eager_functions.cc 41.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13 14 15 16 17

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif

18 19 20 21 22 23 24 25 26
#include <Python.h>

#include <string>
#include <vector>

#include "paddle/fluid/eager/accumulation/accumulation_node.h"
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/backward.h"
27
#include "paddle/fluid/eager/custom_operator/custom_operator_node.h"
28
#include "paddle/fluid/eager/utils.h"
29
#include "paddle/fluid/framework/convert_utils.h"
30 31
#include "paddle/fluid/framework/custom_operator.h"
#include "paddle/fluid/framework/op_meta_info_helper.h"
32
#include "paddle/fluid/framework/python_headers.h"
33 34
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
W
wanghuancoder 已提交
35
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
36
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
37 38 39 40
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
41
#include "paddle/fluid/pybind/tensor_py.h"
42
#include "paddle/phi/api/ext/op_meta_info.h"
43 44 45 46 47
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/api/lib/utils/tensor_utils.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
48 49
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
50 51
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
52

L
Leo Chen 已提交
53 54 55 56
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include "paddle/fluid/pybind/cuda_streams_py.h"
#endif

57 58 59 60 61
namespace paddle {
namespace pybind {

namespace py = ::pybind11;

62
extern PyTypeObject* p_tensor_type;
63 64
extern PyTypeObject* g_multidevicefeedreader_pytype;
extern PyTypeObject* g_orderedmultidevicefeedreader_pytype;
65 66 67 68 69 70 71 72 73 74 75

size_t PyArray_Size_(PyObject* numpy_data) {
  size_t res = 1;
  auto dims = pybind11::detail::array_proxy(numpy_data)->dimensions;
  auto nd = pybind11::detail::array_proxy(numpy_data)->nd;
  while (nd--) {
    res *= (*dims++);
  }
  return res;
}

76
class EagerNumpyAllocation : public phi::Allocation {
77
 public:
78
  explicit EagerNumpyAllocation(PyObject* numpy_data, phi::DataType dtype)
79 80
      : Allocation(
            static_cast<void*>(pybind11::detail::array_proxy(numpy_data)->data),
81
            framework::DataTypeSize(dtype) * PyArray_Size_(numpy_data),
82 83
            paddle::platform::CPUPlace()),
        arr_(numpy_data) {
84 85 86 87
    PADDLE_ENFORCE_NOT_NULL(
        arr_,
        platform::errors::InvalidArgument("The underlying PyObject pointer of "
                                          "numpy array cannot be nullptr"));
88
    PADDLE_ENFORCE_NE(
89 90
        arr_,
        Py_None,
91 92 93 94 95 96 97 98 99 100 101 102 103
        platform::errors::PreconditionNotMet(
            "The underlying PyObject pointer of numpy array cannot be None"));
    Py_INCREF(arr_);
  }
  ~EagerNumpyAllocation() override {
    py::gil_scoped_acquire gil;
    Py_DECREF(arr_);
  }

 private:
  PyObject* arr_;
};

104 105
static PyObject* eager_api_scale(PyObject* self,
                                 PyObject* args,
106 107 108
                                 PyObject* kwargs) {
  EAGER_TRY
  // TODO(jiabin): Sync Tensor and Variable here when we support
109 110 111 112 113 114
  paddle::experimental::Tensor ret = egr::scale(
      reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor,
      CastPyArg2AttrFloat(PyTuple_GET_ITEM(args, 1), 1),
      CastPyArg2AttrFloat(PyTuple_GET_ITEM(args, 2), 2),
      CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3),
      CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4));
115 116 117 118
  return ToPyObject(ret);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

119 120
static PyObject* eager_api_run_backward(PyObject* self,
                                        PyObject* args,
121 122
                                        PyObject* kwargs) {
  EAGER_TRY
123 124
  auto tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 1), 1);
125 126 127 128 129 130
  {
    eager_gil_scoped_release guard;
    egr::Backward(tensors,
                  grad_tensors,
                  CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 2), 2));
  }
131
  RETURN_PY_NONE
132 133 134
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

135 136
static PyObject* eager_api_run_partial_grad(PyObject* self,
                                            PyObject* args,
137 138 139 140 141 142 143 144 145 146
                                            PyObject* kwargs) {
  EAGER_TRY
  auto tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0);
  auto inputs = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 1), 1);
  auto grad_tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 2), 2);
  auto retain_graph = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);
  auto create_graph = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
  auto only_inputs = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 5), 5);
  auto allow_unused = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 6), 6);
  auto no_grad_vars = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 7), 7);
147 148 149 150 151 152 153 154 155 156 157 158
  std::vector<paddle::experimental::Tensor> result;
  {
    eager_gil_scoped_release guard;
    result = egr::Grad(tensors,
                       inputs,
                       grad_tensors,
                       retain_graph,
                       create_graph,
                       only_inputs,
                       allow_unused,
                       no_grad_vars);
  }
159 160 161 162 163
  VLOG(1) << " in eager_api_run_partial_grad, after runing egr::Grad";
  return ToPyObject(result, true /* return_py_none_if_not_initialize */);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

164 165
static PyObject* eager_api_tensor_copy(PyObject* self,
                                       PyObject* args,
166 167
                                       PyObject* kwargs) {
  EAGER_TRY
168 169 170 171
  paddle::experimental::Tensor& src =
      reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor;
  paddle::experimental::Tensor& dst =
      reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 1))->tensor;
172 173 174
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 2), 2);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);

