activation_op.cc 61.3 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/activation_op.h"
16

T
tink2123 已提交
17
#include <memory>
D
dzhwinter 已提交
18
#include <string>
19
#include <type_traits>
T
tink2123 已提交
20
#include <unordered_map>
21
#include <vector>
22

23
#include "paddle/fluid/framework/op_version_registry.h"
24
#include "paddle/fluid/operators/common_infer_shape_functions.h"
25
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
26
#include "paddle/phi/backends/dynload/port.h"
Q
qijun 已提交
27

A
Adam 已提交
28 29
DECLARE_bool(use_mkldnn);

Q
qijun 已提交
30 31 32
namespace paddle {
namespace operators {

33 34
template <typename GradFunctor>
static constexpr bool CanInplaceAct() {
35 36
  return GradFunctor::FwdDeps() == ActBwdOpFwdDeps::kDepOut ||
         GradFunctor::FwdDeps() == ActBwdOpFwdDeps::kNoDeps;
37 38
}

39 40 41 42 43 44 45 46 47 48 49 50 51 52
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT)           \
  class OP_NAME##OpMaker                                            \
      : public ::paddle::framework::OpProtoAndCheckerMaker {        \
   public:                                                          \
    void Make() override {                                          \
      AddInput("X",                                                 \
               "Input of " #OP_NAME                                 \
               " operator, an N-D Tensor, with data type float32, " \
               "float64 or float16.");                              \
      AddOutput("Out",                                              \
                "Output of " #OP_NAME                               \
                " operator, a Tensor with shape same as input.");   \
      AddComment(OP_COMMENT);                                       \
    }                                                               \
D
dzhwinter 已提交
53
  }
D
dzhwinter 已提交
54

H
hong 已提交
55 56
template <ActBwdOpFwdDeps kDepValue, typename T>
class ActivationGradOpMaker : public framework::SingleGradOpMaker<T> {
57
 public:
H
hong 已提交
58
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
59 60

 protected:
61
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
62 63 64 65
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
66

A
Adam 已提交
67 68
    if ((static_cast<int>(kDepValue) &
         static_cast<int>(ActBwdOpFwdDeps::kDepX)) ||
69 70
        FLAGS_use_mkldnn ||
        (op->HasAttr("use_mkldnn") &&
R
Ruibiao Chen 已提交
71
         PADDLE_GET_CONST(bool, op->GetAttr("use_mkldnn")))) {
72
      op->SetInput("X", this->Input("X"));  // x
73 74 75 76
    }

    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
77
      op->SetInput("Out", this->Output("Out"));  // out
78
    }
D
dzhwinter 已提交
79
  }
80
};
D
dzhwinter 已提交
81

82 83 84 85
framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx,
                                      const framework::OperatorWithKernel& oper,
                                      const std::string& name) {
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
86
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
87
  auto data_type = oper.IndicateVarDataType(ctx, name);
88 89 90 91 92 93 94 95 96 97
// FIXME(liuwei1031) temporarily disable the code to unblock users
// TODO(liuwei1031) figure out the reason behind
// https://github.com/PaddlePaddle/Paddle/issues/16096
// and re-enable this in the future
// #ifdef PADDLE_WITH_CUDA
//   auto it1 = oper.Attrs().find("use_cudnn");
//   if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) {
//     library = framework::LibraryType::kCUDNN;
//   }
// #endif
98
#ifdef PADDLE_WITH_MKLDNN
99
  if (library == framework::LibraryType::kPlain &&
100
      oper.CanMKLDNNBeUsed(ctx, data_type)) {
101
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
102
    layout = framework::DataLayout::kMKLDNN;
103 104
  }
#endif
105
  return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
106 107
}

Q
qijun 已提交
108 109 110 111
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

112
  void InferShape(framework::InferShapeContext* ctx) const override {
113
    ctx->ShareDim("X", /*->*/ "Out");
F
fengjiayi 已提交
114
    ctx->ShareLoD("X", /*->*/ "Out");
Q
qijun 已提交
115
  }
116

117
 protected:
118 119 120 121
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
J
Jacek Czaja 已提交
122 123

  framework::OpKernelType GetKernelTypeForVar(
124
      const std::string& var_name,
125
      const phi::DenseTensor& tensor,
126
      const framework::OpKernelType& expected_kernel_type) const override {
J
Jacek Czaja 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139
#ifdef PADDLE_WITH_MKLDNN
    // When activation is first oneDNN op (there was some non oneDNN op
    // previously)
    // then we also need to rotate shape NHWC -> NCWH
    if ((expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
        (tensor.layout() != framework::DataLayout::kMKLDNN) &&
        paddle::platform::MKLDNNDeviceContext::tls()
                .get_cur_paddle_data_layout() == framework::DataLayout::kNHWC) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(),
                                     framework::DataLayout::kNHWC);
    }
#endif
140 141
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
J
Jacek Czaja 已提交
142
  }
Q
qijun 已提交
143 144
};

C
chengduo 已提交
145 146 147
class ActivationOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
148
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
149
      const override {
150 151
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
152 153 154
  }
};

Q
qijun 已提交
155 156 157 158
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

159
  void InferShape(framework::InferShapeContext* ctx) const override {
160 161 162
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
Q
qijun 已提交
163
  }
164

165
 protected:
166 167
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
168
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
169
  }
Q
qijun 已提交
170 171
};

D
dzhwinter 已提交
172
UNUSED constexpr char SigmoidDoc[] = R"DOC(
173
Sigmoid Activation
K
Kexin Zhao 已提交
174

175
$$out = \frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
176

D
dzhwinter 已提交
177
)DOC";
Q
qijun 已提交
178

M
minghaoBD 已提交
179 180 181 182 183 184
UNUSED constexpr char SiluDoc[] = R"DOC(
Silu Activation Operator

$$out = x * \\frac{1}{1 + e^{-x}}$$
)DOC";

D
dzhwinter 已提交
185
UNUSED constexpr char LogSigmoidDoc[] = R"DOC(
186
Logsigmoid Activation Operator
K
Kexin Zhao 已提交
187

188
$$out = \\log \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
189

D
dzhwinter 已提交
190
)DOC";
191

D
dzhwinter 已提交
192
UNUSED constexpr char ExpDoc[] = R"DOC(
193
Exp Operator. Computes exp of x element-wise with a natural number :math:`e` as the base.
K
Kexin Zhao 已提交
194

195
$$out = e^x$$
K
Kexin Zhao 已提交
196

D
dzhwinter 已提交
197
)DOC";
Q
qijun 已提交
198

R
ronnywang 已提交
199 200 201 202 203 204 205
UNUSED constexpr char Expm1Doc[] = R"DOC(
Expm1 Operator. Computes expm1 of x element-wise with a natural number :math:`e` as the base.

$$out = e^x - 1$$

)DOC";

D
dzhwinter 已提交
206
UNUSED constexpr char ReluDoc[] = R"DOC(
K
kexinzhao 已提交
207
Relu Activation Operator.
K
Kexin Zhao 已提交
208

209
$$out = \max(x, 0)$$
K
Kexin Zhao 已提交
210

D
dzhwinter 已提交
211
)DOC";
K
Kexin Zhao 已提交
212

D
dzhwinter 已提交
213
UNUSED constexpr char TanhDoc[] = R"DOC(
K
kexinzhao 已提交
214
Tanh Activation Operator.
K
Kexin Zhao 已提交
215

Q
update  
qiaolongfei 已提交
216
$$out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
217

D
dzhwinter 已提交
218
)DOC";
219

D
dzhwinter 已提交
220
UNUSED constexpr char TanhShrinkDoc[] = R"DOC(
K
kexinzhao 已提交
221
TanhShrink Activation Operator.
K
Kexin Zhao 已提交
222

Y
Yan Chunwei 已提交
223
$$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
224

D
dzhwinter 已提交
225
)DOC";
K
Kexin Zhao 已提交
226

D
dzhwinter 已提交
227
UNUSED constexpr char SqrtDoc[] = R"DOC(
K
kexinzhao 已提交
228
Sqrt Activation Operator.
K
Kexin Zhao 已提交
229

N
Noel 已提交
230
$$out=\\sqrt{x}=x^{1/2}$$
231

232 233
**Note**:
  input value must be greater than or equal to zero.
K
Kexin Zhao 已提交
234

D
dzhwinter 已提交
235
)DOC";
236

Z
zhoukunsheng 已提交
237 238 239 240 241
UNUSED constexpr char RsqrtDoc[] = R"DOC(
Rsqrt Activation Operator.

