Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
00ecb98f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
00ecb98f
编写于
5月 11, 2022
作者:
J
Jiabin Yang
提交者:
GitHub
5月 11, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
support custom operator run in double grad mode (#42653)
上级
6c696db1
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
455 addition
and
36 deletion
+455
-36
paddle/fluid/eager/api/utils/global_utils.h
paddle/fluid/eager/api/utils/global_utils.h
+6
-3
paddle/fluid/eager/backward.cc
paddle/fluid/eager/backward.cc
+0
-2
paddle/fluid/eager/custom_operator/custom_operator_node.cc
paddle/fluid/eager/custom_operator/custom_operator_node.cc
+340
-8
paddle/fluid/eager/custom_operator/custom_operator_node.h
paddle/fluid/eager/custom_operator/custom_operator_node.h
+76
-1
paddle/fluid/eager/tensor_wrapper.h
paddle/fluid/eager/tensor_wrapper.h
+13
-7
paddle/fluid/eager/utils.cc
paddle/fluid/eager/utils.cc
+1
-1
paddle/fluid/pybind/eager_functions.cc
paddle/fluid/pybind/eager_functions.cc
+12
-11
python/paddle/fluid/tests/custom_op/test_custom_tanh_double_grad.py
...dle/fluid/tests/custom_op/test_custom_tanh_double_grad.py
+7
-3
未找到文件。
paddle/fluid/eager/api/utils/global_utils.h
浏览文件 @
00ecb98f
...
...
@@ -77,7 +77,8 @@ class Controller {
op_meta_info_map_
.
insert
(
map
.
begin
(),
map
.
end
());
}
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
unordered_map
<
int
,
int
>>>&
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
vector
<
std
::
unordered_map
<
int
,
int
>>>>&
GetCustomEdgesSlotMap
()
{
return
custom_edges_slot_map_
;
}
...
...
@@ -89,8 +90,10 @@ class Controller {
new
paddle
::
imperative
::
Tracer
()};
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
paddle
::
OpMetaInfo
>>
op_meta_info_map_
;
/* op_type : {{grad_outputs}, {grad_inputs}, {input}, {output}, {attrs}}*/
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
unordered_map
<
int
,
int
>>>
/* op_type : {{{grad_outputs}, {grad_inputs}, {input}, {output}, {attrs}},
* {{grad_outputs}, {grad_inputs}, {input}, {output}, {attrs}}}*/
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
vector
<
std
::
unordered_map
<
int
,
int
>>>>
custom_edges_slot_map_
;
DISABLE_COPY_AND_ASSIGN
(
Controller
);
};
...
...
paddle/fluid/eager/backward.cc
浏览文件 @
00ecb98f
...
...
@@ -698,8 +698,6 @@ std::vector<paddle::experimental::Tensor> RunBackward(
}
}
VLOG
(
6
)
<<
"Running GradNode:"
<<
node
->
name
();
// Check input
EnforceGradNodeHasInput
(
node
);
...
...
paddle/fluid/eager/custom_operator/custom_operator_node.cc
浏览文件 @
00ecb98f
...
...
@@ -15,10 +15,151 @@
#include "paddle/fluid/eager/custom_operator/custom_operator_node.h"
#include "paddle/fluid/framework/custom_operator.h"
#include "paddle/fluid/framework/op_meta_info_helper.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/phi/api/ext/op_meta_info.h"
#include "paddle/phi/core/dense_tensor.h"
namespace
egr
{
static
void
ConstructFwdAndBwdMap
(
const
std
::
vector
<
paddle
::
OpMetaInfo
>&
vec_map
,
const
std
::
string
&
op_type
)
{
auto
&
in_out_map
=
egr
::
Controller
::
Instance
().
GetCustomEdgesSlotMap
();
if
(
in_out_map
.
find
(
op_type
)
!=
in_out_map
.
end
())
{
if
(
in_out_map
[
op_type
].
size
()
==
2
)
{
VLOG
(
7
)
<<
"Find Exist CustomEdgesSlotMap Skip >>>> "
;
return
;
}
}
VLOG
(
7
)
<<
"Construct DoubleGrad's CustomEdgesSlotMap "
;
auto
inputs_names
=
paddle
::
framework
::
OpMetaInfoHelper
::
GetInputs
(
vec_map
[
1
]);
auto
outputs_names
=
paddle
::
framework
::
OpMetaInfoHelper
::
GetOutputs
(
vec_map
[
1
]);
auto
attrs_names
=
paddle
::
framework
::
OpMetaInfoHelper
::
GetAttrs
(
vec_map
[
1
]);
auto
grad_outputs_names
=
paddle
::
framework
::
OpMetaInfoHelper
::
GetOutputs
(
vec_map
[
2
]);
auto
grad_inputs_names
=
paddle
::
framework
::
OpMetaInfoHelper
::
GetInputs
(
vec_map
[
2
]);
auto
grad_attrs_names
=
paddle
::
framework
::
OpMetaInfoHelper
::
GetAttrs
(
vec_map
[
2
]);
std
::
vector
<
std
::
unordered_map
<
int
,
int
>>
res
(
5
);
in_out_map
[
op_type
].
push_back
(
res
);
// Prepare pos map for grad_outputs
VLOG
(
7
)
<<
"Prepare pos map for grad_outputs"
;
PADDLE_ENFORCE_LE
(
grad_outputs_names
.
size
(),
inputs_names
.
size
(),
paddle
::
platform
::
errors
::
InvalidArgument
(
"Grad outputs num should be less equal than forward inputs num."