175
  dst = src.copy_to(place, blocking);
176 177 178 179
  egr::EagerUtils::autograd_meta(&dst)->SetStopGradient(
      egr::EagerUtils::autograd_meta(&(src))->StopGradient());
  egr::EagerUtils::autograd_meta(&dst)->SetPersistable(
      egr::EagerUtils::autograd_meta(&(src))->Persistable());
180
  RETURN_PY_NONE
181 182 183
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

184 185
static PyObject* eager_api_read_next_tensor_list(PyObject* self,
                                                 PyObject* args,
186
                                                 PyObject* kwargs) {
187
  EAGER_TRY
188 189 190
  auto tensor_base_list =
      CastPyArg2VectorOfTensorBase(PyTuple_GET_ITEM(args, 0), 0);
  std::vector<paddle::experimental::Tensor> tensor_list;
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
  {
    eager_gil_scoped_release guard;
    tensor_list.reserve(tensor_base_list.size());
    auto func = [](framework::Tensor& tensor_base) {
      paddle::experimental::Tensor tensor(
          egr::Controller::Instance().GenerateUniqueName());
      auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor);
      autograd_meta->SetPersistable(false);
      autograd_meta->SetStopGradient(true);
      tensor.set_impl(std::make_shared<phi::DenseTensor>(tensor_base));
      return tensor;
    };
    for (auto& tensor_base : tensor_base_list) {
      tensor_list.emplace_back(func(tensor_base));
    }
206
  }
207
  return ToPyObject(tensor_list);
208 209 210
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
static void ConstructFwdAndBwdMap(
    const std::vector<paddle::OpMetaInfo>& vec_map,
    const std::string& op_type) {
  auto& in_out_map = egr::Controller::Instance().GetCustomEdgesSlotMap();
  if (in_out_map.find(op_type) != in_out_map.end()) {
    VLOG(7) << "Find Exist CustomEdgesSlotMap Skip >>>> ";
    return;
  } else {
    VLOG(7) << "Construct CustomEdgesSlotMap ";
    auto inputs_names =
        paddle::framework::OpMetaInfoHelper::GetInputs(vec_map[0]);
    auto outputs_names =
        paddle::framework::OpMetaInfoHelper::GetOutputs(vec_map[0]);
    auto attrs_names =
        paddle::framework::OpMetaInfoHelper::GetAttrs(vec_map[0]);
    auto grad_outputs_names =
        paddle::framework::OpMetaInfoHelper::GetOutputs(vec_map[1]);
    auto grad_inputs_names =
        paddle::framework::OpMetaInfoHelper::GetInputs(vec_map[1]);
    auto grad_attrs_names =
        paddle::framework::OpMetaInfoHelper::GetAttrs(vec_map[1]);
    std::vector<std::unordered_map<int, int>> res(5);
233 234

    in_out_map.insert({op_type, {res}});
235 236 237
    // Prepare pos map for grad_outputs
    VLOG(7) << "Prepare pos map for grad_outputs";
    PADDLE_ENFORCE_LE(
238 239
        grad_outputs_names.size(),
        inputs_names.size(),
240 241 242 243 244
        paddle::platform::errors::InvalidArgument(
            "Grad outputs num should be less equal than forward inputs num."));
    for (size_t i = 0; i < grad_outputs_names.size(); i++) {
      size_t end = grad_outputs_names[i].find("@GRAD");
      PADDLE_ENFORCE_NE(
245 246
          end,
          std::string::npos,
247 248 249 250 251 252 253 254 255
          paddle::platform::errors::NotFound(
              "All Grad outputs should be grad and we got %s is not grad var, "
              "please check your op and change to fit the rule.",
              grad_outputs_names[i]));
      for (size_t j = 0; j < inputs_names.size(); j++) {
        if (grad_outputs_names[i].substr(0, end) == inputs_names[j]) {
          VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                  << " inputs: " << inputs_names[j] << " related to No." << i
                  << " grad_outputs: " << grad_outputs_names[i];
256
          in_out_map[op_type][0][0][j] = i;
257 258 259 260 261 262 263 264 265 266 267 268
        }
      }
    }
    // Prepare pos map for grad_inputs
    for (size_t i = 0; i < grad_inputs_names.size(); i++) {
      size_t end = grad_inputs_names[i].find("@GRAD");
      if (end != std::string::npos) {
        for (size_t j = 0; j < outputs_names.size(); j++) {
          if (grad_inputs_names[i].substr(0, end) == outputs_names[j]) {
            VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                    << " outputs: " << outputs_names[j] << " related to No."
                    << i << " grad_inputs's grad: " << grad_inputs_names[i];
269
            in_out_map[op_type][0][1][j] = i;
270 271 272
          }
        }
      } else {
273 274
        if (std::find(outputs_names.begin(),
                      outputs_names.end(),
275 276 277 278 279 280 281
                      grad_inputs_names[i]) != outputs_names.end()) {
          for (size_t j = 0; j < outputs_names.size(); j++) {
            if (grad_inputs_names[i] == outputs_names[j]) {
              VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                      << " outputs: " << outputs_names[j] << " related to No."
                      << i
                      << " grad_inputs fwd outputs: " << grad_inputs_names[i];
282
              in_out_map[op_type][0][2][j] = i;
283 284 285 286 287 288 289 290 291
            }
          }
        } else {
          for (size_t j = 0; j < inputs_names.size(); j++) {
            if (grad_inputs_names[i] == inputs_names[j]) {
              VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                      << " inputs: " << inputs_names[j] << " related to No."
                      << i
                      << " grad_inputs fwd inputs: " << grad_inputs_names[i];
292
              in_out_map[op_type][0][3][j] = i;
293 294 295 296 297 298 299 300
            }
          }
        }
      }
    }

