eager_functions.cc 40.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13 14 15 16 17

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif

18 19 20 21 22 23 24 25 26
#include <Python.h>

#include <string>
#include <vector>

#include "paddle/fluid/eager/accumulation/accumulation_node.h"
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/backward.h"
27
#include "paddle/fluid/eager/custom_operator/custom_operator_node.h"
28
#include "paddle/fluid/eager/utils.h"
29
#include "paddle/fluid/framework/convert_utils.h"
30 31
#include "paddle/fluid/framework/custom_operator.h"
#include "paddle/fluid/framework/op_meta_info_helper.h"
32
#include "paddle/fluid/framework/python_headers.h"
33 34
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
W
wanghuancoder 已提交
35
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
36
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
37 38 39 40
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
41
#include "paddle/fluid/pybind/tensor_py.h"
42
#include "paddle/phi/api/ext/op_meta_info.h"
43 44 45 46 47
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/api/lib/utils/tensor_utils.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
48 49
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
50 51
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
52

L
Leo Chen 已提交
53 54 55 56
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include "paddle/fluid/pybind/cuda_streams_py.h"
#endif

57 58 59 60 61
namespace paddle {
namespace pybind {

namespace py = ::pybind11;

62
extern PyTypeObject* p_tensor_type;
63 64
extern PyTypeObject* g_multidevicefeedreader_pytype;
extern PyTypeObject* g_orderedmultidevicefeedreader_pytype;
65 66 67 68 69 70 71 72 73 74 75

size_t PyArray_Size_(PyObject* numpy_data) {
  size_t res = 1;
  auto dims = pybind11::detail::array_proxy(numpy_data)->dimensions;
  auto nd = pybind11::detail::array_proxy(numpy_data)->nd;
  while (nd--) {
    res *= (*dims++);
  }
  return res;
}

76
class EagerNumpyAllocation : public phi::Allocation {
77
 public:
78
  explicit EagerNumpyAllocation(PyObject* numpy_data, phi::DataType dtype)
79 80
      : Allocation(
            static_cast<void*>(pybind11::detail::array_proxy(numpy_data)->data),
81
            framework::DataTypeSize(dtype) * PyArray_Size_(numpy_data),
82 83
            paddle::platform::CPUPlace()),
        arr_(numpy_data) {
84 85 86 87
    PADDLE_ENFORCE_NOT_NULL(
        arr_,
        platform::errors::InvalidArgument("The underlying PyObject pointer of "
                                          "numpy array cannot be nullptr"));
88
    PADDLE_ENFORCE_NE(
89 90
        arr_,
        Py_None,
91 92 93 94 95 96 97 98 99 100 101 102 103
        platform::errors::PreconditionNotMet(
            "The underlying PyObject pointer of numpy array cannot be None"));
    Py_INCREF(arr_);
  }
  ~EagerNumpyAllocation() override {
    py::gil_scoped_acquire gil;
    Py_DECREF(arr_);
  }

 private:
  PyObject* arr_;
};

104 105
static PyObject* eager_api_scale(PyObject* self,
                                 PyObject* args,
106 107 108
                                 PyObject* kwargs) {
  EAGER_TRY
  // TODO(jiabin): Sync Tensor and Variable here when we support
109 110 111 112 113 114
  paddle::experimental::Tensor ret = egr::scale(
      reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor,
      CastPyArg2AttrFloat(PyTuple_GET_ITEM(args, 1), 1),
      CastPyArg2AttrFloat(PyTuple_GET_ITEM(args, 2), 2),
      CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3),
      CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4));
115 116 117 118
  return ToPyObject(ret);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

119 120
static PyObject* eager_api_run_backward(PyObject* self,
                                        PyObject* args,
121 122
                                        PyObject* kwargs) {
  EAGER_TRY
123 124
  auto tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 1), 1);
125 126 127 128 129 130
  {
    eager_gil_scoped_release guard;
    egr::Backward(tensors,
                  grad_tensors,
                  CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 2), 2));
  }
131
  RETURN_PY_NONE
132 133 134
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

135 136
static PyObject* eager_api_run_partial_grad(PyObject* self,
                                            PyObject* args,
137 138 139 140 141 142 143 144 145 146
                                            PyObject* kwargs) {
  EAGER_TRY
  auto tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0);
  auto inputs = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 1), 1);
  auto grad_tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 2), 2);
  auto retain_graph = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);
  auto create_graph = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
  auto only_inputs = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 5), 5);
  auto allow_unused = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 6), 6);
  auto no_grad_vars = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 7), 7);
147 148 149 150 151 152 153 154 155 156 157 158
  std::vector<paddle::experimental::Tensor> result;
  {
    eager_gil_scoped_release guard;
    result = egr::Grad(tensors,
                       inputs,
                       grad_tensors,
                       retain_graph,
                       create_graph,
                       only_inputs,
                       allow_unused,
                       no_grad_vars);
  }
159 160 161 162 163
  VLOG(1) << " in eager_api_run_partial_grad, after runing egr::Grad";
  return ToPyObject(result, true /* return_py_none_if_not_initialize */);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

164 165
static PyObject* eager_api_tensor_copy(PyObject* self,
                                       PyObject* args,
166 167
                                       PyObject* kwargs) {
  EAGER_TRY
168 169 170 171
  paddle::experimental::Tensor& src =
      reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor;
  paddle::experimental::Tensor& dst =
      reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 1))->tensor;
172 173 174
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 2), 2);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);