));
for
(
size_t
i
=
0
;
i
<
grad_outputs_names
.
size
();
i
++
)
{
auto
end
=
grad_outputs_names
[
i
].
find
(
"@GRAD@GRAD"
);
if
(
end
!=
std
::
string
::
npos
)
{
for
(
size_t
j
=
0
;
j
<
inputs_names
.
size
();
j
++
)
{
if
(
grad_outputs_names
[
i
].
substr
(
0
,
end
+
5
)
==
inputs_names
[
j
])
{
VLOG
(
7
)
<<
" ==== Custom Operator: "
<<
op_type
<<
"_grad "
<<
"'s No."
<<
j
<<
" inputs: "
<<
inputs_names
[
j
]
<<
" related to No."
<<
i
<<
" grad_outputs: "
<<
grad_outputs_names
[
i
];
in_out_map
[
op_type
][
1
][
0
][
j
]
=
i
;
}
}
}
else
{
size_t
end_n
=
grad_outputs_names
[
i
].
find
(
"@GRAD@NEW"
);
if
(
end_n
!=
std
::
string
::
npos
)
{
for
(
size_t
j
=
0
;
j
<
inputs_names
.
size
();
j
++
)
{
if
(
grad_outputs_names
[
i
].
substr
(
0
,
end_n
)
==
inputs_names
[
j
])
{
VLOG
(
7
)
<<
" ==== Custom Operator: "
<<
op_type
<<
"_grad "
<<
"'s No."
<<
j
<<
" inputs: "
<<
inputs_names
[
j
]
<<
" related to No."
<<
i
<<
" grad_outputs: "
<<
grad_outputs_names
[
i
];
in_out_map
[
op_type
][
1
][
0
][
j
]
=
i
;
}
}
}
else
{
size_t
end_one_grad
=
grad_outputs_names
[
i
].
find
(
"@GRAD"
);
if
(
end_one_grad
!=
std
::
string
::
npos
)
{
for
(
size_t
j
=
0
;
j
<
inputs_names
.
size
();
j
++
)
{
if
(
grad_outputs_names
[
i
].
substr
(
0
,
end_one_grad
)
==
inputs_names
[
j
])
{
VLOG
(
7
)
<<
" ==== Custom Operator: "
<<
op_type
<<
"_grad "
<<
"'s No."
<<
j
<<
" inputs: "
<<
inputs_names
[
j
]
<<
" related to No."
<<
i
<<
" grad_outputs: "
<<
grad_outputs_names
[
i
];
in_out_map
[
op_type
][
1
][
0
][
j
]
=
i
;
}
}
}
else
{
PADDLE_THROW
(
paddle
::
platform
::
errors
::
NotFound
(
"All Grad outputs should be end of @GRAD@GRAD or @GRAD@NEW or "
"@GRAD and we got %s is not one of them, "
"please check your op and change to fit the rule."
,
grad_outputs_names
[
i
]));
}
}
}
}
// Prepare pos map for grad_inputs
for
(
size_t
i
=
0
;
i
<
grad_inputs_names
.
size
();
i
++
)
{
size_t
end
=
grad_inputs_names
[
i
].
find
(
"@GRAD@GRAD"
);
if
(
end
!=
std
::
string
::
npos
)
{
for
(
size_t
j
=
0
;
j
<
outputs_names
.
size
();
j
++
)
{
if
(
grad_inputs_names
[
i
].
substr
(
0
,
end
+
5
)
==
outputs_names
[
j
])
{
VLOG
(
7
)
<<
" ==== Custom Operator: "
<<
op_type
<<
"_grad "
<<
"'s No."
<<
j
<<
" outputs: "
<<
outputs_names
[
j
]
<<
" related to No."
<<
i
<<
" grad_inputs's grad: "
<<
grad_inputs_names
[
i
];
in_out_map
[
op_type
][
1
][
1
][
j
]
=
i
;
}
}
}
else
{
if
(
std
::
find
(
outputs_names
.
begin
(),
outputs_names
.
end
(),
grad_inputs_names
[
i
])
!=
outputs_names
.
end
())
{
for
(
size_t
j
=
0
;
j
<
outputs_names
.
size
();
j
++
)
{
if
(
grad_inputs_names
[
i
]
==
outputs_names
[
j
])
{
VLOG
(
7
)
<<
" ==== Custom Operator: "
<<
op_type
<<
"_grad "
<<
"'s No."
<<
j
<<
" outputs: "
<<
outputs_names
[
j
]
<<
" related to No."
<<
i
<<
" grad_inputs fwd outputs: "
<<
grad_inputs_names
[
i
];
in_out_map
[
op_type
][
1
][
2
][
j
]
=
i
;
}
}
}
else
{
for
(
size_t
j
=
0
;
j
<
inputs_names
.
size
();
j
++
)
{
if
(
grad_inputs_names
[
i
]
==
inputs_names
[
j
])
{
VLOG
(
7
)
<<
" ==== Custom Operator: "
<<
op_type
<<
"_grad "
<<
"'s No."
<<
j
<<
" inputs: "
<<
inputs_names
[
j
]
<<
" related to No."
