已提交
1018
      dst_offset = offset_data[i], c = count_data[i];
W
wanghuancoder 已提交
1019
      PADDLE_ENFORCE_LE(
1020 1021
          src_offset + c,
          src_tensor.dims()[0],
W
wanghuancoder 已提交
1022
          platform::errors::InvalidArgument("Invalid offset or count index"));
W
wanghuancoder 已提交
1023
      PADDLE_ENFORCE_LE(
1024 1025
          dst_offset + c,
          dst_tensor->dims()[0],
W
wanghuancoder 已提交
1026
          platform::errors::InvalidArgument("Invalid offset or count index"));
W
wanghuancoder 已提交
1027
      cudaMemcpyAsync(dst_data + (dst_offset * size),
1028 1029
                      src_data + (src_offset * size),
                      c * size * sizeof(float),
W
wanghuancoder 已提交
1030
                      cudaMemcpyDeviceToHost,
1031
                      stream);
W
wanghuancoder 已提交
1032
      src_offset += c;
W
wanghuancoder 已提交
1033 1034
    }
  }
1035
  RETURN_PY_NONE
W
wanghuancoder 已提交
1036 1037
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1038

1039 1040
static PyObject* eager_api_to_uva_tensor(PyObject* self,
                                         PyObject* args,
1041 1042 1043 1044 1045 1046 1047 1048 1049
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in eager_api_to_uva_tensor.";
  auto new_tensor = std::shared_ptr<paddle::experimental::Tensor>(
      new paddle::experimental::Tensor(
          egr::Controller::Instance().GenerateUniqueName()));
  PyObject* obj = PyTuple_GET_ITEM(args, 0);
  auto array = py::cast<py::array>(py::handle(obj));

1050 1051 1052 1053 1054 1055 1056
  Py_ssize_t args_num = PyTuple_Size(args);
  int64_t device_id = 0;
  if (args_num > 1) {
    PyObject* Py_device_id = PyTuple_GET_ITEM(args, 1);
    if (Py_device_id) {
      device_id = CastPyArg2AttrLong(Py_device_id, 1);
    }
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
  }

  if (py::isinstance<py::array_t<int32_t>>(array)) {
    SetUVATensorFromPyArray<int32_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<int64_t>>(array)) {
    SetUVATensorFromPyArray<int64_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<float>>(array)) {
    SetUVATensorFromPyArray<float>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<double>>(array)) {
    SetUVATensorFromPyArray<double>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<int8_t>>(array)) {
    SetUVATensorFromPyArray<int8_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<int16_t>>(array)) {
    SetUVATensorFromPyArray<int16_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<paddle::platform::float16>>(array)) {
1072 1073
    SetUVATensorFromPyArray<paddle::platform::float16>(
        new_tensor, array, device_id);
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
  } else if (py::isinstance<py::array_t<bool>>(array)) {
    SetUVATensorFromPyArray<bool>(new_tensor, array, device_id);
  } else {
    // obj may be any type, obj.cast<py::array>() may be failed,
    // then the array.dtype will be string of unknown meaning.
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Input object type error or incompatible array data type. "
        "tensor.set() supports array with bool, float16, float32, "
        "float64, int8, int16, int32, int64,"
        "please check your input or input array data type."));
  }
  return ToPyObject(*(new_tensor.get()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
W
wanghuancoder 已提交
1088
#endif
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
static PyObject* eager_api__add_backward_final_hook(PyObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);
  egr::Controller::Instance().RegisterBackwardFinalHook(
      std::make_shared<PyVoidHook>(hook_func));
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1101
PyMethodDef variable_functions[] = {
1102
    // TODO(jiabin): Remove scale when we have final state tests
1103 1104 1105 1106
    {"scale",
     (PyCFunction)(void (*)(void))eager_api_scale,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1107 1108 1109 1110
    {"_add_backward_final_hook",
     (PyCFunction)(void (*)(void))eager_api__add_backward_final_hook,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1111 1112 1113 1114
    {"run_backward",
     (PyCFunction)(void (*)(void))eager_api_run_backward,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1115 1116
    {"run_partial_grad",
     (PyCFunction)(void (*)(void))eager_api_run_partial_grad,
1117 1118 1119
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_run_custom_op",
H
HongyuJia 已提交
1120
     (PyCFunction)(void (*)(void))eager_api_run_custom_op,
1121 1122
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1123 1124 1125 1126 1127
    {"_init_eager_and_static_tensor_operants",
     (PyCFunction)(void (*)(
         void))eager_api_init_eager_and_static_tensor_operants,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1128 1129 1130 1131
    {"tensor_copy",
     (PyCFunction)(void (*)(void))eager_api_tensor_copy,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1132 1133 1134 1135
    {"get_all_grads",
     (PyCFunction)(void (*)(void))eager_api_get_all_grads,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1136 1137 1138 1139
    {"get_grads_lists",
     (PyCFunction)(void (*)(void))eager_api_get_grads_lists,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1140 1141 1142 1143
    {"get_grads_types",
     (PyCFunction)(void (*)(void))eager_api_get_grads_types,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1144 1145
    {"read_next_tensor_list",
     (PyCFunction)(void (*)(void))eager_api_read_next_tensor_list,
1146 1147
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1148 1149 1150 1151
    {"jit_function_call",
     (PyCFunction)(void (*)(void))eager_api_jit_function_call,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1152 1153 1154
    /**sparse functions**/
    {"sparse_coo_tensor",
     (PyCFunction)(void (*)(void))eager_api_sparse_coo_tensor,
1155 1156
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1157 1158
    {"sparse_csr_tensor",
     (PyCFunction)(void (*)(void))eager_api_sparse_csr_tensor,
1159 1160
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1161 1162 1163 1164 1165 1166 1167 1168
    {"register_saved_tensors_hooks",
     (PyCFunction)(void (*)(void))eager_api_register_saved_tensors_hooks,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"reset_saved_tensors_hooks",
     (PyCFunction)(void (*)(void))eager_api_reset_saved_tensors_hooks,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1169
/**sparse functions**/
W
wanghuancoder 已提交
1170
#if defined(PADDLE_WITH_CUDA)
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
    {"async_read",
     (PyCFunction)(void (*)(void))eager_api_async_read,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"async_write",
     (PyCFunction)(void (*)(void))eager_api_async_write,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"to_uva_tensor",
     (PyCFunction)(void (*)(void))eager_api_to_uva_tensor,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
1183
#endif
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
    {NULL, NULL, 0, NULL}};

void BindFunctions(PyObject* module) {
  if (PyModule_AddFunctions(module, variable_functions) < 0) {
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle erroe in BindFunctions(PyModule_AddFunctions)."));
    return;
  }
}

}  // namespace pybind
}  // namespace paddle