    // Prepare pos map for grad attrs_
    for (size_t i = 0; i < grad_attrs_names.size(); i++) {
301 302 303 304
      auto end = std::find(
          attrs_names.begin(), attrs_names.end(), grad_attrs_names[i]);
      PADDLE_ENFORCE_NE(end,
                        attrs_names.end(),
305 306 307 308 309 310 311 312 313 314
                        paddle::platform::errors::NotFound(
                            "All Grad attrs should be one of forward attrs and "
                            "we got %s is not one of them, please check your "
                            "op and change to fit the rule.",
                            grad_attrs_names[i]));
      for (size_t j = 0; j < attrs_names.size(); j++) {
        if (grad_attrs_names[i] == attrs_names[j]) {
          VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                  << " attrs: " << attrs_names[j] << " related to No." << i
                  << " grad_attrs: " << grad_attrs_names[i];
315
          in_out_map[op_type][0][4][j] = i;
316 317 318 319 320 321 322 323 324 325
        }
      }
    }
  }
}

static std::vector<paddle::any> CastAttrsToTragetType(
    const std::vector<paddle::any>& src,
    const std::vector<std::string>& attrs_names) {
  std::vector<paddle::any> res;
326 327
  PADDLE_ENFORCE_EQ(src.size(),
                    attrs_names.size(),
328 329 330 331
                    paddle::platform::errors::InvalidArgument(
                        "We Expected same size of attrs and attrs_name list, "
                        "if u got this error indicate your custom op setting "
                        "%s attrs, but you just give %s",
332 333
                        attrs_names.size(),
                        src.size()));
334 335
  for (size_t i = 0; i < src.size(); i++) {
    size_t end = attrs_names[i].find(": ");
336
    std::string type_name = attrs_names[i].substr(end + 2);
337 338 339 340 341 342 343 344 345
    if (type_name == "int") {
      if (src[i].type() == typeid(bool)) {
        res.emplace_back(static_cast<int>(paddle::any_cast<bool>(src[i])));
      } else if (src[i].type() == typeid(int)) {
        res.emplace_back(src[i]);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Your No. %s attrs should only can be bool or int32, other type is "
            "forbidden for now but we got %s. Check your code first please",
346 347
            i,
            src[i].type().name()));
348 349 350 351 352 353 354 355 356 357 358 359 360
      }
    } else if (type_name == "int64_t") {
      if (src[i].type() == typeid(bool)) {
        res.emplace_back(static_cast<int64_t>(paddle::any_cast<bool>(src[i])));
      } else if (src[i].type() == typeid(int)) {
        res.emplace_back(static_cast<int64_t>(paddle::any_cast<int>(src[i])));
      } else if (src[i].type() == typeid(int64_t)) {
        res.emplace_back(src[i]);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Your No. %s attrs should only can be bool or int32 or int64_t, "
            "other type is forbidden for now but we got %s. Check your code "
            "first please",
361 362
            i,
            src[i].type().name()));
363 364 365 366 367 368 369 370
      }
    } else {
      res.emplace_back(src[i]);
    }
  }
  return res;
}

371 372 373 374
static PyObject* eager_api_jit_function_call(PyObject* self,
                                             PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
375 376
  std::shared_ptr<jit::BaseEngine> function =
      CastPyArg2BaseEngine(PyTuple_GET_ITEM(args, 0), 0);
377 378 379 380 381 382 383
  std::vector<paddle::experimental::Tensor> ins =
      CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 1), 1);
  std::vector<paddle::experimental::Tensor> outs = (*function)(ins);
  return ToPyObject(outs);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

384 385
static PyObject* eager_api_run_costum_op(PyObject* self,
                                         PyObject* args,
386 387 388 389 390 391 392 393 394
                                         PyObject* kwargs) {
  EAGER_TRY
  paddle::CustomOpKernelContext ctx =
      CastPyArg2CustomOpKernelContext(PyTuple_GET_ITEM(args, 0), 0);
  std::string op_type = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 1), 1);
  bool trace_backward = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 2), 2);
  VLOG(7) << "Get things for python for Custom Op: " << op_type
          << ", trace_backward is: " << trace_backward;
  auto meta_info_map = egr::Controller::Instance().GetOpMetaInfoMap();
395 396
  PADDLE_ENFORCE_NE(meta_info_map.find(op_type),
                    meta_info_map.end(),
397 398 399 400 401 402
                    paddle::platform::errors::NotFound(
                        "Can't find %s in Eager OpMetaInfoMap which should be "
                        "created by LoadOpMetaInfoAndRegisterOp, please make "
                        "sure you registered your op first and try again. ",
                        op_type));
  VLOG(7) << "Run Kernel of Custom Op: " << op_type;
403 404 405 406
  std::vector<paddle::any> res_attrs =
      CastAttrsToTragetType(ctx.Attrs(),
                            paddle::framework::OpMetaInfoHelper::GetAttrs(
                                meta_info_map.at(op_type)[0]));
407 408 409 410 411 412 413 414 415 416 417
  ctx.EmplaceBackAttrs(res_attrs);
  const auto& vec_map = meta_info_map.at(op_type);
  (*paddle::framework::OpMetaInfoHelper::GetKernelFn(vec_map[0]))(&ctx);