Please make sure input is legal in case of numeric errors.

242
$$out = \\frac{1}{\\sqrt{x}}$$
Z
zhoukunsheng 已提交
243 244 245

)DOC";

D
dzhwinter 已提交
246
UNUSED constexpr char CeilDoc[] = R"DOC(
247
Ceil Operator. Computes ceil of x element-wise.
D
dzhwinter 已提交
248

249 250
..  math::
    out = \left \lceil x \right \rceil
D
dzhwinter 已提交
251

D
dzhwinter 已提交
252
)DOC";
D
dzhwinter 已提交
253

D
dzhwinter 已提交
254
UNUSED constexpr char FloorDoc[] = R"DOC(
255
Floor Activation Operator. Computes floor of x element-wise.
D
dzhwinter 已提交
256

N
Noel 已提交
257
$$out = \\lfloor x \\rfloor$$
D
dzhwinter 已提交
258

D
dzhwinter 已提交
259
)DOC";
D
dzhwinter 已提交
260

D
dzhwinter 已提交
261
UNUSED constexpr char CosDoc[] = R"DOC(
262
Cosine Operator. Computes cosine of x element-wise.
C
add cos  
chengduoZH 已提交
263

Y
Yang Zhang 已提交
264 265
Input range is `(-inf, inf)` and output range is `[-1,1]`.

266 267
..  math::
    out = cos(x)
C
add cos  
chengduoZH 已提交
268

D
dzhwinter 已提交
269
)DOC";
C
add cos  
chengduoZH 已提交
270

J
joejiong 已提交
271 272 273 274 275 276 277 278 279
UNUSED constexpr char TanDoc[] = R"DOC(
Tangent Operator. Computes tangent of x element-wise.

Input range is `(k*pi-pi/2, k*pi+pi/2)` and output range is `(-inf, inf)`.

$$out = tan(x)$$

)DOC";

D
dzhwinter 已提交
280
UNUSED constexpr char SinDoc[] = R"DOC(
C
add sin  
chengduoZH 已提交
281 282
Sine Activation Operator.

283
$$out = sin(x)$$
C
add sin  
chengduoZH 已提交
284

D
dzhwinter 已提交
285
)DOC";
C
add sin  
chengduoZH 已提交
286

287 288 289 290 291 292 293 294 295 296
UNUSED constexpr char SinhDoc[] = R"DOC(
Sinh Activation Operator.

$$out = sinh(x)$$

)DOC";

UNUSED constexpr char CoshDoc[] = R"DOC(
Cosh Activation Operator.

297 298 299 300
Input range `(-inf, inf)`, output range `(1, inf)`.

..  math::
    out = \frac{exp(x)+exp(-x)}{2}
301 302 303

)DOC";

X
xiaoting 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
UNUSED constexpr char AsinhDoc[] = R"DOC(
Asinh Activation Operator.

$$out = asinh(x)$$

)DOC";

UNUSED constexpr char AcoshDoc[] = R"DOC(
Acosh Activation Operator.

$$out = acosh(x)$$

)DOC";

UNUSED constexpr char AtanhDoc[] = R"DOC(
Atanh Activation Operator.

$$out = atanh(x)$$

)DOC";

D
dzhwinter 已提交
325
UNUSED constexpr char RoundDoc[] = R"DOC(
326
The OP rounds the values in the input to the nearest integer value.
D
dzhwinter 已提交
327

N
Noel 已提交
328
.. code-block:: text
329 330 331 332 333 334 335 336

  input:
    x.shape = [4]
    x.data = [1.2, -0.9, 3.4, 0.9]

  output:
    out.shape = [4]
    out.data = [1., -1., 3., 1.]
D
dzhwinter 已提交
337

D
dzhwinter 已提交
338
)DOC";
D
dzhwinter 已提交
339

D
dzhwinter 已提交
340
UNUSED constexpr char ReciprocalDoc[] = R"DOC(
K
kexinzhao 已提交
341
Reciprocal Activation Operator.
K
Kexin Zhao 已提交
342

343
$$out = \\frac{1}{x}$$
K
Kexin Zhao 已提交
344

D
dzhwinter 已提交
345
)DOC";
346

D
dzhwinter 已提交
347
UNUSED constexpr char LogDoc[] = R"DOC(
K
kexinzhao 已提交
348
Log Activation Operator.
K
Kexin Zhao 已提交
349

350
$$out = \ln(x)$$
K
Kexin Zhao 已提交
351 352 353

Natural logarithm of x.

D
dzhwinter 已提交
354 355
)DOC";

J
joejiong 已提交
356 357 358 359 360 361 362 363 364
UNUSED constexpr char Log2Doc[] = R"DOC(
Log2 Activation Operator.

$$out = \log_2x$$

logarithm of x base to 2.

)DOC";

J
joejiong 已提交
365 366 367 368 369 370 371 372 373
UNUSED constexpr char Log10Doc[] = R"DOC(
Log10 Activation Operator.

$$out = \log_10_x$$

logarithm of x base to 10.

)DOC";

374 375 376 377 378 379 380 381 382
UNUSED constexpr char Log1pDoc[] = R"DOC(
Log Activation Operator.

$out = \ln(x+1)$

Natural logarithm of x.

)DOC";

D
dzhwinter 已提交
383
UNUSED constexpr char SquareDoc[] = R"DOC(
384
The OP square each elements of the inputs.
D
dzhwinter 已提交
385

386
$$out = x^2$$
387

D
dzhwinter 已提交
388 389
)DOC";

D
dzhwinter 已提交
390
UNUSED constexpr char SoftsignDoc[] = R"DOC(
D
dzhwinter 已提交
391 392
Softsign Activation Operator.

393
$$out = \\frac{x}{1 + \|x\|}$$
D
dzhwinter 已提交
394 395 396

)DOC";

T
tink2123 已提交
397 398 399 400
class AcosOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of acos operator");
401
    AddOutput("Out", "Tensor, same shape and dtype as input");
T
tink2123 已提交
402
    AddComment(R"DOC(
403
Arccosine Operator.
404

405 406
..  math::
    out = \cos^{-1}(x)
407

T
tink2123 已提交
408 409 410
)DOC");
  }
};
411

T
tink2123 已提交
412 413 414
class AsinOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
W
wawltor 已提交
415 416 417
    AddInput("X",
             "Input of asin operator, an N-D Tensor, with data type float32, "
             "float64 or float16.");
418
    AddOutput("Out", "Tensor, same shape and dtype as input.");
T
tink2123 已提交
419
    AddComment(R"DOC(
420
Arcsine Operator.
421

422 423
..  math::
    out = \sin^{-1}(x)
424

T
tink2123 已提交
425 426 427
)DOC");
  }
};
428

T
tink2123 已提交
429 430 431
class AtanOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
W
wawltor 已提交
432 433 434
    AddInput("X",
             "Input of atan operator, an N-D Tensor, with data type float32, "
             "float64 or float16.");
435
    AddOutput("Out", "Tensor, same shape and dtype as input x");
T
tink2123 已提交
436
    AddComment(R"DOC(
437
Arctangent Operator.
438

