operator.cc 133.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
11

12 13
#include "paddle/fluid/framework/operator.h"

14
#include <glog/logging.h>
15

P
peizhilin 已提交
16 17
#include <sstream>
#include <string>
18
#include <unordered_set>
19

20
#include "gflags/gflags.h"
21
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/framework/data_transform.h"
23
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
24
#include "paddle/fluid/framework/details/nan_inf_utils.h"
25
#include "paddle/fluid/framework/op_call_stack.h"
26
#include "paddle/fluid/framework/phi_utils.h"
27
#include "paddle/fluid/framework/raw_tensor.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/framework/shape_inference.h"
29
#include "paddle/fluid/framework/transfer_scope_cache.h"
30
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/var_type.h"
32
#include "paddle/fluid/operators/isfinite_op.h"
33
#include "paddle/fluid/operators/ops_extra_info.h"
34
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
35
#include "paddle/fluid/platform/enforce.h"
36
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
37
#include "paddle/fluid/platform/profiler/event_tracing.h"
38
#include "paddle/fluid/platform/profiler/supplement_tracing.h"
39
#include "paddle/phi/common/int_array.h"
40
#include "paddle/phi/common/scalar.h"
41
#include "paddle/phi/core/ddim.h"
42
#include "paddle/phi/core/kernel_context.h"
43 44
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
45

46
namespace phi {
47
class DenseTensor;
48
}  // namespace phi
49

50
#ifdef PADDLE_WITH_XPU
51 52
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
53
#endif
Q
Qiao Longfei 已提交
54

55 56
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
57
#include "paddle/fluid/platform/mkldnn_op_list.h"
58 59
#endif

F
fwenguang 已提交
60 61 62 63
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

64 65 66 67
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
#endif

D
dzhwinter 已提交
68
DECLARE_bool(benchmark);
69
DECLARE_bool(check_nan_inf);
70
DECLARE_bool(enable_unused_var_check);
F
Feng Xing 已提交
71
DECLARE_bool(run_kp_kernel);
C
chenjian 已提交
72
DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
73

Q
Qiao Longfei 已提交
74 75 76
namespace paddle {
namespace framework {

77 78 79 80 81 82
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
83

84
static DDim GetDimsDebug(const Scope& scope,
85
                         const std::string& name,
86
                         bool get_actual_dim = false) {
87
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
88 89
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
90 91
  }

92 93
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
94
    return tensor.dims();
95
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
96
    if (get_actual_dim) {
97
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
98
    } else {
99
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
100
    }
S
Steffy-zxf 已提交
101 102
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
103 104 105 106 107
  } else {
    return DDim({-1});
  }
}

108
static bool VarInited(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
109 110 111 112 113
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

114
static std::string GetDtype(const Scope& scope, const std::string& name) {
D
dzhwinter 已提交
115 116 117 118
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
119

120 121
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
122
    if (UNLIKELY(!tensor.IsInitialized())) {
123 124
      return "";
    }
125
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
126 127
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
128 129 130
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
131
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
132
    }
S
Steffy-zxf 已提交
133 134
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
135 136 137 138 139
  } else {
    return "";
  }
}

140
static std::string GetPlace(const Scope& scope, const std::string& name) {
L
Leo Chen 已提交
141 142 143 144 145 146 147 148 149 150
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

151 152
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
L
Leo Chen 已提交
153 154 155 156
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
157 158
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
159 160 161 162 163 164 165 166 167 168
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

169
static int GetRowSize(const Scope& scope, const std::string& name) {
170 171 172 173 174
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

175 176
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
177 178 179 180 181
  }

  return -1;
}

182
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
183 184 185 186 187 188 189
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

190 191
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
192
    return tensor.lod();
Q
Qiao Longfei 已提交
193 194 195 196 197
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
198 199 200 201 202
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
203
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
204 205 206 207 208 209
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
210
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
211 212 213 214 215 216
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

217
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
218 219 220
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
221
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
222 223 224 225
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
226
#else
227
      auto dev_id = place.device;
P
peizhilin 已提交
228
      platform::SetDeviceId(dev_id);
229 230 231
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
232 233 234 235
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
236
#else
237
      auto dev_id = place.device;
238
      platform::SetXPUDeviceId(dev_id);
239 240 241 242 243 244 245 246
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
247
      auto dev_id = place.device;
248
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
249 250 251 252 253 254 255 256
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
257
      auto dev_id = place.device;
F
fwenguang 已提交
258
      platform::SetMLUDeviceId(dev_id);
259 260 261 262 263 264 265 266
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
267
      phi::DeviceManager::SetDevice(place);
268
#endif
P
peizhilin 已提交
269
    }
P
peizhilin 已提交
270

271
    {
272 273 274
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
275
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
276
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
277 278
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
279 280
          op_name,
          platform::TracerEventType::Operator,
C
chenjian 已提交
281
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
282
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
283 284
      RunImpl(scope, place);
    }
285

Z
Zhang Ting 已提交
286
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
287
  } catch (platform::EnforceNotMet& exception) {
288
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
289
    throw std::move(exception);
290 291 292 293 294 295
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
296
  } catch (...) {
297
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
298
    std::rethrow_exception(std::current_exception());
299
  }
300 301
}

302
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
303
  return inputs_.find(name) != inputs_.end();
304 305
}

306
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
307
  auto& ins = Inputs(name);
308
  PADDLE_ENFORCE_LE(
309 310
      ins.size(),
      1UL,
311
      platform::errors::InvalidArgument(
312 313
          "Operator %s's input %s should contain only one variable.",
          type_,
314
          name));
Y
Yu Yang 已提交
315
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
316 317
}

Y
Yu Yang 已提交
318 319
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
320
  auto it = inputs_.find(name);
321
  PADDLE_ENFORCE_NE(
322 323 324 325
      it,
      inputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have the input %s.", type_, name));
Y
Yu Yang 已提交
326
  return it->second;
Y
Yan Chunwei 已提交
327 328
}

329
bool OperatorBase::HasOutputs(const std::string& name) const {
330
  if (outputs_.find(name) != outputs_.end()) {
331 332 333 334 335 336
    return true;
  } else {
    return false;
  }
}

337
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
338
  auto& outs = Outputs(name);
339
  PADDLE_ENFORCE_LE(
340 341
      outs.size(),
      1UL,
342
      platform::errors::InvalidArgument(
343 344
          "Operator %s's output %s should contain only one variable.",
          type_,
345
          name));
Y
Yu Yang 已提交
346
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
347 348
}

Y
Yu Yang 已提交
349 350
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
351
  auto it = outputs_.find(name);
352
  PADDLE_ENFORCE_NE(
353 354
      it,
      outputs_.end(),
355 356
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
357
  return it->second;
Y
Yan Chunwei 已提交
358 359
}

360
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
361
  std::stringstream ss;
Y
Yu Yang 已提交
362
  ss << "Op(" << type_ << "), inputs:{";
363