175
  dst = src.copy_to(place, blocking);
176 177 178 179
  egr::EagerUtils::autograd_meta(&dst)->SetStopGradient(
      egr::EagerUtils::autograd_meta(&(src))->StopGradient());
  egr::EagerUtils::autograd_meta(&dst)->SetPersistable(
      egr::EagerUtils::autograd_meta(&(src))->Persistable());
180
  RETURN_PY_NONE
181 182 183
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

184 185
static PyObject* eager_api_read_next_tensor_list(PyObject* self,
                                                 PyObject* args,
186
                                                 PyObject* kwargs) {
187
  EAGER_TRY
188 189 190
  auto tensor_base_list =
      CastPyArg2VectorOfTensorBase(PyTuple_GET_ITEM(args, 0), 0);
  std::vector<paddle::experimental::Tensor> tensor_list;
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
  {
    eager_gil_scoped_release guard;
    tensor_list.reserve(tensor_base_list.size());
    auto func = [](framework::Tensor& tensor_base) {
      paddle::experimental::Tensor tensor(
          egr::Controller::Instance().GenerateUniqueName());
      auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor);
      autograd_meta->SetPersistable(false);
      autograd_meta->SetStopGradient(true);
      tensor.set_impl(std::make_shared<phi::DenseTensor>(tensor_base));
      return tensor;
    };
    for (auto& tensor_base : tensor_base_list) {
      tensor_list.emplace_back(func(tensor_base));
    }
206
  }
207
  return ToPyObject(tensor_list);
208 209 210
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
static void ConstructFwdAndBwdMap(
    const std::vector<paddle::OpMetaInfo>& vec_map,
    const std::string& op_type) {
  auto& in_out_map = egr::Controller::Instance().GetCustomEdgesSlotMap();
  if (in_out_map.find(op_type) != in_out_map.end()) {
    VLOG(7) << "Find Exist CustomEdgesSlotMap Skip >>>> ";
    return;
  } else {
    VLOG(7) << "Construct CustomEdgesSlotMap ";
    auto inputs_names =
        paddle::framework::OpMetaInfoHelper::GetInputs(vec_map[0]);
    auto outputs_names =
        paddle::framework::OpMetaInfoHelper::GetOutputs(vec_map[0]);
    auto attrs_names =
        paddle::framework::OpMetaInfoHelper::GetAttrs(vec_map[0]);
    auto grad_outputs_names =
        paddle::framework::OpMetaInfoHelper::GetOutputs(vec_map[1]);
    auto grad_inputs_names =
        paddle::framework::OpMetaInfoHelper::GetInputs(vec_map[1]);
    auto grad_attrs_names =
        paddle::framework::OpMetaInfoHelper::GetAttrs(vec_map[1]);
    std::vector<std::unordered_map<int, int>> res(5);
233 234

    in_out_map.insert({op_type, {res}});
235 236 237
    // Prepare pos map for grad_outputs
    VLOG(7) << "Prepare pos map for grad_outputs";
    PADDLE_ENFORCE_LE(
238 239
        grad_outputs_names.size(),
        inputs_names.size(),
240 241 242 243 244
        paddle::platform::errors::InvalidArgument(
            "Grad outputs num should be less equal than forward inputs num."));
    for (size_t i = 0; i < grad_outputs_names.size(); i++) {
      size_t end = grad_outputs_names[i].find("@GRAD");
      PADDLE_ENFORCE_NE(
245 246
          end,
          std::string::npos,
247 248 249 250 251 252 253 254 255
          paddle::platform::errors::NotFound(
              "All Grad outputs should be grad and we got %s is not grad var, "
              "please check your op and change to fit the rule.",
              grad_outputs_names[i]));
      for (size_t j = 0; j < inputs_names.size(); j++) {
        if (grad_outputs_names[i].substr(0, end) == inputs_names[j]) {
          VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                  << " inputs: " << inputs_names[j] << " related to No." << i
                  << " grad_outputs: " << grad_outputs_names[i];
256
          in_out_map[op_type][0][0][j] = i;
257 258 259 260 261 262 263 264 265 266 267 268
        }
      }
    }
    // Prepare pos map for grad_inputs
    for (size_t i = 0; i < grad_inputs_names.size(); i++) {
      size_t end = grad_inputs_names[i].find("@GRAD");
      if (end != std::string::npos) {
        for (size_t j = 0; j < outputs_names.size(); j++) {
          if (grad_inputs_names[i].substr(0, end) == outputs_names[j]) {
            VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                    << " outputs: " << outputs_names[j] << " related to No."
                    << i << " grad_inputs's grad: " << grad_inputs_names[i];
269
            in_out_map[op_type][0][1][j] = i;
270 271 272
          }
        }
      } else {
273 274
        if (std::find(outputs_names.begin(),
                      outputs_names.end(),
275 276 277 278 279 280 281
                      grad_inputs_names[i]) != outputs_names.end()) {
          for (size_t j = 0; j < outputs_names.size(); j++) {
            if (grad_inputs_names[i] == outputs_names[j]) {
              VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                      << " outputs: " << outputs_names[j] << " related to No."
                      << i
                      << " grad_inputs fwd outputs: " << grad_inputs_names[i];
282
              in_out_map[op_type][0][2][j] = i;
283 284 285 286 287 288 289 290 291
            }
          }
        } else {
          for (size_t j = 0; j < inputs_names.size(); j++) {
            if (grad_inputs_names[i] == inputs_names[j]) {
              VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                      << " inputs: " << inputs_names[j] << " related to No."
                      << i
                      << " grad_inputs fwd inputs: " << grad_inputs_names[i];
292
              in_out_map[op_type][0][3][j] = i;
293 294 295 296 297 298 299 300
            }
          }
        }
      }
    }