439 440
..  math::
    out = \tan^{-1}(x)
441

T
tink2123 已提交
442 443 444
)DOC");
  }
};
445

D
dzhwinter 已提交
446
class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
447
 public:
Y
Yu Yang 已提交
448
  void Make() override {
W
Wilber 已提交
449 450 451 452 453 454 455 456
    AddInput("X",
             "A LoDTensor or Tensor representing preactivation values. Must be "
             "one of the following types: float32, float64.");
    AddOutput(
        "Out",
        "A LoDTensor or Tensor with the same type and size as that of x.");
    AddAttr<float>("alpha", "Slope of the activation function at x < 0.")
        .SetDefault(0.02f);
K
Kexin Zhao 已提交
457
    AddComment(R"DOC(
D
dzhwinter 已提交
458
LeakyRelu Activation Operator.
K
Kexin Zhao 已提交
459

W
Wilber 已提交
460
$$out = \max(x, \alpha * x)$$
K
Kexin Zhao 已提交
461 462

)DOC");
463 464 465
  }
};

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
class SoftplusOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "Input of Softplus operator, an N-D Tensor, with data type "
             "float32, float64 or float16.");
    AddOutput(
        "Out",
        "Output of Softplus operator, a Tensor with shape same as input.");
    AddAttr<float>("beta", "The value of beta for Softplus.").SetDefault(1.0f);
    AddAttr<float>("threshold", "The value of threshold for Softplus.")
        .SetDefault(20.0f);
    AddComment(R"DOC(
:strong:`Softplus Activation Operator`

..  math::
    out = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) \\
    \text{For numerical stability, the implementation reverts to the linear function when :}\,x \times \beta > threshold.

)DOC");
  }
};

D
dzhwinter 已提交
489
class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
K
kexinzhao 已提交
490
 public:
Y
Yu Yang 已提交
491
  void Make() override {
D
dzhwinter 已提交
492 493 494
    AddInput("X", "Input of Softshrink operator");
    AddOutput("Out", "Output of Softshrink operator");
    AddAttr<float>("lambda", "non-negative offset").SetDefault(0.5f);
K
Kexin Zhao 已提交
495
    AddComment(R"DOC(
496 497 498
:strong:`Softshrink Activation Operator`

..  math::
499
    out = \begin{cases}
500 501 502 503
         x - \lambda, \text{if } x > \lambda \\
         x + \lambda, \text{if } x < -\lambda \\
         0,  \text{otherwise}
         \end{cases}
K
Kexin Zhao 已提交
504 505

)DOC");
K
kexinzhao 已提交
506 507 508
  }
};

D
dzhwinter 已提交
509
class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
510
 public:
Y
Yu Yang 已提交
511
  void Make() override {
D
dzhwinter 已提交
512 513
    AddInput("X", "Input of HardShrink operator");
    AddOutput("Out", "Output of HardShrink operator");
Y
yuyang18 已提交
514 515
    AddAttr<float>("threshold",
                   "The value of threshold for HardShrink. [default: 0.5]")
D
dzhwinter 已提交
516
        .SetDefault(0.5f);
K
Kexin Zhao 已提交
517
    AddComment(R"DOC(
Y
yuyang18 已提交
518
:strong:`HardShrink activation operator`
K
Kexin Zhao 已提交
519

Y
yuyang18 已提交
520 521 522 523 524 525
..  math::
    out = \begin{cases}
            x, \text{if } x > \lambda \\
            x, \text{if } x < -\lambda \\
            0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
526 527

)DOC");
528 529 530
  }
};

531 532
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
533
  void Make() override {
534 535 536 537 538 539
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32, float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``X``.");
540 541 542 543
    AddAttr<float>("t_min", "The min marginal value of BRelu")
        .SetDefault(static_cast<float>(0));
    AddAttr<float>("t_max", "The max marginal value of BRelu")
        .SetDefault(static_cast<float>(24));
K
Kexin Zhao 已提交
544
    AddComment(R"DOC(
K
kexinzhao 已提交
545
BRelu Activation Operator.
K
Kexin Zhao 已提交
546

547
$$out = \min(\max(x, t_{min}), t_{max})$$
K
Kexin Zhao 已提交
548 549

)DOC");
550 551 552 553 554
  }
};

class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
555
  void Make() override {
556
    AddInput("X", "Input of SoftRelu operator");
F
fengjiayi 已提交
557
    AddOutput("Out", "Output of SoftRelu operator");
558 559
    AddAttr<float>("threshold", "The threshold value of SoftRelu")
        .SetDefault(40.0f);
K
Kexin Zhao 已提交
560
    AddComment(R"DOC(
K
kexinzhao 已提交
561
SoftRelu Activation Operator.
K
Kexin Zhao 已提交
562

563
$$out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$$
K
Kexin Zhao 已提交
564 565

)DOC");
566 567 568
  }
};

569 570
class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
571
  void Make() override {
572 573 574 575 576 577
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
578
    AddAttr<float>("alpha", "The alpha value of ELU").SetDefault(1.0f);
579
    AddComment(R"DOC(
K
kexinzhao 已提交
580
ELU Activation Operator.
K
Kexin Zhao 已提交
581 582 583 584

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.

585
$$out = \max(0, x) + \min(0, \alpha * (e^x - 1))$$
K
Kexin Zhao 已提交
586 587

)DOC");
588 589 590
  }
};

Z
zhupengyang 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
template <typename T>
class ELUGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("elu_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput("X", this->Input("X"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
  }
};

W
wangzhen38 已提交
607 608 609 610 611 612 613 614 615
class LogitOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of Logit operator");
    AddOutput("Out", "Output of Logit operator");
    AddAttr<float>("eps",
                   "(float, default 1e-6f) the epsilon for input clamp bound")
        .SetDefault(1e-6f);
    AddComment(R"DOC(
616
Logit Operator.
W
wangzhen38 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639

this function is defined as follow:
$ logit=ln\left ( {\frac {x} {1-x}} \right ) $

)DOC");
  }
};

template <typename T>
class LogitGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("logit_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
class CELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
    AddAttr<float>("alpha", "The alpha value of CELU").SetDefault(1.0f);
    AddComment(R"DOC(
CELU Activation Operator.

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1704.07483.

$$out = \max(0, x) + \min(0, \alpha * (e^(x/\alpha) - 1))$$

)DOC");
  }
};

662 663
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
664
  void Make() override {
Z
zhupengyang 已提交
665 666 667 668 669 670 671 672
    AddInput("X",
             "Input of relu6 operator, an N-D Tensor, "
             "with data type float32, float64.");
    AddOutput(
        "Out",
        "Output of relu6 operator, a Tensor with the same shape as input.");
    AddAttr<float>("threshold",
                   "The threshold value of Relu6. Default is 6.0. ")
673
        .SetDefault(6.0f);
K
Kexin Zhao 已提交
674
    AddComment(R"DOC(
K
kexinzhao 已提交
675
Relu6 Activation Operator.
K
Kexin Zhao 已提交
676

677
$$out = \min(\max(0, x), threshold)$$
K
Kexin Zhao 已提交
678 679

)DOC");
680 681 682
  }
};

683 684
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
685
  void Make() override {
686
    AddInput("X", "Input of Pow operator");
687 688 689 690 691
    AddInput("FactorTensor",
             "(Tensor<float>, optional). If provided, pow will use this"
             "The shape of FactorTensor MUST BE [1]."
             "it has higher priority than attr(factor).")
        .AsDispensable();
F
fengjiayi 已提交
692
    AddOutput("Out", "Output of Pow operator");
693
    AddAttr<float>("factor", "The exponential factor of Pow").SetDefault(1.0f);
K
Kexin Zhao 已提交
694
    AddComment(R"DOC(
K
kexinzhao 已提交
695
Pow Activation Operator.
K
Kexin Zhao 已提交
696