364
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
365 366
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
367 368
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
369 370
  }

Y
Yu Yang 已提交
371 372
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
373 374
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
375 376
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
377 378
      auto var_name = input.second[i];
      ss << var_name;
379
      if (scope) {
Q
Qiao Longfei 已提交
380 381 382 383 384 385 386
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
387 388 389
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
390 391 392
          std::string place = is_no_need_buffer_var
                                  ? "unknown_place"
                                  : GetPlace(*scope, var_name);
Q
Qiao Longfei 已提交
393
          ss << ":" << dtype;
394 395
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
396
          ss << "(" << place << ")";
397
        }
398
      }
Y
Yu Yang 已提交
399 400 401
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
402
    }
Y
Yu Yang 已提交
403
    ss << "]";
Y
Yu Yang 已提交
404 405
    ++it;
    if (it != inputs_.end()) {
406 407
      ss << ", ";
    }
Q
Qiao Longfei 已提交
408
  }
Y
Yu Yang 已提交
409
  ss << "}, outputs:{";
Y
Yu Yang 已提交
410 411
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
412 413
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
414 415
      auto var_name = output.second[i];
      ss << var_name;
416
      if (scope) {
Q
Qiao Longfei 已提交
417 418 419 420 421 422 423
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
424 425
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
426 427
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
428
          ss << "(" << GetPlace(*scope, var_name) << ")";
429
        }
430
      }
Y
Yu Yang 已提交
431 432 433
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
434
    }
Y
Yu Yang 已提交
435
    ss << "]";
Y
Yu Yang 已提交
436 437
    ++it;
    if (it != outputs_.end()) {
438 439
      ss << ", ";
    }
Q
Qiao Longfei 已提交
440
  }
Y
Yu Yang 已提交
441
  ss << "}.";
Q
Qiao Longfei 已提交
442 443 444
  return ss.str();
}

Y
Yu Yang 已提交
445
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
446 447
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
448
                           const AttributeMap& attrs)
S
sneaxiy 已提交
449 450 451 452 453 454
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
455 456 457 458 459 460 461 462
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
463
  // In OperatorBase level, all attributes with VarDesc type will be considered
464 465 466 467 468 469
  // as Input.
  for (auto& attr : FilterAttrVar(attrs)) {
    VLOG(3) << "found Attribute with Variable type: " << attr.first;
    inputs_[attr.first] = std::move(AttrVarNames(attr.second));
    attrs_.erase(attr.first);
  }
Y
Yu Yang 已提交
470
}
471

Q
qijun 已提交
472 473
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
474
  for (auto& o : inputs_) {
Q
qijun 已提交
475 476 477 478 479 480
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
481 482 483 484 485 486 487 488 489 490
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
491
  auto& info = Info();
Y
Yu Yang 已提交
492 493

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
494
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
495 496 497 498 499 500 501 502 503
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
504 505
}

506
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
507
  if (info_ == nullptr || info_->proto_ == nullptr) return;
508

S
sneaxiy 已提交
509
  for (auto& in : info_->Proto().inputs()) {
510
    if (!in.dispensable() && !in.extra()) {
511
      PADDLE_ENFORCE_NE(
512 513 514 515
          inputs_.find(in.name()),
          inputs_.end(),
          platform::errors::NotFound(
              "Operator %s's input (%s) is not set.", Type(), in.name()));
516
    }
517 518
  }

S
sneaxiy 已提交
519
  for (auto& out : info_->Proto().outputs()) {
520
    if (!out.dispensable() && !out.extra() && !out.intermediate()) {
521
      PADDLE_ENFORCE_NE(
522 523 524 525
          outputs_.find(out.name()),
          outputs_.end(),
          platform::errors::NotFound(
              "Operator %s's output (%s) is not set.", Type(), out.name()));
526
    }
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
542

543 544
const phi::DenseTensor* GetLoDTensorOrSelectedRowsValueFromVar(
    const Variable& var) {
545 546
  if (var.IsType<phi::DenseTensor>()) {
    return static_cast<const phi::DenseTensor*>(&(var.Get<phi::DenseTensor>()));
547 548
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
549
  } else {
550
    PADDLE_THROW(platform::errors::InvalidArgument(
551
        "Variable type is %s, expect phi::DenseTensor or SelectedRows.",
552
        ToTypeName(var.Type())));
Q
QI JUN 已提交
553 554 555
  }
}

556
phi::DenseTensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
557 558
  if (var->IsType<phi::DenseTensor>()) {
    return var->GetMutable<phi::DenseTensor>();
559 560
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
561
  } else {
562
    PADDLE_THROW(platform::errors::InvalidArgument(
563
        "Variable type is %s, expect phi::DenseTensor or SelectedRows.",
564
        ToTypeName(var->Type())));
Q
QI JUN 已提交
565 566 567
  }
}

568 569 570 571 572 573 574 575
OperatorWithKernel::OperatorWithKernel(const std::string& type,
                                       const VariableNameMap& inputs,
                                       const VariableNameMap& outputs,
                                       const AttributeMap& attrs)
    : OperatorBase(type, inputs, outputs, attrs) {}

OperatorWithKernel::~OperatorWithKernel() = default;

576
bool ExecutionContext::HasInput(const std::string& name) const {
577
  auto* var = InputVar(name);
578 579 580
  return var != nullptr;
}

581 582 583 584 585 586 587 588 589 590 591 592 593 594
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

595
bool ExecutionContext::HasOutput(const std::string& name) const {
596
  auto* var = OutputVar(name);
597 598 599
  return var != nullptr;
}

X
Xin Pan 已提交
600
const Variable* ExecutionContext::InputVar(const std::string& name) const {
601 602
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
603 604 605
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

606
  PADDLE_ENFORCE_LE(
607 608
      it->second.size(),
      1UL,
609
      platform::errors::InvalidArgument(
610
          "Operator %s's input %s should contain only one variable.",
611 612
          op_.Type(),
          name));
X
Xin Pan 已提交
613 614 615
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
616
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
617 618 619
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

620
  PADDLE_ENFORCE_LE(
621 622
      it->second.size(),
      1UL,
623 624
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
625 626
          op_.Type(),
          name));
X
Xin Pan 已提交
627 628 629
  return it->second.empty() ? nullptr : it->second[0];
}

630
template <>
631 632
const std::vector<const phi::DenseTensor*>
ExecutionContext::MultiInput<phi::DenseTensor>(const std::string& name) const {
633 634
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
635 636
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
637 638
    return {};
  }
639
  std::vector<const phi::DenseTensor*> res;
X
Xin Pan 已提交
640
  res.reserve(vars.size());
641 642 643
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
644
                 [&](const Variable* var) -> const phi::DenseTensor* {
X
Xin Pan 已提交
645
                   if (var == nullptr) return nullptr;
646 647 648 649 650 651 652 653
                   PADDLE_ENFORCE_EQ(
                       var->IsType<phi::DenseTensor>(),
                       true,
                       platform::errors::InvalidArgument(
                           "Input variable should be phi::DenseTensor, "
                           "but the received type is %s.",
                           ToTypeName(var->Type())));
                   return &(var->Get<phi::DenseTensor>());
X
Xin Pan 已提交
654 655 656 657
                 });
  return res;
}