    // Prepare pos map for grad attrs_
    for (size_t i = 0; i < grad_attrs_names.size(); i++) {
301 302 303 304
      auto end = std::find(
          attrs_names.begin(), attrs_names.end(), grad_attrs_names[i]);
      PADDLE_ENFORCE_NE(end,
                        attrs_names.end(),
305 306 307 308 309 310 311 312 313 314
                        paddle::platform::errors::NotFound(
                            "All Grad attrs should be one of forward attrs and "
                            "we got %s is not one of them, please check your "
                            "op and change to fit the rule.",
                            grad_attrs_names[i]));
      for (size_t j = 0; j < attrs_names.size(); j++) {
        if (grad_attrs_names[i] == attrs_names[j]) {
          VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                  << " attrs: " << attrs_names[j] << " related to No." << i
                  << " grad_attrs: " << grad_attrs_names[i];
315
          in_out_map[op_type][0][4][j] = i;
316 317 318 319 320 321 322 323 324 325
        }
      }
    }
  }
}

static std::vector<paddle::any> CastAttrsToTragetType(
    const std::vector<paddle::any>& src,
    const std::vector<std::string>& attrs_names) {
  std::vector<paddle::any> res;
326 327
  PADDLE_ENFORCE_EQ(src.size(),
                    attrs_names.size(),
328 329 330 331
                    paddle::platform::errors::InvalidArgument(
                        "We Expected same size of attrs and attrs_name list, "
                        "if u got this error indicate your custom op setting "
                        "%s attrs, but you just give %s",
332 333
                        attrs_names.size(),
                        src.size()));
334 335 336 337 338 339 340 341 342 343 344 345 346
  for (size_t i = 0; i < src.size(); i++) {
    size_t end = attrs_names[i].find(": ");
    std::string type_name =
        attrs_names[i].substr(end + 2, attrs_names.size() - end - 2);
    if (type_name == "int") {
      if (src[i].type() == typeid(bool)) {
        res.emplace_back(static_cast<int>(paddle::any_cast<bool>(src[i])));
      } else if (src[i].type() == typeid(int)) {
        res.emplace_back(src[i]);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Your No. %s attrs should only can be bool or int32, other type is "
            "forbidden for now but we got %s. Check your code first please",
347 348
            i,
            src[i].type().name()));
349 350 351 352 353 354 355 356 357 358 359 360 361
      }
    } else if (type_name == "int64_t") {
      if (src[i].type() == typeid(bool)) {
        res.emplace_back(static_cast<int64_t>(paddle::any_cast<bool>(src[i])));
      } else if (src[i].type() == typeid(int)) {
        res.emplace_back(static_cast<int64_t>(paddle::any_cast<int>(src[i])));
      } else if (src[i].type() == typeid(int64_t)) {
        res.emplace_back(src[i]);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Your No. %s attrs should only can be bool or int32 or int64_t, "
            "other type is forbidden for now but we got %s. Check your code "
            "first please",
362 363
            i,
            src[i].type().name()));
364 365 366 367 368 369 370 371
      }
    } else {
      res.emplace_back(src[i]);
    }
  }
  return res;
}

372 373 374 375 376 377 378 379 380 381 382 383 384
static PyObject* eager_api_jit_function_call(PyObject* self,
                                             PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  std::shared_ptr<jit::BaseFunction> function =
      CastPyArg2BaseFunction(PyTuple_GET_ITEM(args, 0), 0);
  std::vector<paddle::experimental::Tensor> ins =
      CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 1), 1);
  std::vector<paddle::experimental::Tensor> outs = (*function)(ins);
  return ToPyObject(outs);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

385 386
static PyObject* eager_api_run_costum_op(PyObject* self,
                                         PyObject* args,
387 388 389 390 391 392 393 394 395
                                         PyObject* kwargs) {
  EAGER_TRY
  paddle::CustomOpKernelContext ctx =
      CastPyArg2CustomOpKernelContext(PyTuple_GET_ITEM(args, 0), 0);
  std::string op_type = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 1), 1);
  bool trace_backward = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 2), 2);
  VLOG(7) << "Get things for python for Custom Op: " << op_type
          << ", trace_backward is: " << trace_backward;
  auto meta_info_map = egr::Controller::Instance().GetOpMetaInfoMap();
396 397
  PADDLE_ENFORCE_NE(meta_info_map.find(op_type),
                    meta_info_map.end(),
398 399 400 401 402 403
                    paddle::platform::errors::NotFound(
                        "Can't find %s in Eager OpMetaInfoMap which should be "
                        "created by LoadOpMetaInfoAndRegisterOp, please make "
                        "sure you registered your op first and try again. ",
                        op_type));
  VLOG(7) << "Run Kernel of Custom Op: " << op_type;
404 405 406 407
  std::vector<paddle::any> res_attrs =
      CastAttrsToTragetType(ctx.Attrs(),
                            paddle::framework::OpMetaInfoHelper::GetAttrs(
                                meta_info_map.at(op_type)[0]));
408 409 410 411 412 413 414 415 416 417 418
  ctx.EmplaceBackAttrs(res_attrs);
  const auto& vec_map = meta_info_map.at(op_type);
  (*paddle::framework::OpMetaInfoHelper::GetKernelFn(vec_map[0]))(&ctx);

