eager_functions.cc 48.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13 14 15 16 17

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif

18
#include <Python.h>
19 20 21 22
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
23 24 25 26 27 28 29 30

#include <string>
#include <vector>

#include "paddle/fluid/eager/accumulation/accumulation_node.h"
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/backward.h"
31
#include "paddle/fluid/eager/custom_operator/custom_operator_node.h"
32
#include "paddle/fluid/eager/utils.h"
33
#include "paddle/fluid/framework/convert_utils.h"
34 35
#include "paddle/fluid/framework/custom_operator.h"
#include "paddle/fluid/framework/op_meta_info_helper.h"
36
#include "paddle/fluid/framework/python_headers.h"
37 38
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
W
wanghuancoder 已提交
39
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
40
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
41
#include "paddle/fluid/platform/enforce.h"
42 43
#include "paddle/fluid/prim/utils/eager/eager_tensor_operants.h"
#include "paddle/fluid/prim/utils/static/static_tensor_operants.h"
44 45 46
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
47
#include "paddle/fluid/pybind/tensor_py.h"
48
#include "paddle/phi/api/ext/op_meta_info.h"
49 50 51 52 53
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/api/lib/utils/tensor_utils.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
54 55
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
56 57
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
58

L
Leo Chen 已提交
59 60 61 62
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include "paddle/fluid/pybind/cuda_streams_py.h"
#endif

63
#include "gflags/gflags.h"
64
#include "paddle/phi/api/include/operants_manager.h"
65 66 67 68
#include "paddle/phi/api/include/tensor_operants.h"

DECLARE_string(tensor_operants_mode);

69 70 71 72 73
namespace paddle {
namespace pybind {

namespace py = ::pybind11;

74
extern PyTypeObject* p_tensor_type;
75 76
extern PyTypeObject* g_multidevicefeedreader_pytype;
extern PyTypeObject* g_orderedmultidevicefeedreader_pytype;
77 78 79 80 81 82 83 84 85 86 87

size_t PyArray_Size_(PyObject* numpy_data) {
  size_t res = 1;
  auto dims = pybind11::detail::array_proxy(numpy_data)->dimensions;
  auto nd = pybind11::detail::array_proxy(numpy_data)->nd;
  while (nd--) {
    res *= (*dims++);
  }
  return res;
}

88
class EagerNumpyAllocation : public phi::Allocation {
89
 public:
90
  explicit EagerNumpyAllocation(PyObject* numpy_data, phi::DataType dtype)
91 92
      : Allocation(
            static_cast<void*>(pybind11::detail::array_proxy(numpy_data)->data),
93
            phi::SizeOf(dtype) * PyArray_Size_(numpy_data),
94 95
            paddle::platform::CPUPlace()),
        arr_(numpy_data) {
96 97 98 99
    PADDLE_ENFORCE_NOT_NULL(
        arr_,
        platform::errors::InvalidArgument("The underlying PyObject pointer of "
                                          "numpy array cannot be nullptr"));
100
    PADDLE_ENFORCE_NE(
101 102
        arr_,
        Py_None,
103 104 105 106 107 108 109 110 111 112 113 114 115
        platform::errors::PreconditionNotMet(
            "The underlying PyObject pointer of numpy array cannot be None"));
    Py_INCREF(arr_);
  }
  ~EagerNumpyAllocation() override {
    py::gil_scoped_acquire gil;
    Py_DECREF(arr_);
  }

 private:
  PyObject* arr_;
};

116 117
static PyObject* eager_api_scale(PyObject* self,
                                 PyObject* args,
118 119 120
                                 PyObject* kwargs) {
  EAGER_TRY
  // TODO(jiabin): Sync Tensor and Variable here when we support
W
wanghuancoder 已提交
121 122 123 124 125 126 127 128 129 130 131 132

  auto& tensor =
      reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor;
  float scale = CastPyArg2AttrFloat(PyTuple_GET_ITEM(args, 1), 1);
  float bias = CastPyArg2AttrFloat(PyTuple_GET_ITEM(args, 2), 2);
  bool bias_after_scale = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);
  bool trace_backward = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
  paddle::experimental::Tensor ret;
  {
    eager_gil_scoped_release guard;
    ret = egr::scale(tensor, scale, bias, bias_after_scale, trace_backward);
  }
133 134 135 136
  return ToPyObject(ret);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

137 138
static PyObject* eager_api_run_backward(PyObject* self,
                                        PyObject* args,
139 140
                                        PyObject* kwargs) {
  EAGER_TRY
141 142
  auto tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 1), 1);
W
wanghuancoder 已提交
143
  bool retain_graph = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 2), 2);
144 145
  {
    eager_gil_scoped_release guard;
W
wanghuancoder 已提交
146
    egr::Backward(tensors, grad_tensors, retain_graph);
147
  }
148
  RETURN_PY_NONE
149 150 151
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

152 153
static PyObject* eager_api_run_partial_grad(PyObject* self,
                                            PyObject* args,
154 155 156 157 158 159 160 161 162 163
                                            PyObject* kwargs) {
  EAGER_TRY
  auto tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0);
  auto inputs = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 1), 1);
  auto grad_tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 2), 2);
  auto retain_graph = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);
  auto create_graph = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
  auto only_inputs = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 5), 5);
  auto allow_unused = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 6), 6);
  auto no_grad_vars = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 7), 7);
164 165 166 167 168 169 170 171 172 173 174
  std::vector<paddle::experimental::Tensor> result;
  {
    eager_gil_scoped_release guard;
    result = egr::Grad(tensors,
                       inputs,
                       grad_tensors,
                       retain_graph,
                       create_graph,
                       only_inputs,
                       allow_unused,
                       no_grad_vars);
L
Leo Chen 已提交
175
    VLOG(4) << " in eager_api_run_partial_grad, after runing egr::Grad";
176
  }
177 178 179 180
  return ToPyObject(result, true /* return_py_none_if_not_initialize */);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

181 182
static PyObject* eager_api_tensor_copy(PyObject* self,
                                       PyObject* args,
183 184
                                       PyObject* kwargs) {
  EAGER_TRY
185 186 187 188
  paddle::experimental::Tensor& src =
      reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor;
  paddle::experimental::Tensor& dst =
      reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 1))->tensor;
189 190 191
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 2), 2);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);