  VLOG(7) << "Get AutogradMeta for inputs and outputs for Custom Op";
  std::vector<std::vector<egr::AutogradMeta*>> ins_auto_grad_metas;
  std::vector<std::vector<egr::AutogradMeta*>> outs_auto_grad_metas;
  VLOG(7) << "We got slot num of ins is: " << ctx.InputRange().size();
  ins_auto_grad_metas.resize(ctx.InputRange().size());
  VLOG(7) << "We got slot num of outs is: " << ctx.OutputRange().size();
  outs_auto_grad_metas.resize(ctx.OutputRange().size());
418

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
  for (size_t i = 0; i < ctx.InputRange().size(); i++) {
    ins_auto_grad_metas[i] =
        egr::EagerUtils::nullable_autograd_meta(ctx.InputsBetween(
            ctx.InputRangeAt(i).first, ctx.InputRangeAt(i).second));
  }
  for (size_t i = 0; i < ctx.OutputRange().size(); i++) {
    outs_auto_grad_metas[i] =
        egr::EagerUtils::unsafe_autograd_meta(ctx.OutputsBetweeen(
            ctx.OutputRangeAt(i).first, ctx.OutputRangeAt(i).second));
  }
  bool require_any_grad = false;
  for (size_t i = 0; i < ins_auto_grad_metas.size(); i++) {
    require_any_grad =
        require_any_grad || egr::EagerUtils::ComputeRequireGrad(
                                trace_backward, &(ins_auto_grad_metas[i]));
  }
435
  if (require_any_grad && (vec_map.size() > 1)) {
436 437 438 439 440 441 442 443 444 445 446 447
    VLOG(6) << " Construct Grad for Custom Op: " << op_type;
    ConstructFwdAndBwdMap(vec_map, op_type);
    for (size_t i = 0; i < outs_auto_grad_metas.size(); i++) {
      egr::EagerUtils::PassStopGradient(false, &(outs_auto_grad_metas[i]));
    }
    auto grad_node = std::make_shared<egr::RunCustomOpNode>(
        outs_auto_grad_metas.size(), ins_auto_grad_metas.size(), op_type);
    auto slot_map =
        egr::Controller::Instance().GetCustomEdgesSlotMap().at(op_type);
    // Prepare Grad outputs
    size_t no_grad_cnt = 0;
    for (size_t i = 0; i < ins_auto_grad_metas.size(); i++) {
448 449 450 451
      const std::vector<paddle::experimental::Tensor>& in_tensors =
          ctx.InputsBetween(ctx.InputRangeAt(i).first,
                            ctx.InputRangeAt(i).second);

452 453
      if (slot_map[0][0].find(i) != slot_map[0][0].end()) {
        grad_node->SetGradOutMeta(in_tensors, slot_map[0][0][i]);
454
      } else {
455
        grad_node->SetGradOutMeta(in_tensors,
456 457 458 459 460 461
                                  ins_auto_grad_metas.size() - 1 - no_grad_cnt);
        no_grad_cnt++;
      }
    }
    // Prepare Grad inputs with grad of fwd outputs
    for (size_t i = 0; i < outs_auto_grad_metas.size(); i++) {
462 463 464 465
      const std::vector<paddle::experimental::Tensor>& out_tensors =
          ctx.OutputsBetweeen(ctx.OutputRangeAt(i).first,
                              ctx.OutputRangeAt(i).second);

466 467
      egr::EagerUtils::SetOutRankWithSlot(&(outs_auto_grad_metas[i]), i);
      egr::EagerUtils::SetHistory(&(outs_auto_grad_metas[i]), grad_node);
468 469
      grad_node->SetGradInMeta(out_tensors, i);
      egr::EagerUtils::CheckAndRetainGrad(out_tensors);
470 471 472
    }

    // Prepare Grad inputs with fwd outputs
473
    for (auto it = slot_map[0][2].begin(); it != slot_map[0][2].end(); it++) {
474 475 476 477 478 479 480 481 482
      VLOG(7) << "Prepare fwd_outs: " << it->first
              << " to grad_inputs: " << it->second;
      grad_node->fwd_outs[it->second] =
          egr::RunCustomOpNode::ConstructTensorWrapper(
              ctx.OutputsBetweeen(ctx.OutputRangeAt(it->first).first,
                                  ctx.OutputRangeAt(it->first).second));
    }

    // Prepare Grad inputs with fwd inputs
483
    for (auto it = slot_map[0][3].begin(); it != slot_map[0][3].end(); it++) {
484 485 486 487 488 489 490 491 492 493 494 495
      VLOG(7) << "Prepare fwd_ins: " << it->first
              << " to grad_inputs: " << it->second;
      grad_node->fwd_ins[it->second] =
          egr::RunCustomOpNode::ConstructTensorWrapper(
              ctx.InputsBetween(ctx.InputRangeAt(it->first).first,
                                ctx.InputRangeAt(it->first).second));
    }

    auto attrs_names = paddle::framework::OpMetaInfoHelper::GetAttrs(
        meta_info_map.at(op_type)[1]);
    std::vector<paddle::any> attrs(attrs_names.size());
    // Prepare attrs for Grad node
496
    for (auto it = slot_map[0][4].begin(); it != slot_map[0][4].end(); it++) {
497 498 499 500 501 502
      VLOG(7) << "Prepare fwd attrs: " << it->first
              << " to grad_attrs: " << it->second;
      attrs[it->second] = res_attrs[it->first];
    }
    grad_node->SetAttrs(attrs);
  }
503
  RETURN_PY_NONE
504 505 506
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