697
$$out = x^{factor}$$
K
Kexin Zhao 已提交
698 699

)DOC");
700 701 702 703 704
  }
};

class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
705
  void Make() override {
706 707
    AddInput("X",
             "Input of STanh operator."
N
Noel 已提交
708
             " A Tensor with type float32, float64.");
709 710 711
    AddOutput("Out", "Output of STanh operator. A Tensor with type float32.");
    AddAttr<float>("scale_a", "The scale parameter of a for the input. ")
        .SetDefault(0.67f);
712 713
    AddAttr<float>("scale_b", "The scale parameter of b for the input")
        .SetDefault(1.7159f);
K
Kexin Zhao 已提交
714
    AddComment(R"DOC(
K
kexinzhao 已提交
715
STanh Activation Operator.
K
Kexin Zhao 已提交
716

Y
Yan Chunwei 已提交
717
$$out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
K
Kexin Zhao 已提交
718 719

)DOC");
Q
qijun 已提交
720 721 722
  }
};

723 724
class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
725
  void Make() override {
726
    AddInput("X", "Input of ThresholdedRelu operator");
F
fengjiayi 已提交
727
    AddOutput("Out", "Output of ThresholdedRelu operator");
Y
yuyang18 已提交
728 729
    AddAttr<float>("threshold",
                   "The threshold location of activation. [default 1.0].")
730
        .SetDefault(1.0f);
K
Kexin Zhao 已提交
731
    AddComment(R"DOC(
Y
yuyang18 已提交
732
:strong:`ThresholdedRelu activation operator`
K
Kexin Zhao 已提交
733

Y
yuyang18 已提交
734
..  math::
K
Kexin Zhao 已提交
735

Y
yuyang18 已提交
736
    out = \begin{cases}
Y
yuyang18 已提交
737
             x,  \text{if } x > threshold \\
Y
yuyang18 已提交
738 739
             0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
740
)DOC");
741 742 743
  }
};

744 745
class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
746
  void Make() override {
747 748 749 750 751
    AddInput("X", "An N-D Tensor with data type float32, float64. ");
    AddOutput("Out", "A Tensor with the same shape as input. ");
    AddAttr<float>("slope",
                   "The slope of the linear approximation of sigmoid. Its "
                   "value MUST BE positive. Default is 0.2. ")
752
        .SetDefault(0.2f);
753 754 755
    AddAttr<float>(
        "offset",
        "The offset of the linear approximation of sigmoid. Default is 0.5. ")
756
        .SetDefault(0.5f);
757
    AddComment(R"DOC(
K
kexinzhao 已提交
758
HardSigmoid Activation Operator.
759

760
A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
K
Kexin Zhao 已提交
761
which is much faster than sigmoid.
762

763
$$out = \max(0, \min(1, slope * x + offset))$$
764

K
Kexin Zhao 已提交
765
)DOC");
766 767 768
  }
};

A
Abhinav Arora 已提交
769 770
class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
771
  void Make() override {
A
Abhinav Arora 已提交
772
    AddInput("X", "Input of Swish operator");
F
fengjiayi 已提交
773
    AddOutput("Out", "Output of Swish operator");
A
Abhinav Arora 已提交
774 775 776 777
    AddAttr<float>("beta", "Constant beta of swish operator").SetDefault(1.0f);
    AddComment(R"DOC(
Swish Activation Operator.

778
$$out = \\frac{x}{1 + e^{- \beta \ x}}$$
A
Abhinav Arora 已提交
779 780 781 782 783

)DOC");
  }
};

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
class MishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of Mish operator");
    AddOutput("Out", "Output of Mish operator");
    AddAttr<float>(
        "threshold",
        "Constant threshold of softplus in Mish operator. Approximate value "
        "of softplus will be used if absolute value of input is greater than "
        ":attr:`threshold`")
        .SetDefault(20.f);
    AddComment(R"DOC(
Mish Activation Operator.

..  math::
    softplus(x) = \begin{cases}
            x, \text{if } x > \text{threshold} \\
            \ln(1 + e^{x}),  \text{otherwise}
          \end{cases}

    out = x * \tanh(softplus(x))

)DOC");
  }
};

H
huangjun12 已提交
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
class HardSwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of HardSwish operator");
    AddOutput("Out", "Output of HardSwish operator");
    AddAttr<float>("threshold", "The threshold parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("scale", "The scale parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("offset", "The offset parameter of HardSwish operator")
        .SetDefault(3.0f);
    AddComment(R"DOC(
HardSwish Activation Operator.

The hard version of swish(https://arxiv.org/pdf/1905.02244.pdf).

826
$$out = \frac{x * (min(max(0, x+offset), threshold))}{scale}$$
H
huangjun12 已提交
827 828 829 830 831 832 833 834 835

The threshold and scale should be positive. The offset can be either positive or negative.
The default parameters are set according to the above reference.
It is recommended to use the defaults for this activation.

)DOC");
  }
};

D
dzhwinter 已提交
836
REGISTER_ACTIVATION_OP_MAKER(Sigmoid, SigmoidDoc);
M
minghaoBD 已提交
837
REGISTER_ACTIVATION_OP_MAKER(Silu, SiluDoc);
D
dzhwinter 已提交
838 839
REGISTER_ACTIVATION_OP_MAKER(LogSigmoid, LogSigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(Exp, ExpDoc);
R
ronnywang 已提交
840
REGISTER_ACTIVATION_OP_MAKER(Expm1, Expm1Doc);
D
dzhwinter 已提交
841 842 843 844
REGISTER_ACTIVATION_OP_MAKER(Relu, ReluDoc);
REGISTER_ACTIVATION_OP_MAKER(Tanh, TanhDoc);
REGISTER_ACTIVATION_OP_MAKER(TanhShrink, TanhShrinkDoc);
REGISTER_ACTIVATION_OP_MAKER(Sqrt, SqrtDoc);
Z
zhoukunsheng 已提交
845
REGISTER_ACTIVATION_OP_MAKER(Rsqrt, RsqrtDoc);
D
dzhwinter 已提交
846 847 848
REGISTER_ACTIVATION_OP_MAKER(Ceil, CeilDoc);
REGISTER_ACTIVATION_OP_MAKER(Floor, FloorDoc);
REGISTER_ACTIVATION_OP_MAKER(Cos, CosDoc);
J
joejiong 已提交
849
REGISTER_ACTIVATION_OP_MAKER(Tan, TanDoc);
D
dzhwinter 已提交
850
REGISTER_ACTIVATION_OP_MAKER(Sin, SinDoc);
851 852
REGISTER_ACTIVATION_OP_MAKER(Sinh, SinhDoc);
REGISTER_ACTIVATION_OP_MAKER(Cosh, CoshDoc);
X
xiaoting 已提交
853 854 855
REGISTER_ACTIVATION_OP_MAKER(Acosh, AcoshDoc);
REGISTER_ACTIVATION_OP_MAKER(Asinh, AsinhDoc);
REGISTER_ACTIVATION_OP_MAKER(Atanh, AtanhDoc);
D
dzhwinter 已提交
856 857 858
REGISTER_ACTIVATION_OP_MAKER(Round, RoundDoc);
REGISTER_ACTIVATION_OP_MAKER(Reciprocal, ReciprocalDoc);
REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc);
J
joejiong 已提交
859
REGISTER_ACTIVATION_OP_MAKER(Log2, Log2Doc);
J
joejiong 已提交
860
REGISTER_ACTIVATION_OP_MAKER(Log10, Log10Doc);
861
REGISTER_ACTIVATION_OP_MAKER(Log1p, Log1pDoc);
D
dzhwinter 已提交
862 863 864
REGISTER_ACTIVATION_OP_MAKER(Square, SquareDoc);
REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc);