  VLOG(7) << "Get AutogradMeta for inputs and outputs for Custom Op";
  std::vector<std::vector<egr::AutogradMeta*>> ins_auto_grad_metas;
  std::vector<std::vector<egr::AutogradMeta*>> outs_auto_grad_metas;
  VLOG(7) << "We got slot num of ins is: " << ctx.InputRange().size();
  ins_auto_grad_metas.resize(ctx.InputRange().size());
  VLOG(7) << "We got slot num of outs is: " << ctx.OutputRange().size();
  outs_auto_grad_metas.resize(ctx.OutputRange().size());
419

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
  for (size_t i = 0; i < ctx.InputRange().size(); i++) {
    ins_auto_grad_metas[i] =
        egr::EagerUtils::nullable_autograd_meta(ctx.InputsBetween(
            ctx.InputRangeAt(i).first, ctx.InputRangeAt(i).second));
  }
  for (size_t i = 0; i < ctx.OutputRange().size(); i++) {
    outs_auto_grad_metas[i] =
        egr::EagerUtils::unsafe_autograd_meta(ctx.OutputsBetweeen(
            ctx.OutputRangeAt(i).first, ctx.OutputRangeAt(i).second));
  }
  bool require_any_grad = false;
  for (size_t i = 0; i < ins_auto_grad_metas.size(); i++) {
    require_any_grad =
        require_any_grad || egr::EagerUtils::ComputeRequireGrad(
                                trace_backward, &(ins_auto_grad_metas[i]));
  }
436
  if (require_any_grad && (vec_map.size() > 1)) {
437 438 439 440 441 442 443 444 445 446 447 448
    VLOG(6) << " Construct Grad for Custom Op: " << op_type;
    ConstructFwdAndBwdMap(vec_map, op_type);
    for (size_t i = 0; i < outs_auto_grad_metas.size(); i++) {
      egr::EagerUtils::PassStopGradient(false, &(outs_auto_grad_metas[i]));
    }
    auto grad_node = std::make_shared<egr::RunCustomOpNode>(
        outs_auto_grad_metas.size(), ins_auto_grad_metas.size(), op_type);
    auto slot_map =
        egr::Controller::Instance().GetCustomEdgesSlotMap().at(op_type);
    // Prepare Grad outputs
    size_t no_grad_cnt = 0;
    for (size_t i = 0; i < ins_auto_grad_metas.size(); i++) {
449 450 451 452
      const std::vector<paddle::experimental::Tensor>& in_tensors =
          ctx.InputsBetween(ctx.InputRangeAt(i).first,
                            ctx.InputRangeAt(i).second);

453 454
      if (slot_map[0][0].find(i) != slot_map[0][0].end()) {
        grad_node->SetGradOutMeta(in_tensors, slot_map[0][0][i]);
455
      } else {
456
        grad_node->SetGradOutMeta(in_tensors,
457 458 459 460 461 462
                                  ins_auto_grad_metas.size() - 1 - no_grad_cnt);
        no_grad_cnt++;
      }
    }
    // Prepare Grad inputs with grad of fwd outputs
    for (size_t i = 0; i < outs_auto_grad_metas.size(); i++) {
463 464 465 466
      const std::vector<paddle::experimental::Tensor>& out_tensors =
          ctx.OutputsBetweeen(ctx.OutputRangeAt(i).first,
                              ctx.OutputRangeAt(i).second);

467 468
      egr::EagerUtils::SetOutRankWithSlot(&(outs_auto_grad_metas[i]), i);
      egr::EagerUtils::SetHistory(&(outs_auto_grad_metas[i]), grad_node);
469 470
      grad_node->SetGradInMeta(out_tensors, i);
      egr::EagerUtils::CheckAndRetainGrad(out_tensors);
471 472 473
    }

    // Prepare Grad inputs with fwd outputs
474
    for (auto it = slot_map[0][2].begin(); it != slot_map[0][2].end(); it++) {
475 476 477 478 479 480 481 482 483
      VLOG(7) << "Prepare fwd_outs: " << it->first
              << " to grad_inputs: " << it->second;
      grad_node->fwd_outs[it->second] =
          egr::RunCustomOpNode::ConstructTensorWrapper(
              ctx.OutputsBetweeen(ctx.OutputRangeAt(it->first).first,
                                  ctx.OutputRangeAt(it->first).second));
    }

    // Prepare Grad inputs with fwd inputs
484
    for (auto it = slot_map[0][3].begin(); it != slot_map[0][3].end(); it++) {
485 486 487 488 489 490 491 492 493 494 495 496
      VLOG(7) << "Prepare fwd_ins: " << it->first
              << " to grad_inputs: " << it->second;
      grad_node->fwd_ins[it->second] =
          egr::RunCustomOpNode::ConstructTensorWrapper(
              ctx.InputsBetween(ctx.InputRangeAt(it->first).first,
                                ctx.InputRangeAt(it->first).second));
    }

    auto attrs_names = paddle::framework::OpMetaInfoHelper::GetAttrs(
        meta_info_map.at(op_type)[1]);
    std::vector<paddle::any> attrs(attrs_names.size());
    // Prepare attrs for Grad node
497
    for (auto it = slot_map[0][4].begin(); it != slot_map[0][4].end(); it++) {
498 499 500 501 502 503
      VLOG(7) << "Prepare fwd attrs: " << it->first
              << " to grad_attrs: " << it->second;
      attrs[it->second] = res_attrs[it->first];
    }
    grad_node->SetAttrs(attrs);
  }
504
  RETURN_PY_NONE
505 506 507
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