W
wanghuancoder 已提交
192 193 194 195 196 197 198 199
  {
    eager_gil_scoped_release guard;
    dst = src.copy_to(place, blocking);
    egr::EagerUtils::autograd_meta(&dst)->SetStopGradient(
        egr::EagerUtils::autograd_meta(&(src))->StopGradient());
    egr::EagerUtils::autograd_meta(&dst)->SetPersistable(
        egr::EagerUtils::autograd_meta(&(src))->Persistable());
  }
200
  RETURN_PY_NONE
201 202 203
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
PyObject* eager_api_get_all_grads(PyObject* self,
                                  PyObject* args,
                                  PyObject* kwargs) {
  EAGER_TRY
  auto tensor_list = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0);

  std::vector<paddle::experimental::Tensor> ret;
  for (auto& tensor : tensor_list) {
    VLOG(6) << "Get grad for tensor: " << tensor.name();
    auto meta = egr::EagerUtils::nullable_autograd_meta(tensor);
    if (!meta || meta->StopGradient()) {
      ret.emplace_back(paddle::experimental::Tensor());
      continue;
    }
    if (meta && meta->Grad().initialized()) {
      ret.emplace_back(meta->Grad());
    } else {
      ret.emplace_back(paddle::experimental::Tensor());
    }
  }
  return ToPyObject(ret, true);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

228 229 230 231 232
PyObject* eager_api_get_grads_lists(PyObject* self,
                                    PyObject* args,
                                    PyObject* kwargs) {
  EAGER_TRY
  auto tensor_list = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0);
233
  // The order of the 3 vectors is: FP16_grads, BF16_grads, FP32_grads
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
  std::vector<std::vector<paddle::experimental::Tensor>> ret(3);

  for (auto& tensor : tensor_list) {
    VLOG(6) << "Get grad for tensor: " << tensor.name();
    auto meta = egr::EagerUtils::nullable_autograd_meta(tensor);
    if (meta && meta->Grad().initialized()) {
      auto& grad = meta->Grad();
      switch (grad.dtype()) {
        case paddle::experimental::DataType::FLOAT16:
          ret[0].emplace_back(grad);
          break;
        case paddle::experimental::DataType::BFLOAT16:
          ret[1].emplace_back(grad);
          break;
        case paddle::experimental::DataType::FLOAT32:
          ret[2].emplace_back(grad);
          break;
        default:
          break;
      }
    }
  }

  return ToPyObject(ret);

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
PyObject* eager_api_get_grads_types(PyObject* self,
                                    PyObject* args,
                                    PyObject* kwargs) {
  EAGER_TRY
  auto tensor_list = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0);

  std::vector<int> ret;

  for (auto& tensor : tensor_list) {
    VLOG(6) << "Get grad for tensor: " << tensor.name();
    auto meta = egr::EagerUtils::nullable_autograd_meta(tensor);
    if (!meta || meta->StopGradient()) {
      ret.emplace_back(-1);
      continue;
    }

    auto& grad = meta->Grad();
    if (meta && grad.initialized()) {
      if (grad.is_dense_tensor() &&
          (tensor.dtype() == paddle::experimental::DataType::FLOAT32 ||
282 283
           tensor.dtype() == paddle::experimental::DataType::FLOAT16 ||
           tensor.dtype() == paddle::experimental::DataType::BFLOAT16)) {
284 285 286 287 288 289 290 291 292 293 294 295 296
        ret.emplace_back(
            paddle::framework::TransToProtoVarType(tensor.dtype()));
      }
    } else {
      ret.emplace_back(-1);
    }
  }

  return ToPyObject(ret);

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

297 298
static PyObject* eager_api_read_next_tensor_list(PyObject* self,
                                                 PyObject* args,
299
                                                 PyObject* kwargs) {
300
  EAGER_TRY
301 302 303
  auto tensor_base_list =
      CastPyArg2VectorOfTensorBase(PyTuple_GET_ITEM(args, 0), 0);
  std::vector<paddle::experimental::Tensor> tensor_list;
304 305 306
  {
    eager_gil_scoped_release guard;
    tensor_list.reserve(tensor_base_list.size());
307
    auto func = [](phi::DenseTensor& tensor_base) {
308 309 310 311 312 313 314 315 316 317 318
      paddle::experimental::Tensor tensor(
          egr::Controller::Instance().GenerateUniqueName());
      auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor);
      autograd_meta->SetPersistable(false);
      autograd_meta->SetStopGradient(true);
      tensor.set_impl(std::make_shared<phi::DenseTensor>(tensor_base));
      return tensor;
    };
    for (auto& tensor_base : tensor_base_list) {
      tensor_list.emplace_back(func(tensor_base));
    }
319
  }
320
  return ToPyObject(tensor_list);
321 322 323
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
static void ConstructFwdAndBwdMap(
    const std::vector<paddle::OpMetaInfo>& vec_map,
    const std::string& op_type) {
  auto& in_out_map = egr::Controller::Instance().GetCustomEdgesSlotMap();
  if (in_out_map.find(op_type) != in_out_map.end()) {
    VLOG(7) << "Find Exist CustomEdgesSlotMap Skip >>>> ";
    return;
  } else {
    VLOG(7) << "Construct CustomEdgesSlotMap ";
    auto inputs_names =
        paddle::framework::OpMetaInfoHelper::GetInputs(vec_map[0]);
    auto outputs_names =
        paddle::framework::OpMetaInfoHelper::GetOutputs(vec_map[0]);
    auto attrs_names =
        paddle::framework::OpMetaInfoHelper::GetAttrs(vec_map[0]);
    auto grad_outputs_names =
        paddle::framework::OpMetaInfoHelper::GetOutputs(vec_map[1]);
    auto grad_inputs_names =
        paddle::framework::OpMetaInfoHelper::GetInputs(vec_map[1]);
    auto grad_attrs_names =
        paddle::framework::OpMetaInfoHelper::GetAttrs(vec_map[1]);
    std::vector<std::unordered_map<int, int>> res(5);
346 347