865
template <ActBwdOpFwdDeps kDepValue>
866 867 868 869 870
class ActivationOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
871 872
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
873
      if (ctx->HasOutput("DX")) {
874 875 876
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
877
      if (ctx->HasOutput("DDOut")) {
878 879 880
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
881
    }
882 883
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
884
      if (ctx->HasOutput("DOut")) {
885 886 887
        ctx->ShareDim("Out", "DOut");
        ctx->ShareLoD("Out", "DOut");
      }
888 889 890 891
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
892 893 894 895
      if (ctx->HasOutput("DOutNew")) {
        ctx->ShareDim("Out", "DOutNew");
        ctx->ShareLoD("Out", "DOutNew");
      }
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

template <ActBwdOpFwdDeps kDepValue>
class ActivationOpDoubleGrad2 : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
912 913
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
914 915 916 917 918
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
919 920
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
921
      if (ctx->HasOutput("DDOut")) {
922 923 924
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
925 926 927 928 929 930 931 932 933 934
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

935 936 937 938 939 940
template <ActBwdOpFwdDeps kDepValue>
class ActivationOpTripleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
941 942
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
943 944 945 946 947 948 949 950 951
      if (ctx->HasOutput("DX")) {
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
952 953
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
      if (ctx->HasOutput("D_DOut")) {
        ctx->ShareDim("Out", "D_DOut");
        ctx->ShareLoD("Out", "D_DOut");
      }
      if (ctx->HasOutput("D_OutNew")) {
        ctx->ShareDim("Out", "D_OutNew");
        ctx->ShareLoD("Out", "D_OutNew");
      }
      if (ctx->HasOutput("D_DDx")) {
        ctx->ShareDim("DDX", "D_DDx");
        ctx->ShareLoD("DDX", "D_DDx");
      }
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
template <typename T>
class SigmoidDoubleGradMaker
    : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("sigmoid_grad_grad");
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // output: ddy
    op->SetOutput("DOutNew", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
template <typename T>
class SigmoidTripleGradMaker
    : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("sigmoid_triple_grad");
    // Out, DDX, DOut, D_DDOut, D_DOut_New   // input
    // D_OutNew, D_DOut, D_DDx               // output
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->Input("DDX"));
    // input3: dout
    op->SetInput("DOut", this->Input("DOut"));
    // input4: d_ddout
    op->SetInput("D_DDOut", this->OutputGrad("DDOut"));
    // input5: d_dout_new
    op->SetInput("D_DOut_New", this->OutputGrad("DOutNew"));
    op->SetAttrMap(this->Attrs());

    // output: d_dOut, d_OutNew, d_ddx
    op->SetOutput("D_OutNew", this->InputGrad("Out"));
    op->SetOutput("D_DOut", this->InputGrad("DOut"));
    op->SetOutput("D_DDx", this->InputGrad("DDX"));
  }
};

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
template <typename T>
class TanhDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("tanh_grad_grad");
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // output: ddy
    op->SetOutput("DOutNew", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
template <typename T>
class TanhTripleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("tanh_triple_grad");
    // Out, DDX, DOut, D_DDOut, D_DOut_New   // input
    // D_OutNew, D_DOut, D_DDx               // output
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->Input("DDX"));
    // input3: dout
    op->SetInput("DOut", this->Input("DOut"));
    // input4: d_ddout
    op->SetInput("D_DDOut", this->OutputGrad("DDOut"));
    // input5: d_dout_new
    op->SetInput("D_DOut_New", this->OutputGrad("DOutNew"));
    op->SetAttrMap(this->Attrs());

    // output: d_dOut, d_OutNew, d_ddx
    op->SetOutput("D_OutNew", this->InputGrad("Out"));
    op->SetOutput("D_DOut", this->InputGrad("DOut"));
    op->SetOutput("D_DDx", this->InputGrad("DDX"));
  }
};
1075 1076
// ReluGrad: dx = dy if y >= 0 else 0
// ReluGradGrad: ddy = ddx if y >= 0 else 0
H
hong 已提交
1077 1078
template <typename T>
class ReluDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
1079
 public:
H
hong 已提交
1080
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1081 1082

 protected:
1083
  void Apply(GradOpPtr<T> op) const override {
1084 1085
    op->SetType("relu_grad_grad");
    // input1: Out
H
hong 已提交
1086
    op->SetInput("Out", this->Input("Out"));
Q
qingqing01 已提交
1087
    // input2: ddx
H
hong 已提交
1088 1089
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
1090
    // output: ddy
H
hong 已提交
1091
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
1092 1093 1094
  }
};

1095 1096
// leaky_relu Grad: dx=dy if x>=0 else alpha * dy
// leaky_relu GradGrad: ddy=ddx if x>=0 else alpha * ddx
H
hong 已提交
1097
template <typename T>
1098
class LeakyReluDoubleGradMaker
H
hong 已提交
1099
    : public ::paddle::framework::SingleGradOpMaker<T> {
1100
 public:
H
hong 已提交
1101
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1102 1103

 protected:
1104
  void Apply(GradOpPtr<T> op) const override {
1105
    op->SetType("leaky_relu_grad_grad");
1106 1107
    // input1: X
    op->SetInput("X", this->Input("X"));
1108
    // X@GRAD@GRAD: ddx
H
hong 已提交
1109 1110
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
1111
    // Out@GRAD@GRAD: ddy
H
hong 已提交
1112
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
1113 1114 1115
  }
};

D
Double_V 已提交
1116 1117 1118 1119 1120 1121 1122 1123
// elu grad: dx=dy if y>0 else alpha*dy*x.exp()
// elu gradgrad: ddx=ddy if y>0 else alpha*ddy*x.exp()
template <typename T>
class ELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
1124
  void Apply(GradOpPtr<T> op) const override {
D
Double_V 已提交
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
    op->SetType("elu_grad_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());

    // Out@GRAD@GRAD: ddy
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
// celu grad: dx=dy if y>0 else dy*(x/alpha).exp()
// celu gradgrad: ddx=ddy if y>0 else ddy*(x/alpha).exp()/alpha
template <typename T>
class CELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("celu_grad_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());

    // Out@GRAD@GRAD: ddy
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

L
lvmengsi 已提交
1162 1163
// sqrt Grad: dx = 0.5 * dy / y
// sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
H
hong 已提交
1164 1165
template <typename T>
class SqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
1166
 public:
H
hong 已提交
1167
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
1168 1169

 protected:
1170
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
1171
    op->SetType("sqrt_grad_grad");
H
hong 已提交
1172 1173 1174 1175 1176 1177
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
1178 1179 1180
  }
};

W
whs 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
// rsqrt Grad: dx = -0.5 * dy * y * y * y
// rsqrt GradGrad: ddy = -0.5 * ddx * y * y * y, dy = (3/y) * ddx
template <typename T>
class RsqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("rsqrt_grad_grad");
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1200 1201
// square Grad: dx=2x*dy
// square GradGrad: ddy=2x*ddx, dx=2dy*ddx
H
hong 已提交
1202 1203
template <typename T>
class SquareDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
1204
 public:
H
hong 已提交
1205
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1206 1207

 protected:
1208
  void Apply(GradOpPtr<T> op) const override {
1209
    op->SetType("square_grad_grad");
H
hong 已提交
1210
    op->SetInput("X", this->Input("X"));
1211
    // Out@GRAD: dy
H
hong 已提交
1212
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
1213
    // X@GRAD@GRAD: ddx
H
hong 已提交
1214
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
1215

H
hong 已提交
1216
    op->SetAttrMap(this->Attrs());
1217 1218

    // X@GRAD: dx
H
hong 已提交
1219
    op->SetOutput("DX", this->InputGrad("X"));
1220
    // Out@GRAD@GRAD: ddy
H
hong 已提交
1221
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
1222 1223 1224
  }
};