508 509
static PyObject* eager_api_sparse_coo_tensor(PyObject* self,
                                             PyObject* args,
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
                                             PyObject* kwargs) {
  EAGER_TRY
  auto non_zero_indices = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  auto non_zero_elements = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 1), 1);
  auto dense_shape = CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 2), 2);
  auto stop_gradient = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);
  PADDLE_ENFORCE(non_zero_indices.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
                     "the non-zero indices must be a DenseTensor."));
  PADDLE_ENFORCE(non_zero_elements.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
                     "the non-zero elements must be a DenseTensor."));
  auto dense_indices =
      std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_indices.impl());
  auto dense_elements =
      std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_elements.impl());
  // TODO(zhangkaihuo): After create SparseTensor, call coalesced() to sort and
  // merge duplicate indices
  std::shared_ptr<phi::SparseCooTensor> coo_tensor =
529 530
      std::make_shared<phi::SparseCooTensor>(
          *dense_indices, *dense_elements, phi::make_ddim(dense_shape));
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
  paddle::experimental::Tensor tensor;
  tensor.set_impl(coo_tensor);
  auto name =
      egr::Controller::Instance().GenerateUniqueName("generated_tensor");
  tensor.set_name(name);
  auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor);
  autograd_meta->SetStopGradient(static_cast<bool>(stop_gradient));
  if (!autograd_meta->GetMutableGradNode()) {
    VLOG(3) << "Tensor(" << name
            << ") have not GradNode, add GradNodeAccumulation for it.";
    autograd_meta->SetGradNode(
        std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
  }
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

548 549
static PyObject* eager_api_sparse_csr_tensor(PyObject* self,
                                             PyObject* args,
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
                                             PyObject* kwargs) {
  EAGER_TRY
  auto non_zero_crows = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  auto non_zero_cols = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 1), 1);
  auto non_zero_elements = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 2), 2);
  auto dense_shape = CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 3), 3);
  auto stop_gradient = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
  PADDLE_ENFORCE(non_zero_crows.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
                     "the compressed non-zero rows must be a DenseTensor."));
  PADDLE_ENFORCE(non_zero_cols.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
                     "the non-zero cols must be a DenseTensor."));
  PADDLE_ENFORCE(non_zero_elements.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
                     "the non-zero elements must be a DenseTensor."));

  auto dense_crows =
      std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_crows.impl());
  auto dense_cols =
      std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_cols.impl());
  auto dense_elements =
      std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_elements.impl());
  std::shared_ptr<phi::SparseCsrTensor> csr_tensor =
574 575
      std::make_shared<phi::SparseCsrTensor>(*dense_crows,
                                             *dense_cols,
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
                                             *dense_elements,
                                             phi::make_ddim(dense_shape));
  paddle::experimental::Tensor tensor;
  tensor.set_impl(csr_tensor);
  auto name =
      egr::Controller::Instance().GenerateUniqueName("generated_tensor");
  tensor.set_name(name);
  auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor);
  autograd_meta->SetStopGradient(static_cast<bool>(stop_gradient));
  if (!autograd_meta->GetMutableGradNode()) {
    VLOG(3) << "Tensor(" << name
            << ") have not GradNode, add GradNodeAccumulation for it.";
    autograd_meta->SetGradNode(
        std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
  }
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
W
wanghuancoder 已提交
594
#if defined(PADDLE_WITH_CUDA)
595 596
static PyObject* eager_api_async_read(PyObject* self,
                                      PyObject* args,
W
wanghuancoder 已提交
597 598 599 600 601 602 603 604 605
                                      PyObject* kwargs) {
  EAGER_TRY
  auto& src = GetTensorFromArgs("async_read", "src", args, 0, false);
  auto& dst = GetTensorFromArgs("async_read", "dst", args, 1, false);
  auto& index = GetTensorFromArgs("async_read", "index", args, 2, false);
  auto& buffer = GetTensorFromArgs("async_read", "buffer", args, 3, false);
  auto& offset = GetTensorFromArgs("async_read", "offset", args, 4, false);
  auto& count = GetTensorFromArgs("async_read", "count", args, 5, false);
  PADDLE_ENFORCE_EQ(
606 607
      src.is_gpu_pinned(),
      true,
W
wanghuancoder 已提交
608 609
      platform::errors::InvalidArgument("Required `src` device should be "
                                        "CUDAPinnedPlace, but received %d.",
C
Chen Weihang 已提交
610
                                        src.place()));
W
wanghuancoder 已提交
611
  PADDLE_ENFORCE_EQ(
612 613
      dst.is_gpu(),
      true,
W
wanghuancoder 已提交
614 615
      platform::errors::InvalidArgument(
          "Required `dst` device should be CUDAPlace, but received %d.",
C
Chen Weihang 已提交
616
          dst.place()));
W
wanghuancoder 已提交
617
  PADDLE_ENFORCE_EQ(
618 619
      index.is_cpu(),
      true,
W
wanghuancoder 已提交
620 621
      platform::errors::InvalidArgument(
          "Required `index` device should be CPUPlace, but received %d.",
C
Chen Weihang 已提交
622
          index.place()));
623 624
  PADDLE_ENFORCE_EQ(buffer.is_gpu_pinned(),
                    true,
W
wanghuancoder 已提交
625 626 627
                    platform::errors::InvalidArgument(
                        "Required `buffer` device should be CUDAPinnedPlace, "
                        "but received %d.",
C
Chen Weihang 已提交
628
                        buffer.place()));
W
wanghuancoder 已提交
629
  PADDLE_ENFORCE_EQ(
630 631
      offset.is_cpu(),
      true,
W
wanghuancoder 已提交
632 633
      platform::errors::InvalidArgument(
          "Required `offset` device should be CPUPlace, but received %d.",
C
Chen Weihang 已提交
634
          offset.place()));
W
wanghuancoder 已提交
635
  PADDLE_ENFORCE_EQ(
636 637
      count.is_cpu(),
      true,
W
wanghuancoder 已提交
638 639
      platform::errors::InvalidArgument(
          "Required `count` device should be CPUPlace, but received %d.",
C
Chen Weihang 已提交
640
          count.place()));
W
wanghuancoder 已提交
641 642 643 644 645 646 647 648 649 650