<<
i
<<
" grad_inputs fwd inputs: "
<<
grad_inputs_names
[
i
];
in_out_map
[
op_type
][
1
][
3
][
j
]
=
i
;
}
}
}
}
}
// Prepare pos map for grad attrs_
for
(
size_t
i
=
0
;
i
<
grad_attrs_names
.
size
();
i
++
)
{
auto
end
=
std
::
find
(
attrs_names
.
begin
(),
attrs_names
.
end
(),
grad_attrs_names
[
i
]);
PADDLE_ENFORCE_NE
(
end
,
attrs_names
.
end
(),
paddle
::
platform
::
errors
::
NotFound
(
"All Grad attrs should be one of forward attrs and "
"we got %s is not one of them, please check your "
"op and change to fit the rule."
,
grad_attrs_names
[
i
]));
for
(
size_t
j
=
0
;
j
<
attrs_names
.
size
();
j
++
)
{
if
(
grad_attrs_names
[
i
]
==
attrs_names
[
j
])
{
VLOG
(
7
)
<<
" ==== Custom Operator: "
<<
op_type
<<
"_grad "
<<
"'s No."
<<
j
<<
" attrs: "
<<
attrs_names
[
j
]
<<
" related to No."
<<
i
<<
" grad_attrs: "
<<
grad_attrs_names
[
i
];
in_out_map
[
op_type
][
1
][
4
][
j
]
=
i
;
}
}
}
}
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
kSlotSmallVectorSize
>
RunCustomOpNode
::
operator
()(
...
...
@@ -38,10 +179,11 @@ RunCustomOpNode::operator()(
tmp_ins
(
grad_inputs_name
.
size
());
VLOG
(
7
)
<<
" Prepare Backward inputs of grads with size: "
<<
grads
.
size
()
<<
", whose grad_inputs_name size is: "
<<
grad_inputs_name
.
size
();
for
(
size_t
i
=
0
;
i
<
grads
.
size
();
i
++
)
{
if
(
map
[
1
].
find
(
i
)
!=
map
[
1
].
end
())
{
VLOG
(
7
)
<<
"Insert grad: "
<<
i
<<
" to grad_inputs: "
<<
map
[
1
][
i
];
tmp_ins
[
map
[
1
][
i
]]
=
grads
[
i
];
auto
hooked_grads
=
ApplyGradientHooks
(
grads
);
for
(
size_t
i
=
0
;
i
<
hooked_grads
.
size
();
i
++
)
{
if
(
map
[
0
][
1
].
find
(
i
)
!=
map
[
0
][
1
].
end
())
{
VLOG
(
7
)
<<
"Insert grad: "
<<
i
<<
" to grad_inputs: "
<<
map
[
0
][
1
][
i
];
tmp_ins
[
map
[
0
][
1
][
i
]]
=
hooked_grads
[
i
];
}
}
...
...
@@ -69,28 +211,218 @@ RunCustomOpNode::operator()(
tmp_outs
(
grad_outputs_names
.
size
());
VLOG
(
6
)
<<
"Prepare Grad outputs for size: "
<<
grad_outputs_names
.
size
();
for
(
size_t
i
=
0
;
i
<
OutputMeta
().
size
();
i
++
)
{
if
(
map
[
0
]
.
find
(
i
)
!=
map
[
0
].
end
())
{
if
(
map
[
0
]
[
0
].
find
(
i
)
!=
map
[
0
]
[
0
].
end
())
{
VLOG
(
7
)
<<
"Insert grad outputs: "
<<
i
<<
" with size: "
<<
OutputMeta
()[
i
].
size
()
<<
" to tmp_outputs: "
<<
map
[
0
][
i
];
<<
" to tmp_outputs: "
<<
map
[
0
][
0
][
i
];
for
(
size_t
j
=
0
;
j
<
OutputMeta
()[
i
].
size
();
j
++
)
{
outs
[
i
].
emplace_back
(
/* init it incase of copy nullptr of shared_ptr */
std
::
make_shared
<
phi
::
DenseTensor
>
(
phi
::
DataType
::
UNDEFINED
),
egr
::
Controller
::
Instance
().
GenerateUniqueName
(
"custom_tmp_grad"
));
egr
::
EagerUtils
::
autograd_meta
(
&
(
outs
[
i
][
j
]));
}
tmp_outs
[
map
[
0
][
i
]]
=
outs
[
i
];
tmp_outs
[
map
[
0
][
0
][
i
]]
=
outs
[
i
];
}
}
for
(
size_t
i
=
0
;
i
<
tmp_outs
.
size
();
i
++
)
{
VLOG
(
7
)
<<
"Prepare grad outputs size: "
<<
tmp_outs
[
i
].
size
();
ctx
.
EmplaceBackOutputs
(
tmp_outs
[
i
]);
}
VLOG
(
7
)
<<
"Run Kernel of Grad Custom Op: "
<<
op_type_
;
VLOG
(
7
)
<<
"Run Kernel of Grad Custom Op: "
<<
op_type_
<<
"_grad"
;
(
*
paddle
::
framework
::
OpMetaInfoHelper
::
GetKernelFn
(
kernel_map
.
at
(
op_type_
)[
1
]))(
&
ctx
);
VLOG
(
7
)
<<
"Get AutogradMeta for inputs and outputs for Custom Op"
;
std
::
vector
<
std
::
vector
<
egr
::
AutogradMeta
*>>
ins_auto_grad_metas
;
std
::
vector
<
std
::
vector
<
egr
::
AutogradMeta
*>>
outs_auto_grad_metas
;
VLOG
(
7
)
<<
"We got slot num of ins is: "
<<
ctx
.