    in_out_map.insert({op_type, {res}});
348 349 350
    // Prepare pos map for grad_outputs
    VLOG(7) << "Prepare pos map for grad_outputs";
    PADDLE_ENFORCE_LE(
351 352
        grad_outputs_names.size(),
        inputs_names.size(),
353 354 355 356 357
        paddle::platform::errors::InvalidArgument(
            "Grad outputs num should be less equal than forward inputs num."));
    for (size_t i = 0; i < grad_outputs_names.size(); i++) {
      size_t end = grad_outputs_names[i].find("@GRAD");
      PADDLE_ENFORCE_NE(
358 359
          end,
          std::string::npos,
360 361 362 363 364 365 366 367 368
          paddle::platform::errors::NotFound(
              "All Grad outputs should be grad and we got %s is not grad var, "
              "please check your op and change to fit the rule.",
              grad_outputs_names[i]));
      for (size_t j = 0; j < inputs_names.size(); j++) {
        if (grad_outputs_names[i].substr(0, end) == inputs_names[j]) {
          VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                  << " inputs: " << inputs_names[j] << " related to No." << i
                  << " grad_outputs: " << grad_outputs_names[i];
369
          in_out_map[op_type][0][0][j] = i;
370 371 372 373 374 375 376 377 378 379 380 381
        }
      }
    }
    // Prepare pos map for grad_inputs
    for (size_t i = 0; i < grad_inputs_names.size(); i++) {
      size_t end = grad_inputs_names[i].find("@GRAD");
      if (end != std::string::npos) {
        for (size_t j = 0; j < outputs_names.size(); j++) {
          if (grad_inputs_names[i].substr(0, end) == outputs_names[j]) {
            VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                    << " outputs: " << outputs_names[j] << " related to No."
                    << i << " grad_inputs's grad: " << grad_inputs_names[i];
382
            in_out_map[op_type][0][1][j] = i;
383 384 385
          }
        }
      } else {
386 387
        if (std::find(outputs_names.begin(),
                      outputs_names.end(),
388 389 390 391 392 393 394
                      grad_inputs_names[i]) != outputs_names.end()) {
          for (size_t j = 0; j < outputs_names.size(); j++) {
            if (grad_inputs_names[i] == outputs_names[j]) {
              VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                      << " outputs: " << outputs_names[j] << " related to No."
                      << i
                      << " grad_inputs fwd outputs: " << grad_inputs_names[i];
395
              in_out_map[op_type][0][2][j] = i;
396 397 398 399 400 401 402 403 404
            }
          }
        } else {
          for (size_t j = 0; j < inputs_names.size(); j++) {
            if (grad_inputs_names[i] == inputs_names[j]) {
              VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                      << " inputs: " << inputs_names[j] << " related to No."
                      << i
                      << " grad_inputs fwd inputs: " << grad_inputs_names[i];
405
              in_out_map[op_type][0][3][j] = i;
406 407 408 409 410 411 412 413
            }
          }
        }
      }
    }

    // Prepare pos map for grad attrs_
    for (size_t i = 0; i < grad_attrs_names.size(); i++) {
414 415 416 417
      auto end = std::find(
          attrs_names.begin(), attrs_names.end(), grad_attrs_names[i]);
      PADDLE_ENFORCE_NE(end,
                        attrs_names.end(),
418 419 420 421 422 423 424 425 426 427
                        paddle::platform::errors::NotFound(
                            "All Grad attrs should be one of forward attrs and "
                            "we got %s is not one of them, please check your "
                            "op and change to fit the rule.",
                            grad_attrs_names[i]));
      for (size_t j = 0; j < attrs_names.size(); j++) {
        if (grad_attrs_names[i] == attrs_names[j]) {
          VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                  << " attrs: " << attrs_names[j] << " related to No." << i
                  << " grad_attrs: " << grad_attrs_names[i];
428
          in_out_map[op_type][0][4][j] = i;
429 430 431 432 433 434
        }
      }
    }
  }
}

H
HongyuJia 已提交
435
static std::vector<paddle::any> CastAttrsToTargetType(
436 437 438
    const std::vector<paddle::any>& src,
    const std::vector<std::string>& attrs_names) {
  std::vector<paddle::any> res;
439 440
  PADDLE_ENFORCE_EQ(src.size(),
                    attrs_names.size(),
441 442 443 444
                    paddle::platform::errors::InvalidArgument(
                        "We Expected same size of attrs and attrs_name list, "
                        "if u got this error indicate your custom op setting "
                        "%s attrs, but you just give %s",
445 446
                        attrs_names.size(),
                        src.size()));
447 448
  for (size_t i = 0; i < src.size(); i++) {
    size_t end = attrs_names[i].find(": ");
449
    std::string type_name = attrs_names[i].substr(end + 2);
450 451 452 453 454 455 456 457 458
    if (type_name == "int") {
      if (src[i].type() == typeid(bool)) {
        res.emplace_back(static_cast<int>(paddle::any_cast<bool>(src[i])));
      } else if (src[i].type() == typeid(int)) {
        res.emplace_back(src[i]);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Your No. %s attrs should only can be bool or int32, other type is "
            "forbidden for now but we got %s. Check your code first please",
459 460
            i,
            src[i].type().name()));
461 462 463 464 465 466 467 468 469 470 471 472 473
      }
    } else if (type_name == "int64_t") {
      if (src[i].type() == typeid(bool)) {
        res.emplace_back(static_cast<int64_t>(paddle::any_cast<bool>(src[i])));
      } else if (src[i].type() == typeid(int)) {
        res.emplace_back(static_cast<int64_t>(paddle::any_cast<int>(src[i])));
      } else if (src[i].type() == typeid(int64_t)) {
        res.emplace_back(src[i]);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Your No. %s attrs should only can be bool or int32 or int64_t, "
            "other type is forbidden for now but we got %s. Check your code "
            "first please",
474 475
            i,
            src[i].type().name()));
476 477 478 479 480 481 482 483
      }
    } else {
      res.emplace_back(src[i]);
    }
  }
  return res;
}