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
// log Grad: dx = dout / x
// log Grad Grad: ddout = ddx / x; dx = -(dout / x) * (ddx / x)
template <typename T>
class LogDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("log_grad_grad");
    op->SetInput("X", this->Input("X"));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // X@GRAD: dx
    op->SetOutput("DX", this->InputGrad("X"));
    // Out@GRAD@GRAD: ddy
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1247
DECLARE_INPLACE_OP_INFERER(ActivationGradOpInplaceInferer,
1248 1249
                           {framework::GradVarName("Out"),  // dout
                            framework::GradVarName("X")});  // dx
1250
DECLARE_INPLACE_OP_INFERER(ActivationDoubleGradOpInplaceInferer,
1251
                           {"DDX", "DDOut"});
1252 1253
DECLARE_INPLACE_OP_INFERER(ActivationTripleGradOpInplaceInferer,
                           {"DDX", "D_DOut"});
1254

W
wangzhen38 已提交
1255 1256
class LogitOp : public framework::OperatorWithKernel {
 public:
1257 1258
  LogitOp(const std::string& type,
          const framework::VariableNameMap& inputs,
W
wangzhen38 已提交
1259 1260 1261 1262 1263
          const framework::VariableNameMap& outputs,
          const framework::AttributeMap& attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext* ctx) const override {
1264 1265
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"),
                      true,
W
wangzhen38 已提交
1266 1267
                      platform::errors::InvalidArgument(
                          "Input(%s) of LogitOp should not be null.", "X"));
1268 1269
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"),
                      true,
W
wangzhen38 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
                      platform::errors::InvalidArgument(
                          "Output(%s) of LogitOp should not be null.", "Out"));

    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");

    return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
  }
};

class LogitGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(
1294 1295
        ctx->HasInput(framework::GradVarName("Out")),
        true,
W
wangzhen38 已提交
1296 1297
        platform::errors::InvalidArgument(
            "Input(%s) of LogitGradOp should not be null.", "DOut"));
1298 1299
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"),
                      true,
W
wangzhen38 已提交
1300 1301 1302
                      platform::errors::InvalidArgument(
                          "Input(%s) of LogitGradOp should not be null.", "X"));
    PADDLE_ENFORCE_EQ(
1303 1304
        ctx->HasOutput(framework::GradVarName("X")),
        true,
W
wangzhen38 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
        platform::errors::InvalidArgument(
            "Output(%s) of LogitGradOp should not be null.", "DX"));
    auto x_grad_name = framework::GradVarName("X");
    ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ x_grad_name);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
  }
};

H
hong 已提交
1322 1323
template <typename T>
class PowGradOpMaker : public framework::SingleGradOpMaker<T> {
1324
 public:
H
hong 已提交
1325
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1326 1327

 protected:
1328
  void Apply(GradOpPtr<T> op) const override {
1329
    op->SetType("pow_grad");
H
hong 已提交
1330 1331 1332 1333 1334
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetInput("FactorTensor", this->Input("FactorTensor"));
    op->SetAttrMap(this->Attrs());
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
  }
};
class PowOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }

  framework::OpKernelType GetKernelTypeForVar(
1353
      const std::string& var_name,
1354
      const phi::DenseTensor& tensor,
1355 1356 1357 1358
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
1359 1360
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
  }
};

class PowOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
  }

  framework::OpKernelType GetKernelTypeForVar(
1381
      const std::string& var_name,
1382
      const phi::DenseTensor& tensor,
1383 1384 1385 1386
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
1387 1388
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
1389 1390
  }
};
1391
DECLARE_INPLACE_OP_INFERER(ActFwdInplaceInferer, {"X", "Out"});
Q
qijun 已提交
1392 1393 1394 1395
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
1396
namespace plat = paddle::platform;
1397

1398 1399
#define REGISTER_ACTIVATION_OP(KERNEL_TYPE, OP_NAME, functor, grad_functor) \
  REGISTER_OPERATOR(                                                        \
1400 1401 1402
      KERNEL_TYPE,                                                          \
      ops::ActivationOp,                                                    \
      ops::OP_NAME##OpMaker,                                                \
1403
      ops::ActivationOpInferVarType,                                        \
H
hong 已提交
1404 1405 1406 1407
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::framework::OpDesc>,                \
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::imperative::OpBase>,               \
1408
      std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(),      \
1409 1410 1411 1412
                       ops::ActFwdInplaceInferer,                           \
                       void>::type);                                        \
  REGISTER_OPERATOR(KERNEL_TYPE##_grad,                                     \
                    ops::ActivationOpGrad,                                  \
1413
                    ops::ActivationGradOpInplaceInferer);
1414

L
Leo Chen 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
#define REGISTER_ACTIVATION_CPU_KERNEL(                                     \
    act_type, op_name, functor, grad_functor)                               \
  REGISTER_OP_CPU_KERNEL(                                                   \
      act_type,                                                             \
      ops::ActivationKernel<phi::CPUContext, ops::functor<float>>,          \
      ops::ActivationKernel<phi::CPUContext, ops::functor<double>>);        \
  REGISTER_OP_CPU_KERNEL(                                                   \
      act_type##_grad,                                                      \
      ops::ActivationGradKernel<phi::CPUContext, ops::grad_functor<float>>, \
      ops::ActivationGradKernel<phi::CPUContext, ops::grad_functor<double>>);
1425

1426 1427
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_OP);
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_CPU_KERNEL);
1428

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
REGISTER_ACTIVATION_OP(cos, Cos, CosFunctor, CosGradFunctor)
REGISTER_ACTIVATION_OP(tan, Tan, TanFunctor, TanGradFunctor);
REGISTER_ACTIVATION_OP(acos, Acos, AcosFunctor, AcosGradFunctor);
REGISTER_ACTIVATION_OP(sin, Sin, SinFunctor, SinGradFunctor);
REGISTER_ACTIVATION_OP(asin, Asin, AsinFunctor, AsinGradFunctor);
REGISTER_ACTIVATION_OP(atan, Atan, AtanFunctor, AtanGradFunctor);
REGISTER_ACTIVATION_OP(sinh, Sinh, SinhFunctor, SinhGradFunctor);
REGISTER_ACTIVATION_OP(cosh, Cosh, CoshFunctor, CoshGradFunctor);
REGISTER_ACTIVATION_OP(asinh, Asinh, AsinhFunctor, AsinhGradFunctor);
REGISTER_ACTIVATION_OP(acosh, Acosh, AcoshFunctor, AcoshGradFunctor);
REGISTER_ACTIVATION_OP(atanh, Atanh, AtanhFunctor, AtanhGradFunctor);
1440
REGISTER_ACTIVATION_OP(brelu, BRelu, BReluFunctor, BReluGradFunctor);
1441 1442 1443 1444
REGISTER_ACTIVATION_OP(thresholded_relu,
                       ThresholdedRelu,
                       ThresholdedReluFunctor,
                       ThresholdedReluGradFunctor);
1445
REGISTER_ACTIVATION_OP(relu6, Relu6, Relu6Functor, Relu6GradFunctor);
1446 1447 1448
REGISTER_ACTIVATION_OP(hard_shrink,
                       HardShrink,
                       HardShrinkFunctor,
Y
YuanRisheng 已提交
1449
                       HardShrinkGradFunctor);
1450 1451 1452
REGISTER_ACTIVATION_OP(softshrink,
                       SoftShrink,
                       SoftShrinkFunctor,
Y
YuanRisheng 已提交
1453
                       SoftShrinkGradFunctor);
1454 1455 1456
REGISTER_ACTIVATION_OP(tanh_shrink,
                       TanhShrink,
                       TanhShrinkFunctor,
Y
YuanRisheng 已提交
1457 1458
                       TanhShrinkGradFunctor);
REGISTER_ACTIVATION_OP(silu, Silu, SiluFunctor, SiluGradFunctor);
1459 1460 1461 1462
REGISTER_ACTIVATION_OP(softsign,
                       Softsign,
                       SoftsignFunctor,
                       SoftsignGradFunctor);
1463 1464 1465
REGISTER_ACTIVATION_OP(hard_sigmoid,
                       HardSigmoid,
                       HardSigmoidFunctor,
Y
YuanRisheng 已提交
1466
                       HardSigmoidGradFunctor);
1467 1468 1469
REGISTER_ACTIVATION_OP(logsigmoid,
                       LogSigmoid,
                       LogSigmoidFunctor,
Y
YuanRisheng 已提交
1470
                       LogSigmoidGradFunctor);
1471
REGISTER_ACTIVATION_OP(expm1, Expm1, Expm1Functor, Expm1GradFunctor);
1472 1473 1474
REGISTER_ACTIVATION_OP(softplus,
                       Softplus,
                       SoftplusFunctor,
1475 1476 1477
                       SoftplusGradFunctor);
REGISTER_ACTIVATION_OP(mish, Mish, MishFunctor, MishGradFunctor);
REGISTER_ACTIVATION_OP(stanh, STanh, STanhFunctor, STanhGradFunctor);
1478 1479 1480
REGISTER_ACTIVATION_OP(reciprocal,
                       Reciprocal,
                       ReciprocalFunctor,
1481 1482
                       ReciprocalGradFunctor);