InputRange
().
size
();
ins_auto_grad_metas
.
resize
(
ctx
.
InputRange
().
size
());
VLOG
(
7
)
<<
"We got slot num of outs is: "
<<
ctx
.
OutputRange
().
size
();
outs_auto_grad_metas
.
resize
(
ctx
.
OutputRange
().
size
());
for
(
size_t
i
=
0
;
i
<
ctx
.
InputRange
().
size
();
i
++
)
{
ins_auto_grad_metas
[
i
]
=
egr
::
EagerUtils
::
nullable_autograd_meta
(
ctx
.
InputsBetween
(
ctx
.
InputRangeAt
(
i
).
first
,
ctx
.
InputRangeAt
(
i
).
second
));
}
for
(
size_t
i
=
0
;
i
<
ctx
.
OutputRange
().
size
();
i
++
)
{
outs_auto_grad_metas
[
i
]
=
egr
::
EagerUtils
::
unsafe_autograd_meta
(
ctx
.
OutputsBetweeen
(
ctx
.
OutputRangeAt
(
i
).
first
,
ctx
.
OutputRangeAt
(
i
).
second
));
}
bool
require_any_grad
=
false
;
bool
trace_backward
=
egr
::
Controller
::
Instance
().
HasGrad
()
&&
create_graph
;
for
(
size_t
i
=
0
;
i
<
ins_auto_grad_metas
.
size
();
i
++
)
{
require_any_grad
=
require_any_grad
||
egr
::
EagerUtils
::
ComputeRequireGrad
(
trace_backward
,
&
(
ins_auto_grad_metas
[
i
]));
}
if
(
require_any_grad
)
{
auto
meta_info_map
=
egr
::
Controller
::
Instance
().
GetOpMetaInfoMap
();
const
auto
&
vec_map
=
meta_info_map
.
at
(
op_type_
);
paddle
::
platform
::
RecordEvent
node_creation_record_event
(
"Custom Op "
+
op_type_
+
" double_grad node_creation"
,
paddle
::
platform
::
TracerEventType
::
OperatorInner
,
1
);
VLOG
(
6
)
<<
" Construct Grad for Custom Op: "
<<
op_type_
;
ConstructFwdAndBwdMap
(
vec_map
,
op_type_
);
for
(
size_t
i
=
0
;
i
<
outs_auto_grad_metas
.
size
();
i
++
)
{
egr
::
EagerUtils
::
PassStopGradient
(
false
,
&
(
outs_auto_grad_metas
[
i
]));
}
auto
grad_node
=
std
::
make_shared
<
egr
::
RunCustomOpDoubleGradNode
>
(
outs_auto_grad_metas
.
size
(),
ins_auto_grad_metas
.
size
(),
op_type_
);
auto
slot_map
=
egr
::
Controller
::
Instance
().
GetCustomEdgesSlotMap
().
at
(
op_type_
);
// Prepare Grad outputs
size_t
no_grad_cnt
=
0
;
for
(
size_t
i
=
0
;
i
<
ins_auto_grad_metas
.
size
();
i
++
)
{
const
std
::
vector
<
paddle
::
experimental
::
Tensor
>&
in_tensors
=
ctx
.
InputsBetween
(
ctx
.
InputRangeAt
(
i
).
first
,
ctx
.
InputRangeAt
(
i
).
second
);
if
(
slot_map
[
1
][
0
].
find
(
i
)
!=
slot_map
[
1
][
0
].
end
())
{
grad_node
->
SetGradOutMeta
(
in_tensors
,
slot_map
[
1
][
0
][
i
]);
}
else
{
grad_node
->
SetGradOutMeta
(
in_tensors
,
ins_auto_grad_metas
.
size
()
-
1
-
no_grad_cnt
);
no_grad_cnt
++
;
}
}
// Prepare Grad inputs with grad of fwd outputs
for
(
size_t
i
=
0
;
i
<
outs_auto_grad_metas
.
size
();
i
++
)
{
const
std
::
vector
<
paddle
::
experimental
::
Tensor
>&
out_tensors
=
ctx
.
OutputsBetweeen
(
ctx
.
OutputRangeAt
(
i
).
first
,
ctx
.
OutputRangeAt
(
i
).
second
);
egr
::
EagerUtils
::
SetOutRankWithSlot
(
&
(
outs_auto_grad_metas
[
i
]),
i
);
egr
::
EagerUtils
::
SetHistory
(
&
(
outs_auto_grad_metas
[
i
]),
grad_node
);
grad_node
->
SetGradInMeta
(
out_tensors
,
i
);
egr
::
EagerUtils
::
CheckAndRetainGrad
(
out_tensors
);
}
// Prepare Grad inputs with fwd outputs
for
(
auto
it
=
slot_map
[
1
][
2
].
begin
();
it
!=
slot_map
[
1
][
2
].
end
();
it
++
)
{
VLOG
(
7
)
<<
"Prepare fwd_outs: "
<<
it
->
first
<<
" to grad_inputs: "
<<
it
->
second
;
grad_node
->
fwd_outs
[
it
->
second
]
=
egr
::
RunCustomOpNode
::
ConstructTensorWrapper
(
ctx
.