658
template <>
659
std::vector<phi::DenseTensor*> ExecutionContext::MultiOutput<phi::DenseTensor>(
660
    const std::string& name) const {
H
hong 已提交
661 662 663
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
664 665
    return {};
  }
666
  std::vector<phi::DenseTensor*> res;
667
  res.reserve(vars.size());
668 669 670
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
671
                 [&](Variable* var) -> phi::DenseTensor* {
672
                   return var == nullptr ? nullptr
673
                                         : var->GetMutable<phi::DenseTensor>();
674
                 });
675 676 677
  return res;
}

Y
Yu Yang 已提交
678
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
679
  // check in new Function kernel first
680
  bool has_phi_kernel = false;
681
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
682
  auto kernel_key_map =
683
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
684
  for (auto& kernel : kernel_key_map) {
685
    has_phi_kernel = true;
686
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
687 688 689 690
      return true;
    }
  }

Y
Yu Yang 已提交
691 692
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
693 694 695 696 697 698 699 700 701 702 703 704 705
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
706 707 708
      return true;
    }
  }
H
hong 已提交
709

Y
Yu Yang 已提交
710 711 712
  return false;
}

713 714
class RuntimeInferShapeContext : public InferShapeContext {
 public:
715
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
716
      : op_(op), ctx_(ctx) {}
717 718

  bool HasInput(const std::string& name) const override {
719
    // has only one input
X
Xin Pan 已提交
720
    const auto& ins = ctx_.inputs;
721 722
    auto it = ins.find(name);
    if (it == ins.end()) {
723 724
      return false;
    }
725
    const auto& in = it->second;
X
Xin Pan 已提交
726
    if (in.size() == 0) return false;
727
    PADDLE_ENFORCE_EQ(
728 729
        in.size(),
        1UL,
730 731
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
732
    return in[0] != nullptr;
733 734 735
  }

  bool HasOutput(const std::string& name) const override {
736
    // has only one output
X
Xin Pan 已提交
737
    const auto& outs = ctx_.outputs;
738 739
    auto it = outs.find(name);
    if (it == outs.end()) {
740 741
      return false;
    }
742
    const auto& out = it->second;
X
Xin Pan 已提交
743
    if (out.size() == 0) {
744 745
      return false;
    }
746
    PADDLE_ENFORCE_EQ(
747 748
        out.size(),
        1UL,
749 750
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
751
    return out[0] != nullptr;
752 753
  }

754 755 756 757
  bool HasAttr(const std::string& name) const override {
    return op_.HasAttr(name);
  }

758
  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
759 760
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
761
    if (it == ins.end() || it->second.empty()) {
762 763
      return false;
    }
X
Xin Pan 已提交
764 765
    for (auto& input : it->second) {
      if (input == nullptr) {
766 767 768 769 770 771
        return false;
      }
    }
    return true;
  }

772 773
  bool HasOutputs(const std::string& name,
                  bool allow_null = false) const override {
X
Xin Pan 已提交
774 775
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
776
    if (it == outs.end() || it->second.empty()) {
777 778
      return false;
    }
Y
YuanRisheng 已提交
779
    if (!allow_null) {
780 781
      for (auto& output : it->second) {
        if (output == nullptr) return false;
782 783
      }
    }
Y
YuanRisheng 已提交
784
    return true;
785 786
  }

787 788 789
  AttrReader Attrs() const override {
    return AttrReader(op_.Attrs(), op_.RuntimeAttrs());
  }
790

H
hong 已提交
791
  std::vector<std::string> Inputs(const std::string& name) const override {
792 793 794
    return op_.Inputs(name);
  }

H
hong 已提交
795
  std::vector<std::string> Outputs(const std::string& name) const override {
796 797 798
    return op_.Outputs(name);
  }

799 800 801
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
802 803
    PADDLE_ENFORCE_LT(idx,
                      op_proto->inputs().size(),
804 805 806
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
807 808 809
                          op_.Type(),
                          idx,
                          op_proto->inputs().size()));
810 811 812 813 814 815 816
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
817 818
        idx,
        op_proto->outputs().size(),
819 820 821
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
822 823 824
            op_.Type(),
            idx,
            op_proto->outputs().size()));
825 826 827
    return op_proto->outputs()[idx].name();
  }

828 829 830
  void ShareDim(const std::string& in,
                const std::string& out,
                size_t i = 0,
831
                size_t j = 0) override {
X
Xin Pan 已提交
832 833
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
834
    PADDLE_ENFORCE_NE(
835 836
        in_it,
        ctx_.inputs.end(),
837 838
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
839 840
        out_it,
        ctx_.outputs.end(),
841
        platform::errors::NotFound("Output %s does not exist.", out));
842 843
    PADDLE_ENFORCE_LT(i,
                      in_it->second.size(),
844 845 846
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
847 848 849 850
                          in_it->second.size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      out_it->second.size(),
851 852 853
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
854 855
                          out_it->second.size(),
                          j));
X
Xin Pan 已提交
856 857 858

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
859

860
    PADDLE_ENFORCE_EQ(
861 862
        in_var->Type(),
        out_var->Type(),
863
        platform::errors::InvalidArgument(
864 865
            "The type of input (%s) and output (%s) are inconsistent.",
            in,
866
            out));
867

868 869 870
    if (in_var->IsType<phi::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
871 872 873
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
874 875 876
    } else if (in_var->IsType<phi::DenseTensor>()) {
      auto& in_lod_tensor = in_var->Get<phi::DenseTensor>();
      auto* out_lod_tensor = out_var->GetMutable<phi::DenseTensor>();
877 878
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
879
      PADDLE_THROW(platform::errors::Unimplemented(
880
          "Currently, the input type of ShareDim only can be phi::DenseTensor "
881
          "or SelectedRows."));
882 883 884
    }
  }

H
hong 已提交
885 886 887 888
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
889 890
    PADDLE_ENFORCE_NE(in_it,
                      ctx_.inputs.end(),
H
hong 已提交
891 892 893
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
894 895 896 897
        out_it,
        ctx_.outputs.end(),
        platform::errors::NotFound(
            "Output [%s] found error in Op [%s]", out, op_.Type()));
H
hong 已提交
898 899 900 901 902