  auto& src_tensor = src;
  auto* dst_tensor = &dst;
  auto& index_tensor = index;
  auto* buffer_tensor = &buffer;
  auto& offset_tensor = offset;
  auto& count_tensor = count;
  auto* dst_data = dst_tensor->mutable_data<float>(dst.place());
  const auto& deviceId = paddle::platform::GetCurrentDeviceId();

651 652
  PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                    dst_tensor->dims().size(),
W
wanghuancoder 已提交
653 654 655
                    platform::errors::InvalidArgument(
                        "`src` and `dst` should have same tensor shape, "
                        "except for the first dimension."));
656 657
  PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                    buffer_tensor->dims().size(),
W
wanghuancoder 已提交
658 659 660 661
                    platform::errors::InvalidArgument(
                        "`src` and `buffer` should have same tensor shape, "
                        "except for the first dimension."));
  for (int i = 1; i < src_tensor.dims().size(); i++) {
662 663
    PADDLE_ENFORCE_EQ(src_tensor.dims()[i],
                      dst_tensor->dims()[i],
W
wanghuancoder 已提交
664 665 666 667
                      platform::errors::InvalidArgument(
                          "`src` and `dst` should have the same tensor shape, "
                          "except for the first dimension."));
    PADDLE_ENFORCE_EQ(
668 669
        src_tensor.dims()[i],
        buffer_tensor->dims()[i],
W
wanghuancoder 已提交
670 671 672 673
        platform::errors::InvalidArgument(
            "`src` and `buffer` should have the same tensor shape, "
            "except for the first dimension."));
  }
674 675
  PADDLE_ENFORCE_EQ(index_tensor.dims().size(),
                    1,
W
wanghuancoder 已提交
676 677 678
                    platform::errors::InvalidArgument(
                        "`index` tensor should be one-dimensional."));

L
Leo Chen 已提交
679
  auto stream = paddle::platform::get_current_stream(deviceId)->raw_stream();
W
wanghuancoder 已提交
680 681 682 683 684 685

  int64_t numel = 0;  // total copy length
  int64_t copy_flag = offset_tensor.dims()[0];
  int64_t size = src_tensor.numel() / src_tensor.dims()[0];

  if (copy_flag != 0) {
686 687
    PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                      1,
W
wanghuancoder 已提交
688 689
                      platform::errors::InvalidArgument(
                          "`offset` tensor should be one-dimensional."));
690 691
    PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                      1,
W
wanghuancoder 已提交
692 693
                      platform::errors::InvalidArgument(
                          "`count` tensor should be one-dimensional."));
694 695
    PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                      count_tensor.numel(),
W
wanghuancoder 已提交
696 697 698 699 700 701 702 703
                      platform::errors::InvalidArgument(
                          "`offset` and `count` tensor size dismatch."));
    auto* offset_data = offset_tensor.data<int64_t>();
    auto* count_data = count_tensor.data<int64_t>();
    for (int64_t i = 0; i < count_tensor.numel(); i++) {
      numel += count_data[i];
    }
    PADDLE_ENFORCE_LE(
704 705
        numel + index_tensor.numel(),
        buffer_tensor->dims()[0],
W
wanghuancoder 已提交
706 707
        platform::errors::InvalidArgument("Buffer tensor size is too small."));
    PADDLE_ENFORCE_LE(
708 709
        numel + index_tensor.numel(),
        dst_tensor->dims()[0],
W
wanghuancoder 已提交
710 711 712 713 714 715 716
        platform::errors::InvalidArgument("Target tensor size is too small."));

    int64_t src_offset, dst_offset = 0, c;
    auto* src_data = src_tensor.data<float>();
    for (int64_t i = 0; i < offset_tensor.numel(); i++) {
      src_offset = offset_data[i], c = count_data[i];
      PADDLE_ENFORCE_LE(
717 718
          src_offset + c,
          src_tensor.dims()[0],
W
wanghuancoder 已提交
719 720
          platform::errors::InvalidArgument("Invalid offset or count index."));
      PADDLE_ENFORCE_LE(
721 722
          dst_offset + c,
          dst_tensor->dims()[0],
W
wanghuancoder 已提交
723 724
          platform::errors::InvalidArgument("Invalid offset or count index."));
      cudaMemcpyAsync(dst_data + (dst_offset * size),
725 726 727 728
                      src_data + (src_offset * size),
                      c * size * sizeof(float),
                      cudaMemcpyHostToDevice,
                      stream);
W
wanghuancoder 已提交
729 730 731 732
      dst_offset += c;
    }
  } else {
    PADDLE_ENFORCE_LE(
733 734
        index_tensor.numel(),
        buffer_tensor->dims()[0],
W
wanghuancoder 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
        platform::errors::InvalidArgument("Buffer tensor size is too small."));
  }