OutputsBetweeen
(
ctx
.
OutputRangeAt
(
it
->
first
).
first
,
ctx
.
OutputRangeAt
(
it
->
first
).
second
));
}
// Prepare Grad inputs with fwd inputs
for
(
auto
it
=
slot_map
[
1
][
3
].
begin
();
it
!=
slot_map
[
1
][
3
].
end
();
it
++
)
{
VLOG
(
7
)
<<
"Prepare fwd_ins: "
<<
it
->
first
<<
" to grad_inputs: "
<<
it
->
second
;
grad_node
->
fwd_ins
[
it
->
second
]
=
egr
::
RunCustomOpNode
::
ConstructTensorWrapper
(
ctx
.
InputsBetween
(
ctx
.
InputRangeAt
(
it
->
first
).
first
,
ctx
.
InputRangeAt
(
it
->
first
).
second
));
}
auto
attrs_names
=
paddle
::
framework
::
OpMetaInfoHelper
::
GetAttrs
(
meta_info_map
.
at
(
op_type_
)[
2
]);
std
::
vector
<
paddle
::
any
>
attrs
(
attrs_names
.
size
());
// Prepare attrs for Grad node
for
(
auto
it
=
slot_map
[
1
][
4
].
begin
();
it
!=
slot_map
[
1
][
4
].
end
();
it
++
)
{
VLOG
(
7
)
<<
"Prepare fwd attrs: "
<<
it
->
first
<<
" to grad_attrs: "
<<
it
->
second
;
attrs
[
it
->
second
]
=
attrs_
[
it
->
first
];
}
grad_node
->
SetAttrs
(
attrs
);
}
return
outs
;
}
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
kSlotSmallVectorSize
>
RunCustomOpDoubleGradNode
::
operator
()(
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
kSlotSmallVectorSize
>&
grads
,
bool
create_graph
,
bool
is_new_grad
)
{
// NOLINT
paddle
::
CustomOpKernelContext
ctx
;
auto
meta_info_map
=
egr
::
Controller
::
Instance
().
GetOpMetaInfoMap
();
const
auto
&
vec_map
=
meta_info_map
.
at
(
op_type_
);
auto
grad_inputs_name
=
paddle
::
framework
::
OpMetaInfoHelper
::
GetInputs
(
vec_map
[
2
]);
auto
grad_outputs_names
=
paddle
::
framework
::
OpMetaInfoHelper
::
GetOutputs
(
vec_map
[
2
]);
auto
map
=
egr
::
Controller
::
Instance
().
GetCustomEdgesSlotMap
().
at
(
op_type_
);
auto
kernel_map
=
egr
::
Controller
::
Instance
().
GetOpMetaInfoMap
();
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
kSlotSmallVectorSize
>
tmp_ins
(
grad_inputs_name
.
size
());
VLOG
(
7
)
<<
" Prepare Backward inputs of grads with size: "
<<
grads
.
size
()
<<
", whose grad_inputs_name size is: "
<<
grad_inputs_name
.
size
();
auto
hooked_grads
=
ApplyGradientHooks
(
grads
);
for
(
size_t
i
=
0
;
i
<
hooked_grads
.
size
();
i
++
)
{
if
(
map
[
1
][
1
].
find
(
i
)
!=
map
[
1
][
1
].
end
())
{
VLOG
(
7
)
<<
"Insert grad: "
<<
i
<<
" to grad_inputs: "
<<
map
[
1
][
1
][
i
];
tmp_ins
[
map
[
1
][
1
][
i
]]
=
hooked_grads
[
i
];
}
}
for
(
auto
it
:
fwd_outs
)
{
VLOG
(
7
)
<<
"Insert fwd_outs to grad_inputs: "
<<
it
.
first
;
tmp_ins
[
it
.
first
]
=
RunCustomOpDoubleGradNode
::
Recover
(
&
(
it
.
second
));
}
for
(
auto
it
:
fwd_ins
)
{
VLOG
(
7
)
<<
"Insert fwd_ins to grad_inputs: "
<<
it
.
first
;
tmp_ins
[
it
.
first
]
=
RunCustomOpDoubleGradNode
::
Recover
(
&
(
it
.
second
));
}
VLOG
(
6
)
<<
"Prepare Grad inputs"
;
for
(
const
auto
&
in
:
tmp_ins
)
{
ctx
.
EmplaceBackInputs
(
in
);
}
VLOG
(
6
)
<<
"Prepare Grad attrs"
;
ctx
.
EmplaceBackAttrs
(
attrs_
);
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
kSlotSmallVectorSize
>
outs
(
OutputMeta
().
size
());
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
kSlotSmallVectorSize
>
tmp_outs
(
grad_outputs_names
.
size
());
VLOG
(
6
)
<<
"Prepare Grad outputs for size: "
<<
grad_outputs_names
.
size
();
for
(
const
auto
&
name
:
grad_outputs_names
)
{
VLOG
(
6
)
<<
"Prepare Grad outputs name is: "
<<
name
;
}
for
(
size_t
i
=
0
;
i
<
OutputMeta
().
size
();
i
++
)
{
if
(
map
[
1
][
0
].
find
(
i
)
!=
map
[
1
][
0
].
end
())
{
VLOG
(
7
)
<<
"Insert grad outputs: "
<<
i
<<
" with size: "
<<
OutputMeta
()[
i
].
size
()
<<
" to tmp_outputs: "
<<
map
[
1
][
0
][
i
];
for
(
size_t
j
=
0
;
j
<
OutputMeta
()[
i
].
size
();
j
++
)
{
outs
[
i
].
emplace_back
(
/* init it incase of copy nullptr of shared_ptr */
std
::
make_shared
<
phi
::
DenseTensor
>
(
phi
::
DataType
::
UNDEFINED
),
egr
::
Controller
::
Instance
().