507 508
static PyObject* eager_api_sparse_coo_tensor(PyObject* self,
                                             PyObject* args,
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
                                             PyObject* kwargs) {
  EAGER_TRY
  auto non_zero_indices = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  auto non_zero_elements = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 1), 1);
  auto dense_shape = CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 2), 2);
  auto stop_gradient = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);
  PADDLE_ENFORCE(non_zero_indices.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
                     "the non-zero indices must be a DenseTensor."));
  PADDLE_ENFORCE(non_zero_elements.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
                     "the non-zero elements must be a DenseTensor."));
  auto dense_indices =
      std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_indices.impl());
  auto dense_elements =
      std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_elements.impl());
  // TODO(zhangkaihuo): After create SparseTensor, call coalesced() to sort and
  // merge duplicate indices
  std::shared_ptr<phi::SparseCooTensor> coo_tensor =
528 529
      std::make_shared<phi::SparseCooTensor>(
          *dense_indices, *dense_elements, phi::make_ddim(dense_shape));
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
  paddle::experimental::Tensor tensor;
  tensor.set_impl(coo_tensor);
  auto name =
      egr::Controller::Instance().GenerateUniqueName("generated_tensor");
  tensor.set_name(name);
  auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor);
  autograd_meta->SetStopGradient(static_cast<bool>(stop_gradient));
  if (!autograd_meta->GetMutableGradNode()) {
    VLOG(3) << "Tensor(" << name
            << ") have not GradNode, add GradNodeAccumulation for it.";
    autograd_meta->SetGradNode(
        std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
  }
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

547 548
static PyObject* eager_api_sparse_csr_tensor(PyObject* self,
                                             PyObject* args,
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
                                             PyObject* kwargs) {
  EAGER_TRY
  auto non_zero_crows = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  auto non_zero_cols = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 1), 1);
  auto non_zero_elements = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 2), 2);
  auto dense_shape = CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 3), 3);
  auto stop_gradient = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
  PADDLE_ENFORCE(non_zero_crows.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
                     "the compressed non-zero rows must be a DenseTensor."));
  PADDLE_ENFORCE(non_zero_cols.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
                     "the non-zero cols must be a DenseTensor."));
  PADDLE_ENFORCE(non_zero_elements.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
                     "the non-zero elements must be a DenseTensor."));

  auto dense_crows =
      std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_crows.impl());
  auto dense_cols =
      std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_cols.impl());
  auto dense_elements =
      std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_elements.impl());
  std::shared_ptr<phi::SparseCsrTensor> csr_tensor =
573 574
      std::make_shared<phi::SparseCsrTensor>(*dense_crows,
                                             *dense_cols,
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
                                             *dense_elements,
                                             phi::make_ddim(dense_shape));
  paddle::experimental::Tensor tensor;
  tensor.set_impl(csr_tensor);
  auto name =
      egr::Controller::Instance().GenerateUniqueName("generated_tensor");
  tensor.set_name(name);
  auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor);
  autograd_meta->SetStopGradient(static_cast<bool>(stop_gradient));
  if (!autograd_meta->GetMutableGradNode()) {
    VLOG(3) << "Tensor(" << name
            << ") have not GradNode, add GradNodeAccumulation for it.";
    autograd_meta->SetGradNode(
        std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
  }
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
W
wanghuancoder 已提交
593
#if defined(PADDLE_WITH_CUDA)
594 595
static PyObject* eager_api_async_read(PyObject* self,
                                      PyObject* args,
W
wanghuancoder 已提交
596 597 598 599 600 601 602 603 604
                                      PyObject* kwargs) {
  EAGER_TRY
  auto& src = GetTensorFromArgs("async_read", "src", args, 0, false);
  auto& dst = GetTensorFromArgs("async_read", "dst", args, 1, false);
  auto& index = GetTensorFromArgs("async_read", "index", args, 2, false);
  auto& buffer = GetTensorFromArgs("async_read", "buffer", args, 3, false);
  auto& offset = GetTensorFromArgs("async_read", "offset", args, 4, false);
  auto& count = GetTensorFromArgs("async_read", "count", args, 5, false);
  PADDLE_ENFORCE_EQ(
605 606
      src.is_gpu_pinned(),
      true,
W
wanghuancoder 已提交
607 608
      platform::errors::InvalidArgument("Required `src` device should be "
                                        "CUDAPinnedPlace, but received %d.",
C
Chen Weihang 已提交
609
                                        src.place()));
W
wanghuancoder 已提交
610
  PADDLE_ENFORCE_EQ(
611 612
      dst.is_gpu(),
      true,
W
wanghuancoder 已提交
613 614
      platform::errors::InvalidArgument(
          "Required `dst` device should be CUDAPlace, but received %d.",
C
Chen Weihang 已提交
615
          dst.place()));
W
wanghuancoder 已提交
616
  PADDLE_ENFORCE_EQ(
617 618
      index.is_cpu(),
      true,
W
wanghuancoder 已提交
619 620
      platform::errors::InvalidArgument(
          "Required `index` device should be CPUPlace, but received %d.",
C
Chen Weihang 已提交
621
          index.place()));
622 623
  PADDLE_ENFORCE_EQ(buffer.is_gpu_pinned(),
                    true,
W
wanghuancoder 已提交
624 625 626
                    platform::errors::InvalidArgument(
                        "Required `buffer` device should be CUDAPinnedPlace, "
                        "but received %d.",
C
Chen Weihang 已提交
627
                        buffer.place()));
W
wanghuancoder 已提交
628
  PADDLE_ENFORCE_EQ(
629 630
      offset.is_cpu(),
      true,
W
wanghuancoder 已提交
631 632
      platform::errors::InvalidArgument(
          "Required `offset` device should be CPUPlace, but received %d.",
C
Chen Weihang 已提交
633
          offset.place()));
W
wanghuancoder 已提交
634
  PADDLE_ENFORCE_EQ(
635 636
      count.is_cpu(),
      true,
W
wanghuancoder 已提交
637 638
      platform::errors::InvalidArgument(
          "Required `count` device should be CPUPlace, but received %d.",
C
Chen Weihang 已提交
639
          count.place()));
W
wanghuancoder 已提交
640 641 642 643 644 645 646 647 648 649