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
903 904
        in_var_list.size(),
        out_var_list.size(),
H
hong 已提交
905
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
906
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
907 908 909 910 911 912 913 914 915 916
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
917
      if (!in_var->IsType<phi::DenseTensor>()) return;
H
hong 已提交
918
      Variable* out_var = out_var_list[i];
919 920 921 922 923 924 925 926 927
      PADDLE_ENFORCE_EQ(
          out_var->IsType<phi::DenseTensor>(),
          true,
          platform::errors::PreconditionNotMet(
              "The %d-th output of Output(%s) must be phi::DenseTensor.",
              i,
              out_var_names[i]));
      auto& in_tensor = in_var->Get<phi::DenseTensor>();
      auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
H
hong 已提交
928 929
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
930
      if (in_tensor.layout() != DataLayout::ONEDNN)
H
hong 已提交
931 932 933 934 935
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

936 937 938
  void ShareLoD(const std::string& in,
                const std::string& out,
                size_t i = 0,
Q
Qiao Longfei 已提交
939
                size_t j = 0) const override {
X
Xin Pan 已提交
940 941
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
942
    PADDLE_ENFORCE_NE(
943 944
        in_it,
        ctx_.inputs.end(),
945 946
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
947 948
        out_it,
        ctx_.outputs.end(),
949
        platform::errors::NotFound("Output %s does not exist.", out));
950 951
    PADDLE_ENFORCE_LT(i,
                      in_it->second.size(),
952 953 954
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
955 956 957 958
                          in_it->second.size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      out_it->second.size(),
959 960 961
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
962 963
                          out_it->second.size(),
                          j));
X
Xin Pan 已提交
964 965

    Variable* in_var = in_it->second.at(i);
966
    if (!in_var->IsType<phi::DenseTensor>()) return;
X
Xin Pan 已提交
967
    Variable* out_var = out_it->second.at(j);
968
    PADDLE_ENFORCE_EQ(
969
        out_var->IsType<phi::DenseTensor>(),
970
        true,
971
        platform::errors::InvalidArgument(
972 973 974 975 976
            "The %zu-th output of Output(%s) must be phi::DenseTensor.",
            j,
            out));
    auto& in_tensor = in_var->Get<phi::DenseTensor>();
    auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
Q
Qiao Longfei 已提交
977
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
978

M
mozga-intel 已提交
979 980
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
981
// Shall we have a better method to shared info between in/out phi::DenseTensor?
M
mozga-intel 已提交
982 983 984 985 986 987 988 989 990 991 992 993 994
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
995
    if (in_tensor.layout() != DataLayout::ONEDNN)
M
mozga-intel 已提交
996 997
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
998 999
  }

1000
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
1001
    PADDLE_THROW(platform::errors::PreconditionNotMet(
1002
        "GetLoDLevel is only used in compile time. The calculation of "
1003
        "output's actual lod is different among operators so that should be "
1004
        "set in the runtime kernel."));
1005 1006
  }

1007 1008
  void SetLoDLevel(const std::string& out,
                   int32_t lod_level,
1009
                   size_t j = 0) const override {
1010
    PADDLE_THROW(platform::errors::PreconditionNotMet(
1011
        "SetLoDLevel is only used in compile time. The calculation of "
1012
        "output's actual lod is different among operators so that should be "
1013
        "set in the runtime kernel."));
C
chengduo 已提交
1014 1015
  }

1016 1017
  bool IsRuntime() const override { return true; }

1018 1019 1020 1021 1022
  bool IsRunMKLDNNKernel() const override {
    try {
      auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
      return ((op_with_kernel.kernel_type()) &&
              (op_with_kernel.kernel_type()->data_layout_ ==
1023
               phi::DataLayout::ONEDNN));
1024
    } catch (const std::bad_cast& exp) {
1025 1026 1027 1028
      return false;
    }
  }

1029
  // TODO(paddle-dev): Can this be template?
C
Chen Weihang 已提交
1030
  paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize>
1031
  GetInputVarPtrs(const std::string& name) const override {
1032
    const std::vector<Variable*>& vars = InputVars(name);
C
Chen Weihang 已提交
1033
    paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
1034 1035 1036 1037 1038
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

C
Chen Weihang 已提交
1039
  paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
1040
  GetOutputVarPtrs(const std::string& name) const override {
1041
    const std::vector<Variable*>& vars = OutputVars(name);
C
Chen Weihang 已提交
1042
    paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
1043 1044 1045 1046 1047
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
1048 1049
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
1050
    PADDLE_ENFORCE_EQ(
1051 1052
        vars.size(),
        1UL,
1053 1054
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
1055 1056
            name,
            vars.size()));
X
Xin Pan 已提交
1057 1058 1059 1060 1061 1062 1063 1064
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

1065 1066 1067 1068
  proto::VarType::Type GetInputVarType(const std::string& name) const override {
    return GetVarType(InputVars(name).at(0));
  }

X
Xin Pan 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
1079 1080
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
1081
    PADDLE_ENFORCE_EQ(
1082 1083
        vars.size(),
        1UL,
1084 1085
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
1086 1087
                                          name,
                                          vars.size()));
X
Xin Pan 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

1097 1098 1099 1100 1101 1102 1103 1104
  const phi::ArgumentMappingFn* GetPhiArgumentMappingFn() const override {
    return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
  }

  const phi::KernelSignature* GetPhiDefaultKernelSignature() const override {
    return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
  }

1105
 protected:
X
Xin Pan 已提交
1106
  DDim GetDim(Variable* var) const {
1107 1108
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
1109 1110
    if (var->IsType<phi::DenseTensor>()) {
      return var->Get<phi::DenseTensor>().dims();
1111 1112
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().GetCompleteDims();
1113
    } else {
1114
      PADDLE_THROW(platform::errors::InvalidArgument(
1115
          "Only phi::DenseTensor or SelectedRows support 'GetDim', but input "
1116 1117
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
1118 1119 1120
    }
  }

X
Xin Pan 已提交
1121 1122 1123
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
1124 1125 1126
    std::transform(vars.begin(),
                   vars.end(),
                   std::back_inserter(ret),
X
Xin Pan 已提交
1127 1128 1129 1130
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
1131
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
1132 1133
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
1134 1135
  }

X
Xin Pan 已提交
1136
  void SetDim(Variable* var, const DDim& dim) {
1137 1138
    if (var->IsType<phi::DenseTensor>()) {
      var->GetMutable<phi::DenseTensor>()->Resize(dim);
1139 1140
    } else if (var->IsType<phi::SelectedRows>()) {
      var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
1141
    } else {
1142
      PADDLE_THROW(platform::errors::Unimplemented(
1143 1144
          "Variable type error, expect phi::DenseTensor or SelectedRows, but "
          "received "
1145 1146
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
1147 1148 1149 1150 1151 1152
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
1153 1154
    PADDLE_ENFORCE_EQ(length,
                      dims.size(),
1155 1156 1157 1158
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
1159 1160
                          length,
                          dims.size()));
X
Xin Pan 已提交
1161 1162 1163 1164 1165
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1166 1167 1168
    }
  }