484 485 486 487
static PyObject* eager_api_jit_function_call(PyObject* self,
                                             PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
488 489 490

  std::shared_ptr<jit::Function> function =
      CastPyArg2JitFunction(PyTuple_GET_ITEM(args, 0), 0);
491 492
  std::vector<paddle::experimental::Tensor> ins =
      CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 1), 1);
W
wanghuancoder 已提交
493 494 495 496 497
  std::vector<paddle::experimental::Tensor> outs;
  {
    eager_gil_scoped_release guard;
    outs = (*function)(ins);
  }
498 499 500 501
  return ToPyObject(outs);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

502 503 504 505
static PyObject* eager_api_init_eager_and_static_tensor_operants(
    PyObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY

506 507 508 509
  paddle::OperantsManager::Instance().eager_operants.reset(
      new paddle::prim::EagerTensorOperants());
  paddle::OperantsManager::Instance().static_operants.reset(
      new paddle::prim::StaticTensorOperants());
510 511 512 513 514 515
  VLOG(4) << "Initialize eager and static tensor operants successfully";

  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

H
HongyuJia 已提交
516
static PyObject* eager_api_run_custom_op(PyObject* self,
517
                                         PyObject* args,
518 519
                                         PyObject* kwargs) {
  EAGER_TRY
520
  FLAGS_tensor_operants_mode = "phi";
521 522
  if (paddle::OperantsManager::Instance().phi_operants.get() == nullptr) {
    paddle::OperantsManager::Instance().phi_operants.reset(
523 524 525 526
        new paddle::operants::PhiTensorOperants());
    VLOG(4) << "Initialize phi tensor operants successfully";
  }

527 528 529 530
  paddle::CustomOpKernelContext ctx =
      CastPyArg2CustomOpKernelContext(PyTuple_GET_ITEM(args, 0), 0);
  std::string op_type = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 1), 1);
  bool trace_backward = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 2), 2);
W
wanghuancoder 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
  {
    eager_gil_scoped_release guard;
    VLOG(7) << "Get things for python for Custom Op: " << op_type
            << ", trace_backward is: " << trace_backward;
    auto meta_info_map = egr::Controller::Instance().GetOpMetaInfoMap();
    PADDLE_ENFORCE_NE(
        meta_info_map.find(op_type),
        meta_info_map.end(),
        paddle::platform::errors::NotFound(
            "Can't find %s in Eager OpMetaInfoMap which should be "
            "created by LoadOpMetaInfoAndRegisterOp, please make "
            "sure you registered your op first and try again. ",
            op_type));
    VLOG(7) << "Run Kernel of Custom Op: " << op_type;
    std::vector<paddle::any> res_attrs =
H
HongyuJia 已提交
546
        CastAttrsToTargetType(ctx.Attrs(),
W
wanghuancoder 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
                              paddle::framework::OpMetaInfoHelper::GetAttrs(
                                  meta_info_map.at(op_type)[0]));
    ctx.EmplaceBackAttrs(res_attrs);
    const auto& vec_map = meta_info_map.at(op_type);
    (*paddle::framework::OpMetaInfoHelper::GetKernelFn(vec_map[0]))(&ctx);

    VLOG(7) << "Get AutogradMeta for inputs and outputs for Custom Op";
    std::vector<std::vector<egr::AutogradMeta*>> ins_auto_grad_metas;
    std::vector<std::vector<egr::AutogradMeta*>> outs_auto_grad_metas;
    VLOG(7) << "We got slot num of ins is: " << ctx.InputRange().size();
    ins_auto_grad_metas.resize(ctx.InputRange().size());
    VLOG(7) << "We got slot num of outs is: " << ctx.OutputRange().size();
    outs_auto_grad_metas.resize(ctx.OutputRange().size());

    for (size_t i = 0; i < ctx.InputRange().size(); i++) {
      ins_auto_grad_metas[i] =
          egr::EagerUtils::nullable_autograd_meta(ctx.InputsBetween(
              ctx.InputRangeAt(i).first, ctx.InputRangeAt(i).second));
565
    }
W
wanghuancoder 已提交
566 567 568 569
    for (size_t i = 0; i < ctx.OutputRange().size(); i++) {
      outs_auto_grad_metas[i] =
          egr::EagerUtils::unsafe_autograd_meta(ctx.OutputsBetweeen(
              ctx.OutputRangeAt(i).first, ctx.OutputRangeAt(i).second));
570
    }
W
wanghuancoder 已提交
571 572 573 574 575
    bool require_any_grad = false;
    for (size_t i = 0; i < ins_auto_grad_metas.size(); i++) {
      require_any_grad =
          require_any_grad || egr::EagerUtils::ComputeRequireGrad(
                                  trace_backward, &(ins_auto_grad_metas[i]));
576
    }
W
wanghuancoder 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
    if (require_any_grad && (vec_map.size() > 1)) {
      VLOG(6) << " Construct Grad for Custom Op: " << op_type;
      ConstructFwdAndBwdMap(vec_map, op_type);
      for (size_t i = 0; i < outs_auto_grad_metas.size(); i++) {
        egr::EagerUtils::PassStopGradient(false, &(outs_auto_grad_metas[i]));
      }
      auto grad_node = std::make_shared<egr::RunCustomOpNode>(
          outs_auto_grad_metas.size(), ins_auto_grad_metas.size(), op_type);
      auto slot_map =
          egr::Controller::Instance().GetCustomEdgesSlotMap().at(op_type);
      // Prepare Grad outputs
      size_t no_grad_cnt = 0;
      for (size_t i = 0; i < ins_auto_grad_metas.size(); i++) {
        const std::vector<paddle::experimental::Tensor>& in_tensors =
            ctx.InputsBetween(ctx.InputRangeAt(i).first,
                              ctx.InputRangeAt(i).second);

        if (slot_map[0][0].find(i) != slot_map[0][0].end()) {
          grad_node->SetGradOutMeta(in_tensors, slot_map[0][0][i]);
        } else {
          grad_node->SetGradOutMeta(
              in_tensors, ins_auto_grad_metas.size() - 1 - no_grad_cnt);
          no_grad_cnt++;
        }
      }
      // Prepare Grad inputs with grad of fwd outputs
      for (size_t i = 0; i < outs_auto_grad_metas.size(); i++) {
        const std::vector<paddle::experimental::Tensor>& out_tensors =
            ctx.OutputsBetweeen(ctx.OutputRangeAt(i).first,
                                ctx.OutputRangeAt(i).second);

        egr::EagerUtils::SetOutRankWithSlot(&(outs_auto_grad_metas[i]), i);
        egr::EagerUtils::SetHistory(&(outs_auto_grad_metas[i]), grad_node);
        grad_node->SetGradInMeta(out_tensors, i);
      }
612