  auto& src_tensor = src;
  auto* dst_tensor = &dst;
  auto& index_tensor = index;
  auto* buffer_tensor = &buffer;
  auto& offset_tensor = offset;
  auto& count_tensor = count;
  auto* dst_data = dst_tensor->mutable_data<float>(dst.place());
  const auto& deviceId = paddle::platform::GetCurrentDeviceId();

650 651
  PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                    dst_tensor->dims().size(),
W
wanghuancoder 已提交
652 653 654
                    platform::errors::InvalidArgument(
                        "`src` and `dst` should have same tensor shape, "
                        "except for the first dimension."));
655 656
  PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                    buffer_tensor->dims().size(),
W
wanghuancoder 已提交
657 658 659 660
                    platform::errors::InvalidArgument(
                        "`src` and `buffer` should have same tensor shape, "
                        "except for the first dimension."));
  for (int i = 1; i < src_tensor.dims().size(); i++) {
661 662
    PADDLE_ENFORCE_EQ(src_tensor.dims()[i],
                      dst_tensor->dims()[i],
W
wanghuancoder 已提交
663 664 665 666
                      platform::errors::InvalidArgument(
                          "`src` and `dst` should have the same tensor shape, "
                          "except for the first dimension."));
    PADDLE_ENFORCE_EQ(
667 668
        src_tensor.dims()[i],
        buffer_tensor->dims()[i],
W
wanghuancoder 已提交
669 670 671 672
        platform::errors::InvalidArgument(
            "`src` and `buffer` should have the same tensor shape, "
            "except for the first dimension."));
  }
673 674
  PADDLE_ENFORCE_EQ(index_tensor.dims().size(),
                    1,
W
wanghuancoder 已提交
675 676 677
                    platform::errors::InvalidArgument(
                        "`index` tensor should be one-dimensional."));

L
Leo Chen 已提交
678
  auto stream = paddle::platform::get_current_stream(deviceId)->raw_stream();
W
wanghuancoder 已提交
679 680 681 682 683 684

  int64_t numel = 0;  // total copy length
  int64_t copy_flag = offset_tensor.dims()[0];
  int64_t size = src_tensor.numel() / src_tensor.dims()[0];

  if (copy_flag != 0) {
685 686
    PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                      1,
W
wanghuancoder 已提交
687 688
                      platform::errors::InvalidArgument(
                          "`offset` tensor should be one-dimensional."));
689 690
    PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                      1,
W
wanghuancoder 已提交
691 692
                      platform::errors::InvalidArgument(
                          "`count` tensor should be one-dimensional."));
693 694
    PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                      count_tensor.numel(),
W
wanghuancoder 已提交
695 696 697 698 699 700 701 702
                      platform::errors::InvalidArgument(
                          "`offset` and `count` tensor size dismatch."));
    auto* offset_data = offset_tensor.data<int64_t>();
    auto* count_data = count_tensor.data<int64_t>();
    for (int64_t i = 0; i < count_tensor.numel(); i++) {
      numel += count_data[i];
    }
    PADDLE_ENFORCE_LE(
703 704
        numel + index_tensor.numel(),
        buffer_tensor->dims()[0],
W
wanghuancoder 已提交
705 706
        platform::errors::InvalidArgument("Buffer tensor size is too small."));
    PADDLE_ENFORCE_LE(
707 708
        numel + index_tensor.numel(),
        dst_tensor->dims()[0],
W
wanghuancoder 已提交
709 710 711 712 713 714 715
        platform::errors::InvalidArgument("Target tensor size is too small."));

    int64_t src_offset, dst_offset = 0, c;
    auto* src_data = src_tensor.data<float>();
    for (int64_t i = 0; i < offset_tensor.numel(); i++) {
      src_offset = offset_data[i], c = count_data[i];
      PADDLE_ENFORCE_LE(
716 717
          src_offset + c,
          src_tensor.dims()[0],
W
wanghuancoder 已提交
718 719
          platform::errors::InvalidArgument("Invalid offset or count index."));
      PADDLE_ENFORCE_LE(
720 721
          dst_offset + c,
          dst_tensor->dims()[0],
W
wanghuancoder 已提交
722 723
          platform::errors::InvalidArgument("Invalid offset or count index."));
      cudaMemcpyAsync(dst_data + (dst_offset * size),
724 725 726 727
                      src_data + (src_offset * size),
                      c * size * sizeof(float),
                      cudaMemcpyHostToDevice,
                      stream);
W
wanghuancoder 已提交
728 729 730 731
      dst_offset += c;
    }
  } else {
    PADDLE_ENFORCE_LE(
732 733
        index_tensor.numel(),
        buffer_tensor->dims()[0],
W
wanghuancoder 已提交
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
        platform::errors::InvalidArgument("Buffer tensor size is too small."));
  }