F
fengjiayi 已提交
1169 1170
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1171 1172
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1173 1174
  }

X
Xin Pan 已提交
1175 1176 1177 1178
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
1179 1180 1181
    std::transform(vars.begin(),
                   vars.end(),
                   retv.begin(),
X
Xin Pan 已提交
1182
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
1183 1184
                             this,
                             std::placeholders::_1));
X
Xin Pan 已提交
1185 1186 1187 1188
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1189 1190 1191
    return ToVarType(var->Type());
  }

1192 1193 1194
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1195
    PADDLE_ENFORCE_NE(
1196 1197
        it,
        ctx_.inputs.end(),
1198 1199
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1200 1201 1202 1203 1204
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1205
    PADDLE_ENFORCE_NE(
1206 1207
        it,
        ctx_.outputs.end(),
1208 1209
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1210
    return it->second;
F
fengjiayi 已提交
1211 1212
  }

1213
  const OperatorBase& op_;
X
Xin Pan 已提交
1214
  const RuntimeContext& ctx_;
1215 1216
};

1217
struct OperatorWithKernel::CacheImpl {
1218
  static const char kNotAllowInferShapeCahce[];
1219
  explicit CacheImpl(phi::KernelContext* kernel_ctx,
1220 1221 1222 1223 1224 1225 1226
                     RuntimeInferShapeContext* infer_shape_ctx,
                     const std::vector<phi::DenseTensor*>& tensors,
                     bool not_allow_infer_shape_cache)
      : kernel_ctx_(kernel_ctx),
        infer_shape_ctx_(infer_shape_ctx),
        tensors_(tensors),
        not_allow_infer_shape_cache_(not_allow_infer_shape_cache) {}
1227 1228 1229 1230 1231 1232

  phi::KernelContext* getKernelContext() { return kernel_ctx_.get(); }
  RuntimeInferShapeContext* getRuntimeInferShapeContext() {
    return infer_shape_ctx_.get();
  }

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
  bool NeedInferShape() {
    if (not_allow_infer_shape_cache_) return true;

    bool ret{false};
    if (last_ddims_.empty() || tensors_.empty()) ret = true;
    if (!ret) {
      CHECK_EQ(last_ddims_.size(), tensors_.size());
      for (size_t i = 0; i < last_ddims_.size(); ++i) {
        if (tensors_[i]->dims() != last_ddims_[i]) {
          ret = true;
          break;
        }
      }
    }
    if (ret) {
      last_ddims_.resize(tensors_.size());
      for (size_t i = 0; i < last_ddims_.size(); ++i) {
        last_ddims_[i] = tensors_[i]->dims();
      }
    }
    VLOG(3) << "need infer shape is " << ret;
    return ret;
  }

1257 1258 1259
 private:
  std::unique_ptr<phi::KernelContext> kernel_ctx_;
  std::unique_ptr<RuntimeInferShapeContext> infer_shape_ctx_;
1260 1261 1262
  std::vector<phi::DenseTensor*> tensors_;
  bool not_allow_infer_shape_cache_;
  std::vector<phi::DDim> last_ddims_;
1263
};
1264 1265
const char OperatorWithKernel::CacheImpl::kNotAllowInferShapeCahce[] =
    "@NOT_ALLOW_INFERSHAPE_CACHE@";
1266

1267 1268
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
1269
                                const phi::DenseTensor& tensor) {
C
chengduoZH 已提交
1270 1271 1272
  if (tensor.memory_size() == 0) {
    return;
  }
1273 1274
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1275 1276
    return;
  }
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
  PADDLE_ENFORCE_NE(framework::TensorContainsInf(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains Inf.",
                        op_type,
                        name));
  PADDLE_ENFORCE_NE(framework::TensorContainsNAN(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains NAN.",
                        op_type,
                        name));
C
chengduoZH 已提交
1289 1290
}

1291 1292 1293 1294
bool OperatorWithKernel::SupportGPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1295 1296
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1309 1310
          op_kernels.begin(),
          op_kernels.end(),
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
  }
}

bool OperatorWithKernel::SupportNPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1322 1323
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::NPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1336 1337
          op_kernels.begin(),
          op_kernels.end(),
1338 1339 1340 1341 1342 1343 1344
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_npu_place(kern_pair.first.place_);
          });
    }
  }
}

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
bool OperatorWithKernel::SupportXPU() const {
#ifdef PADDLE_WITH_XPU
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::XPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [this](OpKernelMap::const_reference kern_pair) {
            return platform::is_xpu_place(kern_pair.first.place_) &&
Q
QingshuChen 已提交
1368 1369 1370 1371
                   paddle::platform::is_xpu_support_op(
                       type_,
                       framework::TransToPhiDataType(
                           kern_pair.first.data_type_));
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
          });
    }
  }
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "should not call OperatorWithKernel::SupportXPU() when not compiled with "
      "XPU support."));
  return false;
#endif
}

1383
bool OperatorWithKernel::SupportsMKLDNN(const phi::DataType data_type) const {
1384 1385 1386 1387 1388
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
Y
YuanRisheng 已提交
1389 1390
                  [data_type](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::ONEDNN &&
1391
                           kern_pair.first.dtype() == data_type;
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [data_type](OpKernelMap::const_reference kern_pair) {
            return platform::is_cpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kMKLDNN &&
1407
                   kern_pair.first.data_type_ == TransToProtoVarType(data_type);
1408 1409
          });
    }
1410
  }
1411 1412
}

1413
bool OperatorWithKernel::SupportsCUDNN(const phi::DataType data_type) const {
1414 1415
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
1416 1417 1418 1419 1420 1421 1422
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [data_type](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPUDNN &&
                           kern_pair.first.dtype() == data_type;
                  });
1423 1424 1425 1426 1427 1428 1429 1430
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
1431 1432
      proto::VarType::Type fluid_data_type =
          framework::TransToProtoVarType(data_type);
1433 1434 1435
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
1436
          [fluid_data_type](OpKernelMap::const_reference kern_pair) {
1437 1438
            return platform::is_gpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kCUDNN &&
1439
                   kern_pair.first.data_type_ == fluid_data_type;
1440 1441 1442 1443 1444
          });
    }
  }
}

1445
bool OperatorWithKernel::SupportsKernelType(
1446
    const OpKernelType& kernel_type, const ExecutionContext& exe_ctx) const {
1447 1448
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
1449 1450 1451 1452 1453
  if (kernels_iter == all_op_kernels.end()) return false;
  OpKernelMap& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(kernel_type);

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1454
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
1455
    return kernel_iter != kernels.end() &&
Q
QingshuChen 已提交
1456 1457
           paddle::platform::is_xpu_support_op(
               type_, framework::TransToPhiDataType(kernel_type.data_type_));
1458 1459
  }
#endif
1460 1461 1462 1463 1464