W
wanghuancoder 已提交
613 614 615 616 617 618 619 620 621
      // Prepare Grad inputs with fwd outputs
      for (auto it = slot_map[0][2].begin(); it != slot_map[0][2].end(); it++) {
        VLOG(7) << "Prepare fwd_outs: " << it->first
                << " to grad_inputs: " << it->second;
        grad_node->fwd_outs[it->second] =
            egr::RunCustomOpNode::ConstructTensorWrapper(
                ctx.OutputsBetweeen(ctx.OutputRangeAt(it->first).first,
                                    ctx.OutputRangeAt(it->first).second));
      }
622

W
wanghuancoder 已提交
623 624 625 626 627 628 629 630 631
      // Prepare Grad inputs with fwd inputs
      for (auto it = slot_map[0][3].begin(); it != slot_map[0][3].end(); it++) {
        VLOG(7) << "Prepare fwd_ins: " << it->first
                << " to grad_inputs: " << it->second;
        grad_node->fwd_ins[it->second] =
            egr::RunCustomOpNode::ConstructTensorWrapper(
                ctx.InputsBetween(ctx.InputRangeAt(it->first).first,
                                  ctx.InputRangeAt(it->first).second));
      }
632

W
wanghuancoder 已提交
633 634 635 636 637 638 639 640 641 642
      auto attrs_names = paddle::framework::OpMetaInfoHelper::GetAttrs(
          meta_info_map.at(op_type)[1]);
      std::vector<paddle::any> attrs(attrs_names.size());
      // Prepare attrs for Grad node
      for (auto it = slot_map[0][4].begin(); it != slot_map[0][4].end(); it++) {
        VLOG(7) << "Prepare fwd attrs: " << it->first
                << " to grad_attrs: " << it->second;
        attrs[it->second] = res_attrs[it->first];
      }
      grad_node->SetAttrs(attrs);
643 644
    }
  }
645
  RETURN_PY_NONE
646 647 648
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

649 650
static PyObject* eager_api_sparse_coo_tensor(PyObject* self,
                                             PyObject* args,
651 652 653 654 655 656 657
                                             PyObject* kwargs) {
  EAGER_TRY
  auto non_zero_indices = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  auto non_zero_elements = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 1), 1);
  auto dense_shape = CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 2), 2);
  auto stop_gradient = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);
  paddle::experimental::Tensor tensor;
W
wanghuancoder 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE(non_zero_indices.is_dense_tensor(),
                   paddle::platform::errors::Fatal(
                       "the non-zero indices must be a DenseTensor."));
    PADDLE_ENFORCE(non_zero_elements.is_dense_tensor(),
                   paddle::platform::errors::Fatal(
                       "the non-zero elements must be a DenseTensor."));
    auto dense_indices =
        std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_indices.impl());
    auto dense_elements =
        std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_elements.impl());
    // TODO(zhangkaihuo): After creating SparseCooTensor, call coalesced() to
    // sort and merge duplicate indices
    std::shared_ptr<phi::SparseCooTensor> coo_tensor =
        std::make_shared<phi::SparseCooTensor>(
            *dense_indices, *dense_elements, phi::make_ddim(dense_shape));
    tensor.set_impl(coo_tensor);
    auto name =
        egr::Controller::Instance().GenerateUniqueName("generated_tensor");
    tensor.set_name(name);
    auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor);
    autograd_meta->SetStopGradient(static_cast<bool>(stop_gradient));
    if (!autograd_meta->GetMutableGradNode()) {
      VLOG(3) << "Tensor(" << name
              << ") doesn't have GradNode, add GradNodeAccumulation to it.";
      autograd_meta->SetGradNode(
          std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
    }
687 688 689 690 691
  }
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

692 693
static PyObject* eager_api_sparse_csr_tensor(PyObject* self,
                                             PyObject* args,
694 695 696 697 698 699 700 701
                                             PyObject* kwargs) {
  EAGER_TRY
  auto non_zero_crows = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  auto non_zero_cols = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 1), 1);
  auto non_zero_elements = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 2), 2);
  auto dense_shape = CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 3), 3);
  auto stop_gradient = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
  paddle::experimental::Tensor tensor;
W
wanghuancoder 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE(non_zero_crows.is_dense_tensor(),
                   paddle::platform::errors::Fatal(
                       "the compressed non-zero rows must be a DenseTensor."));
    PADDLE_ENFORCE(non_zero_cols.is_dense_tensor(),
                   paddle::platform::errors::Fatal(
                       "the non-zero cols must be a DenseTensor."));
    PADDLE_ENFORCE(non_zero_elements.is_dense_tensor(),
                   paddle::platform::errors::Fatal(
                       "the non-zero elements must be a DenseTensor."));

    auto dense_crows =
        std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_crows.impl());
    auto dense_cols =
        std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_cols.impl());
    auto dense_elements =
        std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_elements.impl());
    std::shared_ptr<phi::SparseCsrTensor> csr_tensor =
        std::make_shared<phi::SparseCsrTensor>(*dense_crows,
                                               *dense_cols,
                                               *dense_elements,
                                               phi::make_ddim(dense_shape));
    tensor.set_impl(csr_tensor);
    auto name =
        egr::Controller::Instance().GenerateUniqueName("generated_tensor");
    tensor.set_name(name);
    auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor);
    autograd_meta->SetStopGradient(static_cast<bool>(stop_gradient));
    if (!autograd_meta->GetMutableGradNode()) {
      VLOG(3) << "Tensor(" << name
              << ") have not GradNode, add GradNodeAccumulation for it.";
      autograd_meta->SetGradNode(
          std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
    }
737 738 739 740
  }
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
741 742 743 744 745 746 747 748