1483 1484 1485
REGISTER_ACTIVATION_OP(log2, Log2, Log2Functor, Log2GradFunctor);
REGISTER_ACTIVATION_OP(log10, Log10, Log10Functor, Log10GradFunctor);
REGISTER_ACTIVATION_OP(log1p, Log1p, Log1pFunctor, Log1pGradFunctor);
1486 1487 1488
REGISTER_ACTIVATION_OP(hard_swish,
                       HardSwish,
                       HardSwishFunctor,
Y
YuanRisheng 已提交
1489 1490 1491 1492 1493
                       HardSwishGradFunctor);
REGISTER_ACTIVATION_OP(swish, Swish, SwishFunctor, SwishGradFunctor);
REGISTER_ACTIVATION_OP(round, Round, RoundFunctor, ZeroGradFunctor);
REGISTER_ACTIVATION_OP(floor, Floor, FloorFunctor, ZeroGradFunctor);
REGISTER_ACTIVATION_OP(ceil, Ceil, CeilFunctor, ZeroGradFunctor);
1494

1495 1496 1497 1498
/* ==========================    sigmoid register  =============================
 */
// 1. Register Sigmoid Operator
REGISTER_OPERATOR(
1499 1500 1501
    sigmoid,
    ops::ActivationOp,
    ops::SigmoidOpMaker,
1502 1503 1504 1505 1506 1507
    ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::SigmoidGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SigmoidGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::SigmoidGradFunctor<float>>(),
1508 1509
                     ops::ActFwdInplaceInferer,
                     void>::type);
1510 1511

// 2. Register Sigmoid Grad Operator
1512 1513
REGISTER_OPERATOR(sigmoid_grad,
                  ops::ActivationOpGrad,
1514 1515
                  ops::ActivationGradOpInplaceInferer,
                  ops::SigmoidDoubleGradMaker<paddle::framework::OpDesc>,
1516
                  ops::SigmoidDoubleGradMaker<paddle::imperative::OpBase>);
1517 1518 1519 1520

// 3. Register Sigmoid DoubleGrad Operator
REGISTER_OPERATOR(
    sigmoid_grad_grad,
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
    ops::ActivationOpDoubleGrad<ops::SigmoidGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer,
    ops::SigmoidTripleGradMaker<paddle::framework::OpDesc>,
    ops::SigmoidTripleGradMaker<paddle::imperative::OpBase>);

// 4. Register Sigmoid TripleGrad Operator
REGISTER_OPERATOR(sigmoid_triple_grad,
                  ops::ActivationOpTripleGrad<
                      ops::SigmoidTripleGradFunctor<float>::FwdDeps()>,
                  ops::ActivationTripleGradOpInplaceInferer);
1531 1532 1533

/* ========================================================================== */

1534 1535
/* ==========================    tanh register  ============================= */
REGISTER_OPERATOR(
1536 1537 1538 1539
    tanh,
    ops::ActivationOp,
    ops::TanhOpMaker,
    ops::ActivationOpInferVarType,
1540 1541 1542 1543 1544
    ops::ActivationGradOpMaker<ops::TanhGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::TanhGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::TanhGradFunctor<float>>(),
1545 1546 1547 1548
                     ops::ActFwdInplaceInferer,
                     void>::type);
REGISTER_OPERATOR(tanh_grad,
                  ops::ActivationOpGrad,
1549 1550 1551 1552 1553 1554
                  ops::ActivationGradOpInplaceInferer,
                  ops::TanhDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::TanhDoubleGradMaker<paddle::imperative::OpBase>)
REGISTER_OPERATOR(
    tanh_grad_grad,
    ops::ActivationOpDoubleGrad<ops::TanhGradFunctor<float>::FwdDeps()>,
1555 1556 1557 1558 1559 1560 1561 1562
    ops::ActivationDoubleGradOpInplaceInferer,
    ops::TanhTripleGradMaker<paddle::framework::OpDesc>,
    ops::TanhTripleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(
    tanh_triple_grad,
    ops::ActivationOpTripleGrad<ops::TanhTripleGradFunctor<float>::FwdDeps()>,
    ops::ActivationTripleGradOpInplaceInferer);
1563 1564 1565

/* ========================================================================== */

1566
/* ==========================    relu register  ============================= */
1567
REGISTER_OPERATOR(
1568 1569 1570 1571
    relu,
    ops::ActivationOp,
    ops::ReluOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1572 1573 1574 1575
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1576
    ops::ActFwdInplaceInferer);
1577 1578
REGISTER_OPERATOR(relu_grad,
                  ops::ActivationOpGrad,
1579
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1580 1581
                  ops::ReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ReluDoubleGradMaker<paddle::imperative::OpBase>);
1582 1583
REGISTER_OPERATOR(
    relu_grad_grad,
1584
    ops::ActivationOpDoubleGrad2<ops::ReluGradFunctor<float>::FwdDeps()>,
1585
    ops::ActivationDoubleGradOpInplaceInferer);
1586

1587
/* ========================================================================== */
1588

1589
/* ======================== leaky relu register  ============================ */
1590
REGISTER_OPERATOR(
1591 1592 1593
    leaky_relu,
    ops::ActivationOp,
    ops::LeakyReluOpMaker,
1594
    ops::ActivationOpInferVarType,
H
hong 已提交
1595 1596 1597 1598
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1599
    ops::ActFwdInplaceInferer);
1600 1601
REGISTER_OPERATOR(leaky_relu_grad,
                  ops::ActivationOpGrad,
1602
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1603 1604
                  ops::LeakyReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LeakyReluDoubleGradMaker<paddle::imperative::OpBase>);
1605 1606
REGISTER_OPERATOR(
    leaky_relu_grad_grad,
1607
    ops::ActivationOpDoubleGrad2<ops::LeakyReluGradFunctor<float>::FwdDeps()>,
1608
    ops::ActivationDoubleGradOpInplaceInferer);
1609 1610 1611

/* ========================================================================== */

D
Double_V 已提交
1612
/* ========================    elu  register     ============================ */
1613 1614 1615
REGISTER_OPERATOR(elu,
                  ops::ActivationOp,
                  ops::ELUOpMaker,
Z
zhupengyang 已提交
1616 1617 1618 1619
                  ops::ActivationOpInferVarType,
                  ops::ELUGradOpMaker<paddle::framework::OpDesc>,
                  ops::ELUGradOpMaker<paddle::imperative::OpBase>,
                  ops::ActFwdInplaceInferer);
1620 1621
REGISTER_OPERATOR(elu_grad,
                  ops::ActivationOpGrad,
1622
                  ops::ActivationGradOpInplaceInferer,
D
Double_V 已提交
1623 1624 1625 1626 1627
                  ops::ELUDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ELUDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    elu_grad_grad,
    ops::ActivationOpDoubleGrad<ops::ELUGradFunctor<float>::FwdDeps()>,
1628
    ops::ActivationDoubleGradOpInplaceInferer);
D
Double_V 已提交
1629 1630 1631