#ifdef PADDLE_WITH_XPU_KP
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
Q
QingshuChen 已提交
1465 1466
        paddle::platform::is_xpu_support_op(
            type_, framework::TransToPhiDataType(kernel_type.data_type_));
1467 1468 1469 1470 1471 1472 1473 1474 1475
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
      auto tmp_kernel_type = kernel_type;
      tmp_kernel_type.library_type_ = LibraryType::kKP;
      return kernels.find(tmp_kernel_type) != kernels.end();
    }
    return kernel_iter != kernels.end() &&
Q
QingshuChen 已提交
1476 1477
           paddle::platform::is_xpu_support_op(
               type_, framework::TransToPhiDataType(kernel_type.data_type_));
1478 1479 1480
  }
#endif

1481
// NOTE(jiahongyu): If MKLDNN can be used, the function SupportsKernelType needs
1482 1483 1484 1485 1486
// to check whether current op supports MKLDNN kernel. There are three
// statements in if condition:
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1487
#ifdef PADDLE_WITH_MKLDNN
1488
  if (!this->DnnFallback() && !paddle::platform::in_mkldnn_white_list(type_) &&
1489 1490 1491
      this->CanMKLDNNBeUsed(exe_ctx, kernel_type.data_type_)) {
    auto tmp_kernel_type = kernel_type;
    tmp_kernel_type.library_type_ = framework::LibraryType::kMKLDNN;
1492
    tmp_kernel_type.data_layout_ = framework::DataLayout::ONEDNN;
1493 1494 1495 1496
    return kernels.find(tmp_kernel_type) != kernels.end();
  }
#endif

1497 1498 1499 1500 1501 1502 1503 1504
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (this->CanCUDNNBeUsed(exe_ctx, kernel_type.data_type_)) {
    auto tmp_kernel_type = kernel_type;
    tmp_kernel_type.library_type_ = framework::LibraryType::kCUDNN;
    return kernels.find(tmp_kernel_type) != kernels.end();
  }
#endif

1505
  return kernel_iter != kernels.end();
1506 1507
}

1508
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
1509
                                         phi::DataType data_type) const {
1510
  return ctx.HasAttr("use_mkldnn") && ctx.Attr<bool>("use_mkldnn") &&
1511 1512
         platform::is_cpu_place(ctx.GetPlace()) &&
         this->SupportsMKLDNN(data_type);
1513 1514
}

1515 1516 1517 1518 1519
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
  return this->CanMKLDNNBeUsed(ctx, phi::TransToPhiDataType(data_type));
}

1520
bool OperatorWithKernel::CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
1521
                                        phi::DataType data_type) const {
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
  bool use_cudnn = ctx.HasAttr("use_cudnn") && ctx.Attr<bool>("use_cudnn") &&
                   paddle::platform::is_gpu_place(ctx.GetPlace());

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (use_cudnn) {
    auto& dev_ctx = ctx.device_context<phi::GPUContext>();
    use_cudnn &= (dev_ctx.cudnn_handle() != nullptr);
  }
#endif  // PADDLE_WITH_CUDA || PADDLE_WITH_HIP

#if defined(PADDLE_WITH_CUDA)
1533
  if (use_cudnn && data_type == phi::DataType::BFLOAT16) {
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
    PADDLE_ENFORCE_GE(
        platform::DnnVersion(),
        8100,
        platform::errors::InvalidArgument(
            "bfloat16 can only be used when CUDNN_VERSION >= 8100"));
  }
#endif  // PADDLE_WITH_CUDA

  return use_cudnn && this->SupportsCUDNN(data_type);
}

1545 1546 1547 1548 1549
bool OperatorWithKernel::CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
                                        proto::VarType::Type data_type) const {
  return this->CanCUDNNBeUsed(ctx, phi::TransToPhiDataType(data_type));
}

1550 1551 1552 1553 1554 1555 1556
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1557
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1558 1559
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1560
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1561
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1562 1563
}

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
template <typename T>
bool HasSameTensorType(phi::TensorBase* phi_tensor, Variable* var) {
  if (phi_tensor == nullptr && var == nullptr) {
    return true;
  } else if (phi_tensor != nullptr && var != nullptr) {
    if (T::classof(phi_tensor) && var->IsType<T>()) {
      return true;
    }
  }
  return false;
}

// TODO(YuanRisheng): We need collect all `need_prepare_phi_data_`
// into this function.
void OperatorWithKernel::CheckWhetherPreparePhiData(
    const VariableNameMap& innames,
    const VariableNameMap& outnames,
    const Scope& scope) const {
  if (run_phi_kernel_ && impl_ != nullptr) {
    const auto& phi_kernel_context = impl_->getKernelContext();
    size_t phi_tensor_index = 0;
    // Check each tensor in KernelContext, if there is a tensor that has
    // different type with variable. The PhiKernelContext need be reconstructed.
    // We use kernel_signature_'s output to retrieve tensor. Because the tensor
    // in phi_kernel_context stored in the order of kernel_signature_'s output.
    if (phi_kernel_context->OutputsSize() >= phi_tensor_index ||
        kernel_signature_ == nullptr) {
      need_prepare_phi_data_ = true;
      return;
    }

    const auto& phi_output_names = kernel_signature_->output_names;
    for (auto& phi_output_name : phi_output_names) {
      const auto& iter = outnames.find(phi_output_name);
      if (iter != outnames.end()) {
        for (auto& var_name : iter->second) {
          auto var_output = scope.FindVar(var_name);
          auto phi_output =
              phi_kernel_context->MutableOutputAt<phi::TensorBase>(
                  phi_tensor_index);
          if (phi_output == nullptr) {
            continue;
          }
          if (!(HasSameTensorType<phi::DenseTensor>(phi_output, var_output) ||
                HasSameTensorType<phi::SparseCooTensor>(phi_output,
                                                        var_output) ||
                HasSameTensorType<framework::Strings>(phi_output,
                                                      var_output))) {
            need_prepare_phi_data_ = true;
          }
          phi_tensor_index++;
        }
      }
    }
  }
}

L
luotao1 已提交
1621 1622
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1623 1624
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1625 1626 1627
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1628
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1629
    all_kernels_must_compute_runtime_shape_ = true;
1630
  const Scope* cur_scope = &scope;
1631
  CheckWhetherPreparePhiData(Inputs(), Outputs(), scope);
1632
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1633 1634
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1635
    pre_scope_ = cur_scope;
1636 1637
  } else if (run_phi_kernel_ && impl_ != nullptr && !need_prepare_data_ &&
             !need_prepare_phi_data_) {
1638
    if (!all_kernels_must_compute_runtime_shape_ && impl_->NeedInferShape()) {
1639
      this->Info().infer_shape_(impl_->getRuntimeInferShapeContext());
1640
    }
1641
    (*phi_kernel_)(impl_->getKernelContext());
L
luotao1 已提交
1642
  } else {
1643 1644 1645 1646 1647 1648
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1649
    }
1650
    RunImpl(scope, place, runtime_ctx_.get());
L
luotao1 已提交
1651 1652 1653 1654 1655 1656
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1657
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1658
  bool fallback_to_cpu = false;
1659
  auto* dev_ctx = pool.Get(place);
1660