static PyObject* eager_api_register_saved_tensors_hooks(PyObject* self,
                                                        PyObject* args,
                                                        PyObject* kwargs) {
  EAGER_TRY
  if (egr::Controller::Instance().HasGrad()) {
    auto pack_hook = PyTuple_GET_ITEM(args, 0);
    auto unpack_hook = PyTuple_GET_ITEM(args, 1);
749 750 751
    egr::SavedTensorsHooks::GetInstance().SetHooks(
        std::make_shared<PackHook>(pack_hook),
        std::make_shared<UnPackHook>(unpack_hook));
752 753 754 755 756 757 758 759 760 761 762 763 764 765
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_api_reset_saved_tensors_hooks(PyObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  egr::SavedTensorsHooks::GetInstance().ResetHooks();
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
766
#if defined(PADDLE_WITH_CUDA)
767 768
static PyObject* eager_api_async_read(PyObject* self,
                                      PyObject* args,
W
wanghuancoder 已提交
769 770 771 772 773 774 775 776
                                      PyObject* kwargs) {
  EAGER_TRY
  auto& src = GetTensorFromArgs("async_read", "src", args, 0, false);
  auto& dst = GetTensorFromArgs("async_read", "dst", args, 1, false);
  auto& index = GetTensorFromArgs("async_read", "index", args, 2, false);
  auto& buffer = GetTensorFromArgs("async_read", "buffer", args, 3, false);
  auto& offset = GetTensorFromArgs("async_read", "offset", args, 4, false);
  auto& count = GetTensorFromArgs("async_read", "count", args, 5, false);
W
wanghuancoder 已提交
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE_EQ(
        src.is_gpu_pinned(),
        true,
        platform::errors::InvalidArgument("Required `src` device should be "
                                          "CUDAPinnedPlace, but received %d.",
                                          src.place()));
    PADDLE_ENFORCE_EQ(
        dst.is_gpu(),
        true,
        platform::errors::InvalidArgument(
            "Required `dst` device should be CUDAPlace, but received %d.",
            dst.place()));
    PADDLE_ENFORCE_EQ(
        index.is_cpu(),
        true,
        platform::errors::InvalidArgument(
            "Required `index` device should be CPUPlace, but received %d.",
            index.place()));
    PADDLE_ENFORCE_EQ(buffer.is_gpu_pinned(),
                      true,
W
wanghuancoder 已提交
799
                      platform::errors::InvalidArgument(
W
wanghuancoder 已提交
800 801 802 803 804 805 806 807 808
                          "Required `buffer` device should be CUDAPinnedPlace, "
                          "but received %d.",
                          buffer.place()));
    PADDLE_ENFORCE_EQ(
        offset.is_cpu(),
        true,
        platform::errors::InvalidArgument(
            "Required `offset` device should be CPUPlace, but received %d.",
            offset.place()));
W
wanghuancoder 已提交
809
    PADDLE_ENFORCE_EQ(
W
wanghuancoder 已提交
810 811
        count.is_cpu(),
        true,
W
wanghuancoder 已提交
812
        platform::errors::InvalidArgument(
W
wanghuancoder 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
            "Required `count` device should be CPUPlace, but received %d.",
            count.place()));

    auto& src_tensor = src;
    auto* dst_tensor = &dst;
    auto& index_tensor = index;
    auto* buffer_tensor = &buffer;
    auto& offset_tensor = offset;
    auto& count_tensor = count;
    auto* dst_data = dst_tensor->mutable_data<float>(dst.place());
    const auto& deviceId = paddle::platform::GetCurrentDeviceId();

    PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                      dst_tensor->dims().size(),
                      platform::errors::InvalidArgument(
                          "`src` and `dst` should have same tensor shape, "
                          "except for the first dimension."));
    PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                      buffer_tensor->dims().size(),
                      platform::errors::InvalidArgument(
                          "`src` and `buffer` should have same tensor shape, "
                          "except for the first dimension."));
    for (int i = 1; i < src_tensor.dims().size(); i++) {
      PADDLE_ENFORCE_EQ(
          src_tensor.dims()[i],
          dst_tensor->dims()[i],
          platform::errors::InvalidArgument(
              "`src` and `dst` should have the same tensor shape, "
              "except for the first dimension."));
      PADDLE_ENFORCE_EQ(
          src_tensor.dims()[i],
          buffer_tensor->dims()[i],
          platform::errors::InvalidArgument(
              "`src` and `buffer` should have the same tensor shape, "
              "except for the first dimension."));
    }
    PADDLE_ENFORCE_EQ(index_tensor.dims().size(),
                      1,
                      platform::errors::InvalidArgument(
                          "`index` tensor should be one-dimensional."));

    auto stream = paddle::platform::get_current_stream(deviceId)->raw_stream();

    int64_t numel = 0;  // total copy length
    int64_t copy_flag = offset_tensor.dims()[0];
    int64_t size = src_tensor.numel() / src_tensor.dims()[0];

    if (copy_flag != 0) {
      PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                        1,
                        platform::errors::InvalidArgument(
                            "`offset` tensor should be one-dimensional."));
      PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                        1,
                        platform::errors::InvalidArgument(
                            "`count` tensor should be one-dimensional."));
      PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                        count_tensor.numel(),
                        platform::errors::InvalidArgument(
                            "`offset` and `count` tensor size dismatch."));
      auto* offset_data = offset_tensor.data<int64_t>();
      auto* count_data = count_tensor.data<int64_t>();
      for (int64_t i = 0; i < count_tensor.numel(); i++) {
        numel += count_data[i];
      }
      PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                        buffer_tensor->dims()[0],
                        platform::errors::InvalidArgument(
                            "Buffer tensor size is too small."));
      PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                        dst_tensor->dims()[0],
                        platform::errors::InvalidArgument(
                            "Target tensor size is too small."));

      int64_t src_offset, dst_offset = 0, c;
      auto* src_data = src_tensor.data<float>();
      for (int64_t i = 0; i < offset_tensor.numel(); i++) {
        src_offset = offset_data[i], c = count_data[i];
        PADDLE_ENFORCE_LE(src_offset + c,
                          src_tensor.dims()[0],
                          platform::errors::InvalidArgument(
                              "Invalid offset or count index."));
        PADDLE_ENFORCE_LE(dst_offset + c,
                          dst_tensor->dims()[0],
                          platform::errors::InvalidArgument(
                              "Invalid offset or count index."));
        cudaMemcpyAsync(dst_data + (dst_offset * size),
                        src_data + (src_offset * size),
                        c * size * sizeof(float),
                        cudaMemcpyHostToDevice,
                        stream);
        dst_offset += c;
      }
    } else {
      PADDLE_ENFORCE_LE(index_tensor.numel(),
                        buffer_tensor->dims()[0],
                        platform::errors::InvalidArgument(
                            "Buffer tensor size is too small."));
    }