  // Select the index data to the buffer
  auto index_select = [](const paddle::experimental::Tensor& src_tensor,
                         const paddle::experimental::Tensor& index_tensor,
                         paddle::experimental::Tensor* buffer_tensor) {
    auto* src_data = src_tensor.data<float>();
    auto* index_data = index_tensor.data<int64_t>();
    auto* buffer_data = buffer_tensor->data<float>();
    const int& slice_size = src_tensor.numel() / src_tensor.dims()[0];
    const int& copy_bytes = slice_size * sizeof(float);
    int64_t c = 0;
    for (int64_t i = 0; i < index_tensor.numel(); i++) {
      std::memcpy(buffer_data + c * slice_size,
749 750
                  src_data + index_data[i] * slice_size,
                  copy_bytes);
W
wanghuancoder 已提交
751 752 753 754 755 756
      c += 1;
    }
  };
  index_select(src_tensor, index_tensor, buffer_tensor);

  // Copy the data to device memory
757 758
  cudaMemcpyAsync(dst_data + (numel * size),
                  buffer_tensor->data<float>(),
W
wanghuancoder 已提交
759
                  index_tensor.numel() * size * sizeof(float),
760 761
                  cudaMemcpyHostToDevice,
                  stream);
762
  RETURN_PY_NONE
W
wanghuancoder 已提交
763 764 765
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

766 767
static PyObject* eager_api_async_write(PyObject* self,
                                       PyObject* args,
W
wanghuancoder 已提交
768 769 770 771 772 773 774
                                       PyObject* kwargs) {
  EAGER_TRY
  auto& src = GetTensorFromArgs("async_write", "src", args, 0, false);
  auto& dst = GetTensorFromArgs("async_write", "dst", args, 1, false);
  auto& offset = GetTensorFromArgs("async_write", "offset", args, 2, false);
  auto& count = GetTensorFromArgs("async_write", "count", args, 3, false);
  PADDLE_ENFORCE_EQ(
775 776
      src.is_gpu(),
      true,
W
wanghuancoder 已提交
777 778
      platform::errors::InvalidArgument(
          "Required `src` device should be CUDAPlace, but received %d. ",
C
Chen Weihang 已提交
779
          src.place()));
780 781
  PADDLE_ENFORCE_EQ(dst.is_gpu_pinned(),
                    true,
W
wanghuancoder 已提交
782 783 784
                    platform::errors::InvalidArgument(
                        "Required `dst` device should be CUDAPinnedPlace, "
                        "but received %d. ",
C
Chen Weihang 已提交
785
                        dst.place()));
W
wanghuancoder 已提交
786
  PADDLE_ENFORCE_EQ(
787 788
      offset.is_cpu(),
      true,
W
wanghuancoder 已提交
789 790
      platform::errors::InvalidArgument("Required `offset` device should "
                                        "be CPUPlace, but received %d. ",
C
Chen Weihang 已提交
791
                                        offset.place()));
W
wanghuancoder 已提交
792
  PADDLE_ENFORCE_EQ(
793 794
      count.is_cpu(),
      true,
W
wanghuancoder 已提交
795 796
      platform::errors::InvalidArgument(
          "Required `count` device should be CPUPlace, but received %d. ",
C
Chen Weihang 已提交
797
          count.place()));
W
wanghuancoder 已提交
798 799 800 801 802 803 804 805 806

  // TODO(daisiming): In future, add index as arguments following
  // async_read.
  auto& src_tensor = src;
  auto* dst_tensor = &dst;
  auto& offset_tensor = offset;
  auto& count_tensor = count;
  const auto& deviceId = paddle::platform::GetCurrentDeviceId();

807 808
  PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                    1,
W
wanghuancoder 已提交
809 810
                    platform::errors::InvalidArgument(
                        "`offset` tensor should be one-dimensional."));
811 812
  PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                    1,
W
wanghuancoder 已提交
813 814
                    platform::errors::InvalidArgument(
                        "`count` tensor should be one-dimensional."));
815 816
  PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                    count_tensor.numel(),
W
wanghuancoder 已提交
817 818
                    platform::errors::InvalidArgument(
                        "`offset` and `count` tensor size dismatch."));
819 820
  PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                    dst_tensor->dims().size(),
W
wanghuancoder 已提交
821 822 823 824
                    platform::errors::InvalidArgument(
                        "`src` and `dst` should have the same tensor shape, "
                        "except for the first dimension."));
  for (int i = 1; i < src_tensor.dims().size(); i++) {
825 826
    PADDLE_ENFORCE_EQ(src_tensor.dims()[i],
                      dst_tensor->dims()[i],
W
wanghuancoder 已提交
827 828 829 830
                      platform::errors::InvalidArgument(
                          "`src` and `dst` should have the same tensor shape, "
                          "except for the first dimension."));
  }
831

L
Leo Chen 已提交
832
  auto stream = paddle::platform::get_current_stream(deviceId)->raw_stream();
W
wanghuancoder 已提交
833 834 835 836 837 838 839 840 841 842

  int64_t size = src_tensor.numel() / src_tensor.dims()[0];
  auto* src_data = src_tensor.data<float>();
  auto* dst_data = dst_tensor->data<float>();
  const int64_t* offset_data = offset_tensor.data<int64_t>();
  const int64_t* count_data = count_tensor.data<int64_t>();
  int64_t src_offset = 0, dst_offset, c;
  for (int64_t i = 0; i < offset_tensor.numel(); i++) {
    dst_offset = offset_data[i], c = count_data[i];
    PADDLE_ENFORCE_LE(
843 844
        src_offset + c,
        src_tensor.dims()[0],
W
wanghuancoder 已提交
845 846
        platform::errors::InvalidArgument("Invalid offset or count index"));
    PADDLE_ENFORCE_LE(
847 848
        dst_offset + c,
        dst_tensor->dims()[0],
W
wanghuancoder 已提交
849 850
        platform::errors::InvalidArgument("Invalid offset or count index"));
    cudaMemcpyAsync(dst_data + (dst_offset * size),
851 852 853 854
                    src_data + (src_offset * size),
                    c * size * sizeof(float),
                    cudaMemcpyDeviceToHost,
                    stream);
W
wanghuancoder 已提交
855 856
    src_offset += c;
  }
857
  RETURN_PY_NONE
W
wanghuancoder 已提交
858 859
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
860