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1671 1672 1673 1674
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
H
HongyuJia 已提交
1675
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1676

1677 1678 1679 1680 1681 1682
// TODO(Liu-xiandong): Now we are using too much if-else and hard code in XPU
// device, it's ugly, and we will refactor in the future.
#if defined(PADDLE_WITH_XPU_KP)
  bool use_phi_xpu_kp = false;
#endif

1683 1684 1685 1686 1687
  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1688 1689
  phi::KernelKey phi_kernel_key;
  std::string phi_kernel_name;
1690
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1691
    if (kernel_signature_ == nullptr || phi_kernel_ == nullptr) {
1692 1693 1694 1695 1696 1697
      if (phi::KernelFactory::Instance().HasStructuredKernel(type_)) {
        kernel_signature_.reset(new phi::KernelSignature(type_.c_str()));
      } else {
        kernel_signature_.reset(new phi::KernelSignature(
            std::move(GetExpectedPhiKernelArgs(exe_ctx))));
      }
1698

1699 1700
      VLOG(6) << *kernel_signature_.get();
      phi_kernel_name = kernel_signature_->name;
1701 1702 1703
      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);
1704 1705 1706 1707 1708 1709 1710
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
Q
QingshuChen 已提交
1711 1712
            paddle::platform::is_xpu_support_op(
                type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1727
                  << phi_kernel_name
1728
                  << ", using_kernel_key:" << *kernel_type_.get();
1729
          auto try_phi_kernel_key =
1730
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1731 1732
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1733 1734
            kernel_type_->library_type_ = expected_kernel_key_library_type;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1735
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1736 1737 1738
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1739
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1740 1741 1742 1743
          }
        }
      }
#endif
1744 1745
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
      phi_kernel_.reset(
1746
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1747
              phi_kernel_name, phi_kernel_key)));
1748

1749
      if (phi_kernel_->IsValid()) {
1750
        VLOG(6) << "Static graph mode ChoosePhiKernel - kernel name: "
1751 1752
                << phi_kernel_name << " | kernel key: " << phi_kernel_key
                << " | kernel: " << *phi_kernel_;
1753
      } else {
1754 1755
        VLOG(6) << "Static graph mode ChoosePhiKernel - kernel `"
                << phi_kernel_name << "` not found.";
1756
      }
1757
    } else {
1758
      phi_kernel_name = kernel_signature_->name;
1759
// NOTE(jiahongyu): The registered MKLDNN kernel have library_type =
1760
// LibraryType::kMKLDNN and data_layout_ = DataLayout::ONEDNN. But the default
1761
// values are kPlain, so we need to modify the library_type and data_layout_
1762 1763 1764 1765
// here. There are three statements in if condition:
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1766
#ifdef PADDLE_WITH_MKLDNN
1767 1768
      if (!this->DnnFallback() &&
          !paddle::platform::in_mkldnn_white_list(type_) &&
1769 1770
          this->CanMKLDNNBeUsed(exe_ctx, kernel_type_->data_type_)) {
        kernel_type_->library_type_ = framework::LibraryType::kMKLDNN;
1771
        kernel_type_->data_layout_ = framework::DataLayout::ONEDNN;
1772 1773 1774
      }
#endif

1775 1776 1777 1778 1779 1780
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      if (this->CanCUDNNBeUsed(exe_ctx, kernel_type_->data_type_)) {
        kernel_type_->library_type_ = framework::LibraryType::kCUDNN;
      }
#endif

1781 1782 1783
// NOTE(Liu-xiandong):In my ctest, this branch do not be executed,
// I can't understand it, it's really confusing.
// But we still need to keep this to avoid errors.
1784 1785 1786 1787
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
Q
QingshuChen 已提交
1788 1789
            paddle::platform::is_xpu_support_op(
                type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
1803
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1804
                  << phi_kernel_name
1805
                  << ", using_kernel_key:" << *kernel_type_.get();
1806
          auto try_phi_kernel_key =
1807
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1808 1809
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1810
            kernel_type_->library_type_ = expected_kernel_key_library_type;
1811
            VLOG(3) << "modify XPU KP kernel in static graph: "
1812
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1813 1814 1815
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1816
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1817 1818 1819 1820
          }
        }
      }
#endif
1821
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1822
    }
1823 1824 1825 1826

// NOTE(Liu-xiandong): Determine whether the selected kernel is valid
// If not, use the kernel registered in fluid. And if the fluid do not
// contains the related heterogeneous kernel, use phi CPU kernel.
1827
#if defined(PADDLE_WITH_XPU)
1828 1829
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
Q
QingshuChen 已提交
1830 1831
        !paddle::platform::is_xpu_support_op(
            type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1832
#endif
1833 1834 1835 1836
#ifdef PADDLE_WITH_XPU_KP
    bool use_xpu_kp_kernel_rt =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        FLAGS_run_kp_kernel &&
Q
QingshuChen 已提交
1837 1838
        paddle::platform::is_xpu_support_op(
            type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1839 1840 1841 1842 1843 1844
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
#endif

1845
    if (phi_kernel_->IsValid()
1846
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1847 1848
        && !is_xpu_unsupport
#endif
1849 1850 1851
#if defined(PADDLE_WITH_XPU_KP)
        && (!is_xpu_unsupport || use_phi_xpu_kp)
#endif
1852
    ) {
1853
      run_phi_kernel_ = true;
1854 1855 1856
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866

// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
#ifdef PADDLE_WITH_XPU_KP
      if (is_xpu_kp_support) {
        kernel_type_->library_type_ = LibraryType::kKP;
      }
#endif

1867 1868 1869
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
1870
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1871
          || is_xpu_unsupport
1872
#endif
1873 1874 1875
#if defined(PADDLE_WITH_XPU_KP)
          || (is_xpu_unsupport && !is_xpu_kp_support)
#endif
1876
      ) {
1877
        fallback_to_cpu = true;
H
HongyuJia 已提交
1878
        auto phi_cpu_kernel_key = FallBackToCpu(phi_kernel_key, *this);
1879
        phi_kernel_.reset(
1880
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1881
                phi_kernel_name, phi_cpu_kernel_key)));
1882 1883

        dev_ctx = pool.Get(platform::CPUPlace());
1884
        if (phi_kernel_->IsValid()) {
1885
          VLOG(6) << "Static graph mode PrepareImpl - kernel name: "
1886 1887
                  << phi_kernel_name << " | kernel key: " << phi_cpu_kernel_key
                  << " | kernel: " << *phi_kernel_;
1888
          run_phi_kernel_ = true;
1889 1890
        }
      }
1891 1892
    }
  }
1893
  if (!run_phi_kernel_) {
1894 1895
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1896
      dev_ctx = pool.Get(kernel_type_->place_);
1897
    }
1898 1899
  }