    // Select the index data to the buffer
    auto index_select = [](const paddle::experimental::Tensor& src_tensor,
                           const paddle::experimental::Tensor& index_tensor,
                           paddle::experimental::Tensor* buffer_tensor) {
      auto* src_data = src_tensor.data<float>();
      auto* index_data = index_tensor.data<int64_t>();
      auto* buffer_data = buffer_tensor->data<float>();
      const int& slice_size = src_tensor.numel() / src_tensor.dims()[0];
      const int& copy_bytes = slice_size * sizeof(float);
      int64_t c = 0;
      for (int64_t i = 0; i < index_tensor.numel(); i++) {
        std::memcpy(buffer_data + c * slice_size,
                    src_data + index_data[i] * slice_size,
                    copy_bytes);
        c += 1;
      }
    };
    index_select(src_tensor, index_tensor, buffer_tensor);

    // Copy the data to device memory
    cudaMemcpyAsync(dst_data + (numel * size),
                    buffer_tensor->data<float>(),
                    index_tensor.numel() * size * sizeof(float),
                    cudaMemcpyHostToDevice,
                    stream);
W
wanghuancoder 已提交
938
  }
W
wanghuancoder 已提交
939 940 941
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
W
wanghuancoder 已提交
942

W
wanghuancoder 已提交
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
static PyObject* eager_api_async_write(PyObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  auto& src = GetTensorFromArgs("async_write", "src", args, 0, false);
  auto& dst = GetTensorFromArgs("async_write", "dst", args, 1, false);
  auto& offset = GetTensorFromArgs("async_write", "offset", args, 2, false);
  auto& count = GetTensorFromArgs("async_write", "count", args, 3, false);
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE_EQ(
        src.is_gpu(),
        true,
        platform::errors::InvalidArgument(
            "Required `src` device should be CUDAPlace, but received %d. ",
            src.place()));
    PADDLE_ENFORCE_EQ(dst.is_gpu_pinned(),
                      true,
                      platform::errors::InvalidArgument(
                          "Required `dst` device should be CUDAPinnedPlace, "
                          "but received %d. ",
                          dst.place()));
    PADDLE_ENFORCE_EQ(
        offset.is_cpu(),
        true,
        platform::errors::InvalidArgument("Required `offset` device should "
                                          "be CPUPlace, but received %d. ",
                                          offset.place()));
    PADDLE_ENFORCE_EQ(
        count.is_cpu(),
        true,
        platform::errors::InvalidArgument(
            "Required `count` device should be CPUPlace, but received %d. ",
            count.place()));
W
wanghuancoder 已提交
977

W
wanghuancoder 已提交
978 979 980 981 982 983 984
    // TODO(daisiming): In future, add index as arguments following
    // async_read.
    auto& src_tensor = src;
    auto* dst_tensor = &dst;
    auto& offset_tensor = offset;
    auto& count_tensor = count;
    const auto& deviceId = paddle::platform::GetCurrentDeviceId();
W
wanghuancoder 已提交
985

986 987
    PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                      1,
W
wanghuancoder 已提交
988 989
                      platform::errors::InvalidArgument(
                          "`offset` tensor should be one-dimensional."));
990 991
    PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                      1,
W
wanghuancoder 已提交
992 993
                      platform::errors::InvalidArgument(
                          "`count` tensor should be one-dimensional."));
994 995
    PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                      count_tensor.numel(),
W
wanghuancoder 已提交
996 997
                      platform::errors::InvalidArgument(
                          "`offset` and `count` tensor size dismatch."));
W
wanghuancoder 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
    PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                      dst_tensor->dims().size(),
                      platform::errors::InvalidArgument(
                          "`src` and `dst` should have the same tensor shape, "
                          "except for the first dimension."));
    for (int i = 1; i < src_tensor.dims().size(); i++) {
      PADDLE_ENFORCE_EQ(
          src_tensor.dims()[i],
          dst_tensor->dims()[i],
          platform::errors::InvalidArgument(
              "`src` and `dst` should have the same tensor shape, "
              "except for the first dimension."));
W
wanghuancoder 已提交
1010 1011
    }

W
wanghuancoder 已提交
1012 1013 1014
    auto stream = paddle::platform::get_current_stream(deviceId)->raw_stream();

    int64_t size = src_tensor.numel() / src_tensor.dims()[0];
W
wanghuancoder 已提交
1015
    auto* src_data = src_tensor.data<float>();
W
wanghuancoder 已提交
1016 1017 1018 1019
    auto* dst_data = dst_tensor->data<float>();
    const int64_t* offset_data = offset_tensor.data<int64_t>();
    const int64_t* count_data = count_tensor.data<int64_t>();
    int64_t src_offset = 0, dst_offset, c;
W
wanghuancoder 已提交
1020
    for (int64_t i = 0; i < offset_tensor.numel(); i++) {
W
wanghuancoder 已提交
1021
      dst_offset = offset_data[i], c = count_data[i];
W
wanghuancoder 已提交
1022
      PADDLE_ENFORCE_LE(
1023 1024
          src_offset + c,
          src_tensor.dims()[0],
W
wanghuancoder 已提交
1025
          platform::errors::InvalidArgument("Invalid offset or count index"));
W
wanghuancoder 已提交
1026
      PADDLE_ENFORCE_LE(
1027 1028
          dst_offset + c,
          dst_tensor->dims()[0],
W
wanghuancoder 已提交
1029
          platform::errors::InvalidArgument("Invalid offset or count index"));
W
wanghuancoder 已提交
1030
      cudaMemcpyAsync(dst_data + (dst_offset * size),
1031 1032
                      src_data + (src_offset * size),
                      c * size * sizeof(float),
W
wanghuancoder 已提交
1033
                      cudaMemcpyDeviceToHost,
1034
                      stream);
W
wanghuancoder 已提交
1035
      src_offset += c;
W
wanghuancoder 已提交
1036 1037
    }
  }
1038
  RETURN_PY_NONE
W
wanghuancoder 已提交
1039 1040
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1041