GenerateUniqueName
(
"custom_tmp_grad"
));
}
tmp_outs
[
map
[
1
][
0
][
i
]]
=
outs
[
i
];
}
}
for
(
size_t
i
=
0
;
i
<
tmp_outs
.
size
();
i
++
)
{
VLOG
(
7
)
<<
"Prepare grad outputs size: "
<<
tmp_outs
[
i
].
size
();
ctx
.
EmplaceBackOutputs
(
tmp_outs
[
i
]);
}
VLOG
(
7
)
<<
"Run Kernel of Grad Custom Op: "
<<
name
();
(
*
paddle
::
framework
::
OpMetaInfoHelper
::
GetKernelFn
(
kernel_map
.
at
(
op_type_
)[
2
]))(
&
ctx
);
return
outs
;
}
}
// namespace egr
paddle/fluid/eager/custom_operator/custom_operator_node.h
浏览文件 @
00ecb98f
...
...
@@ -67,7 +67,11 @@ class RunCustomOpNode : public GradNodeBase {
return
res
;
}
void
ClearTensorWrappers
()
override
{
VLOG
(
6
)
<<
"Do nothing here now"
;
}
void
ClearTensorWrappers
()
override
{
fwd_outs
.
clear
();
fwd_ins
.
clear
();
grads2grad_in_map
.
clear
();
}
void
SetAttrs
(
const
std
::
vector
<
paddle
::
any
>&
attr
)
{
attrs_
=
attr
;
}
...
...
@@ -87,4 +91,75 @@ class RunCustomOpNode : public GradNodeBase {
std
::
string
op_type_
{
""
};
};
class
RunCustomOpDoubleGradNode
:
public
GradNodeBase
{
public:
// Constructor: configure fwd input tensors to grad node
explicit
RunCustomOpDoubleGradNode
(
size_t
bwd_in_slot_num
,
size_t
bwd_out_slot_num
,
const
std
::
string
&
op_type
)
:
GradNodeBase
(
bwd_in_slot_num
,
bwd_out_slot_num
),
op_type_
(
op_type
)
{
VLOG
(
6
)
<<
"Construct RunCustomOpDoubleGradNode for op: "
<<
op_type
;
}
~
RunCustomOpDoubleGradNode
()
override
{
VLOG
(
6
)
<<
"Destruct RunCustomOpDoubleGradNode for op: "
<<
op_type_
;
}
// Functor: perform backward computations
virtual
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
kSlotSmallVectorSize
>
operator
()(
// NOLINT
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
kSlotSmallVectorSize
>&
grads
,
// NOLINT
bool
create_graph
=
false
,
bool
is_new_grad
=
false
)
// NOLINT
override
;
std
::
string
name
()
{
return
paddle
::
string
::
Sprintf
(
"RunCustomOpDoubleGradNode: %s_grad_grad"
,
op_type_
);
}
static
std
::
vector
<
egr
::
TensorWrapper
>
ConstructTensorWrapper
(
const
std
::
vector
<
paddle
::
experimental
::
Tensor
>&
fwd_var
)
{
std
::
vector
<
egr
::
TensorWrapper
>
res
;
for
(
auto
const
&
var
:
fwd_var
)
{
res
.
emplace_back
(
var
);
}
return
res
;
}
static
std
::
vector
<
paddle
::
experimental
::
Tensor
>
Recover
(
std
::
vector
<
egr
::
TensorWrapper
>*
fwd_var
)
{
std
::
vector
<
paddle
::
experimental
::
Tensor
>
res
;
for
(
size_t
i
=
0
;
i
<
fwd_var
->
size
();
i
++
)
{
res
.
emplace_back
(
fwd_var
->
at
(
i
).
recover
());
}
return
res
;
}
void
ClearTensorWrappers
()
override
{
fwd_outs
.
clear
();
fwd_ins
.
clear
();
grads2grad_in_map
.
clear
();
}
void
SetAttrs
(
const
std
::
vector
<
paddle
::
any
>&
attr
)
{
attrs_
=
attr
;
}
std
::
shared_ptr
<
GradNodeBase
>
Copy
()
const
override
{
auto
copied_node
=
std
::
shared_ptr
<
RunCustomOpDoubleGradNode
>
(
new
RunCustomOpDoubleGradNode
(
*
this
));
return
copied_node
;
}
public:
std
::
unordered_map
<
int
,
std
::
vector
<
egr
::
TensorWrapper
>>
fwd_outs
;
std
::
unordered_map
<
int
,
std
::
vector
<
egr
::
TensorWrapper
>>
fwd_ins
;
std
::
unordered_map
<
int
,
int
>
grads2grad_in_map
;
private:
std
::
vector
<
paddle
::
any
>
attrs_
;
std
::
string
op_type_
{
""
};
};
}
// namespace egr
paddle/fluid/eager/tensor_wrapper.h
浏览文件 @
00ecb98f
...