  // Select the index data to the buffer
  auto index_select = [](const paddle::experimental::Tensor& src_tensor,
                         const paddle::experimental::Tensor& index_tensor,
                         paddle::experimental::Tensor* buffer_tensor) {
    auto* src_data = src_tensor.data<float>();
    auto* index_data = index_tensor.data<int64_t>();
    auto* buffer_data = buffer_tensor->data<float>();
    const int& slice_size = src_tensor.numel() / src_tensor.dims()[0];
    const int& copy_bytes = slice_size * sizeof(float);
    int64_t c = 0;
    for (int64_t i = 0; i < index_tensor.numel(); i++) {
      std::memcpy(buffer_data + c * slice_size,
750 751
                  src_data + index_data[i] * slice_size,
                  copy_bytes);
W
wanghuancoder 已提交
752 753 754 755 756 757
      c += 1;
    }
  };
  index_select(src_tensor, index_tensor, buffer_tensor);

  // Copy the data to device memory
758 759
  cudaMemcpyAsync(dst_data + (numel * size),
                  buffer_tensor->data<float>(),
W
wanghuancoder 已提交
760
                  index_tensor.numel() * size * sizeof(float),
761 762
                  cudaMemcpyHostToDevice,
                  stream);
763
  RETURN_PY_NONE
W
wanghuancoder 已提交
764 765 766
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

767 768
static PyObject* eager_api_async_write(PyObject* self,
                                       PyObject* args,
W
wanghuancoder 已提交
769 770 771 772 773 774 775
                                       PyObject* kwargs) {
  EAGER_TRY
  auto& src = GetTensorFromArgs("async_write", "src", args, 0, false);
  auto& dst = GetTensorFromArgs("async_write", "dst", args, 1, false);
  auto& offset = GetTensorFromArgs("async_write", "offset", args, 2, false);
  auto& count = GetTensorFromArgs("async_write", "count", args, 3, false);
  PADDLE_ENFORCE_EQ(
776 777
      src.is_gpu(),
      true,
W
wanghuancoder 已提交
778 779
      platform::errors::InvalidArgument(
          "Required `src` device should be CUDAPlace, but received %d. ",
C
Chen Weihang 已提交
780
          src.place()));
781 782
  PADDLE_ENFORCE_EQ(dst.is_gpu_pinned(),
                    true,
W
wanghuancoder 已提交
783 784 785
                    platform::errors::InvalidArgument(
                        "Required `dst` device should be CUDAPinnedPlace, "
                        "but received %d. ",
C
Chen Weihang 已提交
786
                        dst.place()));
W
wanghuancoder 已提交
787
  PADDLE_ENFORCE_EQ(
788 789
      offset.is_cpu(),
      true,
W
wanghuancoder 已提交
790 791
      platform::errors::InvalidArgument("Required `offset` device should "
                                        "be CPUPlace, but received %d. ",
C
Chen Weihang 已提交
792
                                        offset.place()));
W
wanghuancoder 已提交
793
  PADDLE_ENFORCE_EQ(
794 795
      count.is_cpu(),
      true,
W
wanghuancoder 已提交
796 797
      platform::errors::InvalidArgument(
          "Required `count` device should be CPUPlace, but received %d. ",
C
Chen Weihang 已提交
798
          count.place()));
W
wanghuancoder 已提交
799 800 801 802 803 804 805 806 807

  // TODO(daisiming): In future, add index as arguments following
  // async_read.
  auto& src_tensor = src;
  auto* dst_tensor = &dst;
  auto& offset_tensor = offset;
  auto& count_tensor = count;
  const auto& deviceId = paddle::platform::GetCurrentDeviceId();

808 809
  PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                    1,
W
wanghuancoder 已提交
810 811
                    platform::errors::InvalidArgument(
                        "`offset` tensor should be one-dimensional."));
812 813
  PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                    1,
W
wanghuancoder 已提交
814 815
                    platform::errors::InvalidArgument(
                        "`count` tensor should be one-dimensional."));
816 817
  PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                    count_tensor.numel(),
W
wanghuancoder 已提交
818 819
                    platform::errors::InvalidArgument(
                        "`offset` and `count` tensor size dismatch."));
820 821
  PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                    dst_tensor->dims().size(),
W
wanghuancoder 已提交
822 823 824 825
                    platform::errors::InvalidArgument(
                        "`src` and `dst` should have the same tensor shape, "
                        "except for the first dimension."));
  for (int i = 1; i < src_tensor.dims().size(); i++) {
826 827
    PADDLE_ENFORCE_EQ(src_tensor.dims()[i],
                      dst_tensor->dims()[i],
W
wanghuancoder 已提交
828 829 830 831
                      platform::errors::InvalidArgument(
                          "`src` and `dst` should have the same tensor shape, "
                          "except for the first dimension."));
  }
832