1042 1043
static PyObject* eager_api_to_uva_tensor(PyObject* self,
                                         PyObject* args,
1044 1045 1046 1047 1048 1049 1050 1051 1052
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in eager_api_to_uva_tensor.";
  auto new_tensor = std::shared_ptr<paddle::experimental::Tensor>(
      new paddle::experimental::Tensor(
          egr::Controller::Instance().GenerateUniqueName()));
  PyObject* obj = PyTuple_GET_ITEM(args, 0);
  auto array = py::cast<py::array>(py::handle(obj));

1053 1054 1055 1056 1057 1058 1059
  Py_ssize_t args_num = PyTuple_Size(args);
  int64_t device_id = 0;
  if (args_num > 1) {
    PyObject* Py_device_id = PyTuple_GET_ITEM(args, 1);
    if (Py_device_id) {
      device_id = CastPyArg2AttrLong(Py_device_id, 1);
    }
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
  }

  if (py::isinstance<py::array_t<int32_t>>(array)) {
    SetUVATensorFromPyArray<int32_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<int64_t>>(array)) {
    SetUVATensorFromPyArray<int64_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<float>>(array)) {
    SetUVATensorFromPyArray<float>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<double>>(array)) {
    SetUVATensorFromPyArray<double>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<int8_t>>(array)) {
    SetUVATensorFromPyArray<int8_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<int16_t>>(array)) {
    SetUVATensorFromPyArray<int16_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<paddle::platform::float16>>(array)) {
1075 1076
    SetUVATensorFromPyArray<paddle::platform::float16>(
        new_tensor, array, device_id);
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
  } else if (py::isinstance<py::array_t<bool>>(array)) {
    SetUVATensorFromPyArray<bool>(new_tensor, array, device_id);
  } else {
    // obj may be any type, obj.cast<py::array>() may be failed,
    // then the array.dtype will be string of unknown meaning.
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Input object type error or incompatible array data type. "
        "tensor.set() supports array with bool, float16, float32, "
        "float64, int8, int16, int32, int64,"
        "please check your input or input array data type."));
  }
  return ToPyObject(*(new_tensor.get()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
W
wanghuancoder 已提交
1091
#endif
1092

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
static PyObject* eager_api__add_backward_final_hook(PyObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);
  egr::Controller::Instance().RegisterBackwardFinalHook(
      std::make_shared<PyVoidHook>(hook_func));
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1104
PyMethodDef variable_functions[] = {
1105
    // TODO(jiabin): Remove scale when we have final state tests
1106 1107 1108 1109
    {"scale",
     (PyCFunction)(void (*)(void))eager_api_scale,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1110 1111 1112 1113
    {"_add_backward_final_hook",
     (PyCFunction)(void (*)(void))eager_api__add_backward_final_hook,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1114 1115 1116 1117
    {"run_backward",
     (PyCFunction)(void (*)(void))eager_api_run_backward,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1118 1119
    {"run_partial_grad",
     (PyCFunction)(void (*)(void))eager_api_run_partial_grad,
1120 1121 1122
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_run_custom_op",
H
HongyuJia 已提交
1123
     (PyCFunction)(void (*)(void))eager_api_run_custom_op,
1124 1125
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1126 1127 1128 1129 1130
    {"_init_eager_and_static_tensor_operants",
     (PyCFunction)(void (*)(
         void))eager_api_init_eager_and_static_tensor_operants,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1131 1132 1133 1134
    {"tensor_copy",
     (PyCFunction)(void (*)(void))eager_api_tensor_copy,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1135 1136 1137 1138
    {"get_all_grads",
     (PyCFunction)(void (*)(void))eager_api_get_all_grads,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1139 1140 1141 1142
    {"get_grads_lists",
     (PyCFunction)(void (*)(void))eager_api_get_grads_lists,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1143 1144 1145 1146
    {"get_grads_types",
     (PyCFunction)(void (*)(void))eager_api_get_grads_types,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1147 1148
    {"read_next_tensor_list",
     (PyCFunction)(void (*)(void))eager_api_read_next_tensor_list,
1149 1150
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1151 1152 1153 1154
    {"jit_function_call",
     (PyCFunction)(void (*)(void))eager_api_jit_function_call,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1155 1156 1157
    /**sparse functions**/
    {"sparse_coo_tensor",
     (PyCFunction)(void (*)(void))eager_api_sparse_coo_tensor,
1158 1159
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1160 1161
    {"sparse_csr_tensor",
     (PyCFunction)(void (*)(void))eager_api_sparse_csr_tensor,
1162 1163
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1164 1165 1166 1167 1168 1169 1170 1171
    {"register_saved_tensors_hooks",
     (PyCFunction)(void (*)(void))eager_api_register_saved_tensors_hooks,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"reset_saved_tensors_hooks",
     (PyCFunction)(void (*)(void))eager_api_reset_saved_tensors_hooks,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1172
/**sparse functions**/
W
wanghuancoder 已提交
1173
#if defined(PADDLE_WITH_CUDA)
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
    {"async_read",
     (PyCFunction)(void (*)(void))eager_api_async_read,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"async_write",
     (PyCFunction)(void (*)(void))eager_api_async_write,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"to_uva_tensor",
     (PyCFunction)(void (*)(void))eager_api_to_uva_tensor,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
1186
#endif
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
    {NULL, NULL, 0, NULL}};

void BindFunctions(PyObject* module) {
  if (PyModule_AddFunctions(module, variable_functions) < 0) {
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle erroe in BindFunctions(PyModule_AddFunctions)."));
    return;
  }
}

}  // namespace pybind
}  // namespace paddle