/* ========================================================================== */

W
wangzhen38 已提交
1632 1633
/* ========================    logit  register     ============================
 */
1634 1635 1636
REGISTER_OPERATOR(logit,
                  ops::LogitOp,
                  ops::LogitOpMaker,
W
wangzhen38 已提交
1637 1638 1639
                  ops::LogitGradOpMaker<paddle::framework::OpDesc>,
                  ops::LogitGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(logit_grad, ops::LogitGradOp);
1640

W
wangzhen38 已提交
1641 1642
/* ========================================================================== */

1643 1644 1645
/* ========================    celu  register     ============================
 */
REGISTER_OPERATOR(
1646 1647 1648 1649
    celu,
    ops::ActivationOp,
    ops::CELUOpMaker,
    ops::ActivationOpInferVarType,
1650 1651 1652 1653 1654
    ops::ActivationGradOpMaker<ops::CELUGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::CELUGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
1655 1656
REGISTER_OPERATOR(celu_grad,
                  ops::ActivationOpGrad,
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
                  ops::ActivationGradOpInplaceInferer,
                  ops::CELUDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::CELUDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    celu_grad_grad,
    ops::ActivationOpDoubleGrad<ops::CELUGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

/* ========================================================================== */

L
lvmengsi 已提交
1667 1668
/* ===========================   sqrt register  ============================= */
REGISTER_OPERATOR(
1669 1670 1671 1672
    sqrt,
    ops::ActivationOp,
    ops::SqrtOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1673 1674 1675 1676
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1677
    ops::ActFwdInplaceInferer);
1678 1679
REGISTER_OPERATOR(sqrt_grad,
                  ops::ActivationOpGrad,
1680
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1681 1682
                  ops::SqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SqrtDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
1683 1684
REGISTER_OPERATOR(
    sqrt_grad_grad,
1685
    ops::ActivationOpDoubleGrad<ops::SqrtGradGradFunctor<float>::FwdDeps()>,
1686
    ops::ActivationDoubleGradOpInplaceInferer);
1687

L
lvmengsi 已提交
1688 1689
/* ========================================================================== */

W
whs 已提交
1690 1691 1692
/* ===========================   rsqrt register  =============================
 */
REGISTER_OPERATOR(
1693 1694 1695 1696
    rsqrt,
    ops::ActivationOp,
    ops::RsqrtOpMaker,
    ops::ActivationOpInferVarType,
W
whs 已提交
1697 1698 1699 1700 1701
    ops::ActivationGradOpMaker<ops::RsqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::RsqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
1702 1703
REGISTER_OPERATOR(rsqrt_grad,
                  ops::ActivationOpGrad,
W
whs 已提交
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
                  ops::ActivationGradOpInplaceInferer,
                  ops::RsqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::RsqrtDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    rsqrt_grad_grad,
    ops::ActivationOpDoubleGrad<ops::RsqrtGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

/* ========================================================================== */

1714 1715
/* ==========================   square register  ============================ */
REGISTER_OPERATOR(
1716 1717 1718
    square,
    ops::ActivationOp,
    ops::SquareOpMaker,
1719
    ops::ActivationOpInferVarType,
H
hong 已提交
1720 1721 1722 1723
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1724
    ops::ActFwdInplaceInferer);
1725 1726
REGISTER_OPERATOR(square_grad,
                  ops::ActivationOpGrad,
1727
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1728 1729
                  ops::SquareDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SquareDoubleGradMaker<paddle::imperative::OpBase>);
1730 1731
REGISTER_OPERATOR(
    square_grad_grad,
1732
    ops::ActivationOpDoubleGrad<ops::SquareGradGradFunctor<float>::FwdDeps()>,
1733
    ops::ActivationDoubleGradOpInplaceInferer);
1734 1735

/* ========================================================================== */
1736 1737 1738 1739

/* ==========================   pow register  ============================ */

REGISTER_OPERATOR(
1740 1741 1742 1743
    pow,
    ops::PowOp,
    ops::PowOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1744 1745
    ops::PowGradOpMaker<paddle::framework::OpDesc>,
    ops::PowGradOpMaker<paddle::imperative::OpBase>,
1746
    std::conditional<ops::CanInplaceAct<ops::PowGradFunctor<float>>(),
1747 1748 1749 1750
                     ops::ActFwdInplaceInferer,
                     void>::type);
REGISTER_OPERATOR(pow_grad,
                  ops::PowOpGrad,
1751
                  ops::ActivationGradOpInplaceInferer);
1752 1753 1754 1755
/* ========================================================================== */

/* ==========================   exp register  ============================ */
REGISTER_OPERATOR(
1756 1757 1758 1759
    exp,
    ops::ActivationOp,
    ops::ExpOpMaker,
    ops::ActivationOpInferVarType,
1760 1761 1762 1763 1764
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::ExpGradFunctor<float>>(),
1765 1766 1767 1768
                     ops::ActFwdInplaceInferer,
                     void>::type);
REGISTER_OPERATOR(exp_grad,
                  ops::ActivationOpGrad,
1769
                  ops::ActivationGradOpInplaceInferer);
1770

1771 1772
/* ==========================  Log register ==================================*/
REGISTER_OPERATOR(
1773 1774 1775 1776
    log,
    ops::ActivationOp,
    ops::LogOpMaker,
    ops::ActivationOpInferVarType,
1777 1778 1779 1780 1781
    ops::ActivationGradOpMaker<ops::LogGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LogGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
1782 1783
REGISTER_OPERATOR(log_grad,
                  ops::ActivationOpGrad,
1784 1785 1786 1787 1788 1789 1790 1791 1792
                  ops::ActivationGradOpInplaceInferer,
                  ops::LogDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LogDoubleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(
    log_grad_grad,
    ops::ActivationOpDoubleGrad<ops::LogGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(leaky_relu)
    .AddCheckpoint(
        R"ROC(fix leaky_relu, bahavior changed when alpha < 0 or alpha > 1)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "leaky_relu calculate formula before checkponit: out = max(x, "
                "alpha * x); after checkpoint: out = x if x > 0 else alpha * "
                "x"));

REGISTER_OP_VERSION(hard_shrink)
    .AddCheckpoint(
        R"ROC(fix hard_shrink, bahavior changed when threshold<0)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "hard_shrink calculate formula before checkponit: out = x * "
                "((x < -threshold) + (x > threshold)); after checkpoint: out = "
                "x * (((x < -threshold) + (x > threshold)) > 0)"));

1812 1813
REGISTER_OP_VERSION(softplus).AddCheckpoint(
    R"ROC(add new attributes [beta] and [threshold], and the formula is changed to "
1814 1815
         " softplus(x) = \\frac{1}{beta} * \\log(1 + e^{beta * x}) \\\\ \\text{For numerical"
         " stability, the implementation reverts to the linear function when: beta * x > threshold.})ROC",
1816 1817 1818 1819 1820 1821 1822
    paddle::framework::compatible::OpVersionDesc()
        .NewAttr("beta", "The beta value of the new formula", 1.0f)
        .NewAttr("threshold", "The threshold value of the new formula", 20.0f));

REGISTER_OP_VERSION(mish).AddCheckpoint(
    R"ROC(add new attributes [use_mkldnn], and when computing softplus the formula is changed as the new veriosn of softplus)ROC",
    paddle::framework::compatible::OpVersionDesc().NewAttr(
1823 1824
        "use_mkldnn",
        "(bool, default false) Only used in mkldnn kernel",
1825
        false));
1826

1827
/* ========================================================================== */