L
Leo Chen 已提交
833
  auto stream = paddle::platform::get_current_stream(deviceId)->raw_stream();
W
wanghuancoder 已提交
834 835 836 837 838 839 840 841 842 843

  int64_t size = src_tensor.numel() / src_tensor.dims()[0];
  auto* src_data = src_tensor.data<float>();
  auto* dst_data = dst_tensor->data<float>();
  const int64_t* offset_data = offset_tensor.data<int64_t>();
  const int64_t* count_data = count_tensor.data<int64_t>();
  int64_t src_offset = 0, dst_offset, c;
  for (int64_t i = 0; i < offset_tensor.numel(); i++) {
    dst_offset = offset_data[i], c = count_data[i];
    PADDLE_ENFORCE_LE(
844 845
        src_offset + c,
        src_tensor.dims()[0],
W
wanghuancoder 已提交
846 847
        platform::errors::InvalidArgument("Invalid offset or count index"));
    PADDLE_ENFORCE_LE(
848 849
        dst_offset + c,
        dst_tensor->dims()[0],
W
wanghuancoder 已提交
850 851
        platform::errors::InvalidArgument("Invalid offset or count index"));
    cudaMemcpyAsync(dst_data + (dst_offset * size),
852 853 854 855
                    src_data + (src_offset * size),
                    c * size * sizeof(float),
                    cudaMemcpyDeviceToHost,
                    stream);
W
wanghuancoder 已提交
856 857
    src_offset += c;
  }
858
  RETURN_PY_NONE
W
wanghuancoder 已提交
859 860
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
861

862 863
static PyObject* eager_api_to_uva_tensor(PyObject* self,
                                         PyObject* args,
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in eager_api_to_uva_tensor.";
  auto new_tensor = std::shared_ptr<paddle::experimental::Tensor>(
      new paddle::experimental::Tensor(
          egr::Controller::Instance().GenerateUniqueName()));
  PyObject* obj = PyTuple_GET_ITEM(args, 0);
  auto array = py::cast<py::array>(py::handle(obj));

  int device_id = 0;
  PyObject* Py_device_id = PyTuple_GET_ITEM(args, 1);
  if (Py_device_id) {
    device_id = CastPyArg2AttrLong(Py_device_id, 1);
  }

  if (py::isinstance<py::array_t<int32_t>>(array)) {
    SetUVATensorFromPyArray<int32_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<int64_t>>(array)) {
    SetUVATensorFromPyArray<int64_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<float>>(array)) {
    SetUVATensorFromPyArray<float>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<double>>(array)) {
    SetUVATensorFromPyArray<double>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<int8_t>>(array)) {
    SetUVATensorFromPyArray<int8_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<int16_t>>(array)) {
    SetUVATensorFromPyArray<int16_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<paddle::platform::float16>>(array)) {
892 893
    SetUVATensorFromPyArray<paddle::platform::float16>(
        new_tensor, array, device_id);
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
  } else if (py::isinstance<py::array_t<bool>>(array)) {
    SetUVATensorFromPyArray<bool>(new_tensor, array, device_id);
  } else {
    // obj may be any type, obj.cast<py::array>() may be failed,
    // then the array.dtype will be string of unknown meaning.
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Input object type error or incompatible array data type. "
        "tensor.set() supports array with bool, float16, float32, "
        "float64, int8, int16, int32, int64,"
        "please check your input or input array data type."));
  }

  return ToPyObject(*(new_tensor.get()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
W
wanghuancoder 已提交
909
#endif
910

911 912 913 914 915 916 917 918 919 920 921
static PyObject* eager_api__add_backward_final_hook(PyObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);
  egr::Controller::Instance().RegisterBackwardFinalHook(
      std::make_shared<PyVoidHook>(hook_func));
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

922
PyMethodDef variable_functions[] = {
923
    // TODO(jiabin): Remove scale when we have final state tests
924 925 926 927
    {"scale",
     (PyCFunction)(void (*)(void))eager_api_scale,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
928 929 930 931
    {"_add_backward_final_hook",
     (PyCFunction)(void (*)(void))eager_api__add_backward_final_hook,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
932 933 934 935
    {"run_backward",
     (PyCFunction)(void (*)(void))eager_api_run_backward,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
936 937
    {"run_partial_grad",
     (PyCFunction)(void (*)(void))eager_api_run_partial_grad,
938 939 940 941 942 943 944 945 946 947
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_run_custom_op",
     (PyCFunction)(void (*)(void))eager_api_run_costum_op,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"tensor_copy",
     (PyCFunction)(void (*)(void))eager_api_tensor_copy,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
948 949
    {"read_next_tensor_list",
     (PyCFunction)(void (*)(void))eager_api_read_next_tensor_list,
950 951
     METH_VARARGS | METH_KEYWORDS,
     NULL},
952 953 954 955
    {"jit_function_call",
     (PyCFunction)(void (*)(void))eager_api_jit_function_call,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
956 957 958
    /**sparse functions**/
    {"sparse_coo_tensor",
     (PyCFunction)(void (*)(void))eager_api_sparse_coo_tensor,
959 960
     METH_VARARGS | METH_KEYWORDS,
     NULL},
961 962
    {"sparse_csr_tensor",
     (PyCFunction)(void (*)(void))eager_api_sparse_csr_tensor,
963 964
     METH_VARARGS | METH_KEYWORDS,
     NULL},
965
/**sparse functions**/
W
wanghuancoder 已提交
966
#if defined(PADDLE_WITH_CUDA)
967 968 969 970 971 972 973 974 975 976 977 978
    {"async_read",
     (PyCFunction)(void (*)(void))eager_api_async_read,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"async_write",
     (PyCFunction)(void (*)(void))eager_api_async_write,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"to_uva_tensor",
     (PyCFunction)(void (*)(void))eager_api_to_uva_tensor,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
979
#endif
980 981 982 983 984 985 986 987 988 989 990 991
    {NULL, NULL, 0, NULL}};

void BindFunctions(PyObject* module) {
  if (PyModule_AddFunctions(module, variable_functions) < 0) {
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle erroe in BindFunctions(PyModule_AddFunctions)."));
    return;
  }
}

}  // namespace pybind
}  // namespace paddle