861 862
static PyObject* eager_api_to_uva_tensor(PyObject* self,
                                         PyObject* args,
863 864 865 866 867 868 869 870 871
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in eager_api_to_uva_tensor.";
  auto new_tensor = std::shared_ptr<paddle::experimental::Tensor>(
      new paddle::experimental::Tensor(
          egr::Controller::Instance().GenerateUniqueName()));
  PyObject* obj = PyTuple_GET_ITEM(args, 0);
  auto array = py::cast<py::array>(py::handle(obj));

872 873 874 875 876 877 878
  Py_ssize_t args_num = PyTuple_Size(args);
  int64_t device_id = 0;
  if (args_num > 1) {
    PyObject* Py_device_id = PyTuple_GET_ITEM(args, 1);
    if (Py_device_id) {
      device_id = CastPyArg2AttrLong(Py_device_id, 1);
    }
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
  }

  if (py::isinstance<py::array_t<int32_t>>(array)) {
    SetUVATensorFromPyArray<int32_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<int64_t>>(array)) {
    SetUVATensorFromPyArray<int64_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<float>>(array)) {
    SetUVATensorFromPyArray<float>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<double>>(array)) {
    SetUVATensorFromPyArray<double>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<int8_t>>(array)) {
    SetUVATensorFromPyArray<int8_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<int16_t>>(array)) {
    SetUVATensorFromPyArray<int16_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<paddle::platform::float16>>(array)) {
894 895
    SetUVATensorFromPyArray<paddle::platform::float16>(
        new_tensor, array, device_id);
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
  } else if (py::isinstance<py::array_t<bool>>(array)) {
    SetUVATensorFromPyArray<bool>(new_tensor, array, device_id);
  } else {
    // obj may be any type, obj.cast<py::array>() may be failed,
    // then the array.dtype will be string of unknown meaning.
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Input object type error or incompatible array data type. "
        "tensor.set() supports array with bool, float16, float32, "
        "float64, int8, int16, int32, int64,"
        "please check your input or input array data type."));
  }

  return ToPyObject(*(new_tensor.get()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
W
wanghuancoder 已提交
911
#endif
912

913 914 915 916 917 918 919 920 921 922 923
static PyObject* eager_api__add_backward_final_hook(PyObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);
  egr::Controller::Instance().RegisterBackwardFinalHook(
      std::make_shared<PyVoidHook>(hook_func));
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

924
PyMethodDef variable_functions[] = {
925
    // TODO(jiabin): Remove scale when we have final state tests
926 927 928 929
    {"scale",
     (PyCFunction)(void (*)(void))eager_api_scale,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
930 931 932 933
    {"_add_backward_final_hook",
     (PyCFunction)(void (*)(void))eager_api__add_backward_final_hook,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
934 935 936 937
    {"run_backward",
     (PyCFunction)(void (*)(void))eager_api_run_backward,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
938 939
    {"run_partial_grad",
     (PyCFunction)(void (*)(void))eager_api_run_partial_grad,
940 941 942 943 944 945 946 947 948 949
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_run_custom_op",
     (PyCFunction)(void (*)(void))eager_api_run_costum_op,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"tensor_copy",
     (PyCFunction)(void (*)(void))eager_api_tensor_copy,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
950 951
    {"read_next_tensor_list",
     (PyCFunction)(void (*)(void))eager_api_read_next_tensor_list,
952 953
     METH_VARARGS | METH_KEYWORDS,
     NULL},
954 955 956 957
    {"jit_function_call",
     (PyCFunction)(void (*)(void))eager_api_jit_function_call,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
958 959 960
    /**sparse functions**/
    {"sparse_coo_tensor",
     (PyCFunction)(void (*)(void))eager_api_sparse_coo_tensor,
961 962
     METH_VARARGS | METH_KEYWORDS,
     NULL},
963 964
    {"sparse_csr_tensor",
     (PyCFunction)(void (*)(void))eager_api_sparse_csr_tensor,
965 966
     METH_VARARGS | METH_KEYWORDS,
     NULL},
967
/**sparse functions**/
W
wanghuancoder 已提交
968
#if defined(PADDLE_WITH_CUDA)
969 970 971 972 973 974 975 976 977 978 979 980
    {"async_read",
     (PyCFunction)(void (*)(void))eager_api_async_read,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"async_write",
     (PyCFunction)(void (*)(void))eager_api_async_write,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"to_uva_tensor",
     (PyCFunction)(void (*)(void))eager_api_to_uva_tensor,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
981
#endif
982 983 984 985 986 987 988 989 990 991 992 993
    {NULL, NULL, 0, NULL}};

void BindFunctions(PyObject* module) {
  if (PyModule_AddFunctions(module, variable_functions) < 0) {
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle erroe in BindFunctions(PyModule_AddFunctions)."));
    return;
  }
}

}  // namespace pybind
}  // namespace paddle