...
@@ -119,18 +119,24 @@ class TensorWrapper {
paddle
::
experimental
::
Tensor
recovered_tensor
=
intermidiate_tensor_
;
std
::
shared_ptr
<
GradNodeBase
>
new_grad_node
=
weak_grad_node_
.
lock
();
auto
*
intermediate_autograd_meta
=
EagerUtils
::
unsafe_autograd_meta
(
intermidiate_tensor_
);
auto
p_ab_autograd_meta
=
std
::
make_shared
<
AutogradMeta
>
(
*
intermediate_autograd_meta
);
if
(
new_grad_node
)
{
VLOG
(
3
)
<<
"Recovered TensorWrapper with GradNode "
<<
new_grad_node
->
name
()
<<
" addr: "
<<
new_grad_node
.
get
();
p_ab_autograd_meta
->
SetGradNode
(
new_grad_node
);
}
else
{
VLOG
(
3
)
<<
"Recovered TensorWrapper with Empth GradNode"
;
VLOG
(
3
)
<<
"Recovered TensorWrapper with Empty GradNode"
;
}
auto
*
intermediate_autograd_meta
=
EagerUtils
::
nullable_autograd_meta
(
intermidiate_tensor_
);
if
(
intermediate_autograd_meta
)
{
auto
p_ab_autograd_meta
=
std
::
make_shared
<
AutogradMeta
>
(
*
intermediate_autograd_meta
);
if
(
new_grad_node
)
{
p_ab_autograd_meta
->
SetGradNode
(
new_grad_node
);
}
recovered_tensor
.
set_autograd_meta
(
p_ab_autograd_meta
);
}
recovered_tensor
.
set_autograd_meta
(
p_ab_autograd_meta
);
return
recovered_tensor
;
}
}
...
...
paddle/fluid/eager/utils.cc
浏览文件 @
00ecb98f
...
...
@@ -157,7 +157,7 @@ void EagerUtils::SetHistory(std::vector<AutogradMeta*>* autograd_metas,
if
(
autograd_meta
->
GradNode
())
{
VLOG
(
7
)
<<
"Should not set grad node twice, original node is:"
<<
autograd_meta
->
GradNode
()
->
name
()
<<
"current is: "
<<
grad_node
->
name
();
<<
"
current is: "
<<
grad_node
->
name
();
}
autograd_meta
->
SetGradNode
(
grad_node
);
}
...
...
paddle/fluid/pybind/eager_functions.cc
浏览文件 @
00ecb98f
...
...
@@ -207,7 +207,8 @@ static void ConstructFwdAndBwdMap(
auto
grad_attrs_names
=
paddle
::
framework
::
OpMetaInfoHelper
::
GetAttrs
(
vec_map
[
1
]);
std
::
vector
<
std
::
unordered_map
<
int
,
int
>>
res
(
5
);
in_out_map
.
insert
({
op_type
,
res
});
in_out_map
.
insert
({
op_type
,
{
res
}});
// Prepare pos map for grad_outputs
VLOG
(
7
)
<<
"Prepare pos map for grad_outputs"
;
PADDLE_ENFORCE_LE
(
...
...
@@ -227,7 +228,7 @@ static void ConstructFwdAndBwdMap(
VLOG
(
7
)
<<
" ==== Custom Operator: "
<<
op_type
<<
"'s No."
<<
j
<<
" inputs: "
<<
inputs_names
[
j
]
<<
" related to No."
<<
i
<<
" grad_outputs: "
<<
grad_outputs_names
[
i
];
in_out_map
[
op_type
][
0
][
j
]
=
i
;
in_out_map
[
op_type
][
0
][
0
][
j
]
=
i
;
}
}
}
...
...
@@ -240,7 +241,7 @@ static void ConstructFwdAndBwdMap(
VLOG
(
7
)
<<
" ==== Custom Operator: "
<<
op_type
<<
"'s No."
<<
j
<<
" outputs: "
<<
outputs_names
[
j
]
<<
" related to No."
<<
i
<<
" grad_inputs's grad: "
<<
grad_inputs_names
[
i
];
in_out_map
[
op_type
][
1
][
j
]
=
i
;
in_out_map
[
op_type
][
0
][
1
][
j
]
=
i
;
}
}
}
else
{
...
...
@@ -252,7 +253,7 @@ static void ConstructFwdAndBwdMap(
<<
" outputs: "
<<
outputs_names
[
j
]
<<
" related to No."
<<
i
<<
" grad_inputs fwd outputs: "
<<
grad_inputs_names
[
i
];
in_out_map
[
op_type
][
2
][
j
]
=
i
;
in_out_map
[
op_type
][
0
][
2
][
j
]
=
i
;
}
}
}
else
{
...
...
@@ -262,7 +263,7 @@ static void ConstructFwdAndBwdMap(
<<
" inputs: "
<<
inputs_names
[
j
]
<<
" related to No."
<<
i
<<
" grad_inputs fwd inputs: "
<<
grad_inputs_names
[
i
];
in_out_map
[
op_type
][
3
][
j
]
=
i
;
in_out_map
[
op_type
][
0
][
3
][
j
]
=
i
;
}
}
}
...
...
@@ -284,7 +285,7 @@ static void ConstructFwdAndBwdMap(
VLOG
(
7
)
<<
" ==== Custom Operator: "
<<
op_type
<<
"'s No."
<<
j
<<
" attrs: "
<<
attrs_names
[
j
]
<<
" related to No."
<<
i
<<
" grad_attrs: "
<<
grad_attrs_names
[
i
];
in_out_map
[
op_type
][
4
][
j
]
=
i
;
in_out_map
[
op_type
][
0
][
4
][
j
]
=
i
;
}
}
}
...
...
@@ -402,8 +403,8 @@ static PyObject* eager_api_run_costum_op(PyObject* self, PyObject* args,
ctx
.
InputsBetween
(
ctx
.
InputRangeAt
(
i
).
first
,
ctx
.
InputRangeAt
(
i
).
second
);
if
(
slot_map
[
0
]
.
find
(
i
)
!=
slot_map
[
0
].
end
())
{
grad_node
->
SetGradOutMeta
(
in_tensors
,
slot_map
[
0
][
i
]);
if
(
slot_map
[
0
]
[
0
].
find
(
i
)
!=
slot_map
[
0
]
[
0
].
end
())
{
grad_node
->
SetGradOutMeta
(
in_tensors
,
slot_map
[
0
][
0
][
i
]);
}
else
{
grad_node
->
SetGradOutMeta
(
in_tensors
,
ins_auto_grad_metas
.
size
()
-
1
-
no_grad_cnt
);
...
...
@@ -423,7 +424,7 @@ static PyObject* eager_api_run_costum_op(PyObject* self, PyObject* args,
}
// Prepare Grad inputs with fwd outputs
for
(
auto
it
=
slot_map
[
2
].
begin
();
it
!=
slot_map
[
2
].
end
();
it
++
)
{
for
(
auto
it
=
slot_map
[
0
][
2
].
begin
();
it
!=
slot_map
[
0
]
[
2
].
end
();
it
++
)
{
VLOG
(
7
)
<<
"Prepare fwd_outs: "
<<
it
->
first
<<
" to grad_inputs: "
<<
it
->
second
;
grad_node
->
fwd_outs
[
it
->
second
]
=
...
...
@@ -433,7 +434,7 @@ static PyObject* eager_api_run_costum_op(PyObject* self, PyObject* args,
}
// Prepare Grad inputs with fwd inputs
for
(
auto
it
=
slot_map
[
3
].
begin
();
it
!=
slot_map
[
3
].
end
();
it
++
)
{
for
(
auto
it
=
slot_map
[
0
][
3
].
begin
();
it
!=
slot_map
[
0
]
[
3
].
end
();
it
++
)
{
VLOG
(
7
)
<<
"Prepare fwd_ins: "
<<
it
->
first
<<
" to grad_inputs: "
<<
it
->
second
;
grad_node
->
fwd_ins
[
it
->
second
]
=
...
...
@@ -446,7 +447,7 @@ static PyObject* eager_api_run_costum_op(PyObject* self, PyObject* args,
meta_info_map
.
at
(
op_type
)[
1
]);
std
::
vector
<
paddle
::
any
>
attrs
(
attrs_names
.
size
());
// Prepare attrs for Grad node
for
(
auto
it
=
slot_map
[
4
].
begin
();
it
!=
slot_map
[
4
].
end
();
it
++
)
{
for
(
auto
it
=
slot_map
[
0
][
4
].
begin
();
it
!=
slot_map
[
0
]
[
4
].
end
();
it
++
)
{
VLOG
(
7
)
<<
"Prepare fwd attrs: "
<<
it
->
first
<<
" to grad_attrs: "
<<
it
->
second
;
attrs
[
it
->
second
]
=
res_attrs
[
it
->
first
];
...
...
python/paddle/fluid/tests/custom_op/test_custom_tanh_double_grad.py
浏览文件 @
00ecb98f
...
...
@@ -21,8 +21,7 @@ import paddle.static as static
from
paddle.utils.cpp_extension
import
load
,
get_build_directory
from
paddle.utils.cpp_extension.extension_utils
import
run_cmd
from
utils
import
paddle_includes
,
extra_cc_args
,
extra_nvcc_args
from
paddle.fluid.framework
import
_test_eager_guard
,
_enable_legacy_dygraph
_enable_legacy_dygraph
()
from
paddle.fluid.framework
import
_test_eager_guard
# Because Windows don't use docker, the shared lib already exists in the
# cache dir, it will not be compiled again unless the shared lib is removed.
...
...
@@ -64,7 +63,7 @@ class TestCustomTanhDoubleGradJit(unittest.TestCase):
self
.
dtypes
=
[
'float32'
,
'float64'
]
self
.
devices
=
[
'cpu'
]
def
test_
func_double_grad_dynamic
(
self
):
def
func_double_grad_dynamic
(
self
):
for
device
in
self
.
devices
:
for
dtype
in
self
.
dtypes
:
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
4
,
8
]).
astype
(
dtype
)
...
...
@@ -85,6 +84,11 @@ class TestCustomTanhDoubleGradJit(unittest.TestCase):
"custom op out grad: {},
\n
paddle api out grad: {}"
.
format
(
dout
,
pd_dout
))
def
test_func_double_grad_dynamic
(
self
):
with
_test_eager_guard
():
self
.
func_double_grad_dynamic
()
self
.
func_double_grad_dynamic
()
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录