Y
yuyang18 已提交
1900 1901
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1902 1903
  Scope* transfer_scope = nullptr;
  {
1904
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1905
                                       platform::TracerEventType::OperatorInner,
1906 1907
                                       1,
                                       platform::EventRole::kInnerOp);
1908
    if (need_prepare_data_) {
1909 1910 1911 1912 1913 1914
      transfer_scope =
          PrepareData(scope,
                      framework::TransOpKernelTypeToPhiKernelKey(*kernel_type_),
                      &transfered_inplace_vars,
                      runtime_ctx,
                      dev_ctx->GetPlace());
1915
    }
1916
  }
Y
yuyang18 已提交
1917 1918 1919 1920
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1921
  if (!all_kernels_must_compute_runtime_shape_) {
1922
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1923
                                       platform::TracerEventType::OperatorInner,
1924 1925
                                       1,
                                       platform::EventRole::kInnerOp);
1926
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1927
    this->Info().infer_shape_(&infer_shape_ctx);
1928 1929
    record_event.End();
    platform::RecordOpInfoSupplement(
1930
        Type(), Attrs(), infer_shape_ctx, *runtime_ctx, Id());
1931
  }
1932 1933 1934 1935 1936

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1937 1938
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1939
  {
1940
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1941
                                       platform::TracerEventType::OperatorInner,
1942 1943
                                       1,
                                       platform::EventRole::kInnerOp);
1944 1945
    if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                               phi::KernelRegisteredType::FUNCTION) {
1946
      phi::KernelContext phi_kernel_context;
1947 1948
      if (enable_cache_runtime_context_ && !need_prepare_phi_data_ &&
          !need_prepare_data_) {
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
        // TODO(inference): Now we only suppor dense_tensor cache, we may be
        // support ScalarTensor, SparseTensor in future.
        bool all_dense_tensor_input_{true};
        for (auto& iter : Inputs()) {
          for (auto& name : iter.second) {
            all_dense_tensor_input_ &=
                scope.FindVar(name)->IsType<phi::DenseTensor>();
          }
        }

        std::vector<phi::DenseTensor*> tensors;
        if (all_dense_tensor_input_) {
          for (auto& iter : Inputs()) {
            for (auto& name : iter.second) {
              auto* t = scope.FindVar(name)->GetMutable<phi::DenseTensor>();
              tensors.push_back(t);
            }
          }
        }

        impl_.reset(
1970
            new CacheImpl(new phi::KernelContext(),
1971 1972 1973
                          new RuntimeInferShapeContext(*this, *runtime_ctx),
                          tensors,
                          HasAttr(CacheImpl::kNotAllowInferShapeCahce)));
1974
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, impl_->getKernelContext());
1975
        (*phi_kernel_)(impl_->getKernelContext());
1976
      } else {
1977
        phi::KernelContext phi_kernel_context;
1978 1979
        // Do data transform before building KernelContext
        // TODO(zhiqiu): support TransferInplaceVarsBack
1980 1981
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, &phi_kernel_context);
        (*phi_kernel_)(&phi_kernel_context);
1982
      }
1983 1984 1985 1986 1987
    } else if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                                      phi::KernelRegisteredType::STRUCTURE) {
      ExecutionContext execution_context(
          *this, exec_scope, *dev_ctx, *runtime_ctx);
      (*phi_kernel_)(&execution_context);
1988 1989 1990 1991
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1992 1993 1994
    if (fallback_to_cpu) {
      phi_kernel_.release();
    }
1995
  }
D
dzhwinter 已提交
1996

Y
yuyang18 已提交
1997
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1998
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1999
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
2000
  }
2001 2002 2003 2004 2005 2006 2007

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

2008 2009 2010 2011 2012 2013 2014 2015
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
2016

D
dzhwinter 已提交
2017
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
2018
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
2019
    dev_ctx->Wait();
2020 2021
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
2022 2023
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
2024
  }
C
chengduoZH 已提交
2025 2026

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
2027
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
2028
  }
2029 2030 2031 2032 2033 2034 2035

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
2036
}
X
Xin Pan 已提交
2037

2038 2039
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
2040 2041 2042
  phi::KernelKey phi_kernel_key = this->GetExpectedKernelType(ctx);
  auto expected_kernel_key =
      framework::TransPhiKernelKeyToOpKernelType(phi_kernel_key);
2043 2044 2045

// NOTE(jiahongyu): PADDLE_WITH_MKLDNN codes are moved outside function
// GetExpectedKernelType, so that if MKLDNN can be used, the library_type_ and
2046
// data_layout_ of expected_kernel_key need to be adjusted. There are three
2047
// statements in if condition:
2048 2049 2050
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
2051
#ifdef PADDLE_WITH_MKLDNN
2052
  if (!this->DnnFallback() && !paddle::platform::in_mkldnn_white_list(type_) &&
2053 2054
      this->CanMKLDNNBeUsed(ctx, expected_kernel_key.data_type_)) {
    expected_kernel_key.library_type_ = framework::LibraryType::kMKLDNN;
2055
    expected_kernel_key.data_layout_ = framework::DataLayout::ONEDNN;
2056 2057 2058
  }
#endif

2059 2060 2061 2062 2063 2064
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (this->CanCUDNNBeUsed(ctx, expected_kernel_key.data_type_)) {
    expected_kernel_key.library_type_ = framework::LibraryType::kCUDNN;
  }
#endif

2065 2066 2067
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
2078 2079 2080
      // when the Op that does not have GPUKernel is assigned to GPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
2081 2082
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2083
      if (SupportGPU()) {
2084
        auto& dev_ctx = ctx.device_context();
2085
        expected_kernel_key.place_ = dev_ctx.GetPlace();
2086 2087
      }
#endif
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("npu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have NPUKernel is assigned to NPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
2107 2108 2109
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
2110
        expected_kernel_key.place_ = dev_ctx.GetPlace();
2111 2112 2113
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
2114 2115
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
            << ") has no NPU implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("xpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have XPUKernel is assigned to XPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
#ifdef PADDLE_WITH_XPU
      if (SupportXPU()) {
        auto& dev_ctx = ctx.device_context();
        expected_kernel_key.place_ = dev_ctx.GetPlace();
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no XPU implementation. It will be assigned to CPUPlace.";
2142 2143 2144
      }
    }
  }
2145 2146 2147 2148 2149 2150

  if (platform::places_are_same_class(expected_kernel_key.place_,
                                      ctx.GetPlace())) {
    expected_kernel_key.place_ = ctx.GetPlace();
  }

C
cc 已提交
2151 2152
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
2153 2154 2155
  return expected_kernel_key;
}

2156
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
2157
    const ExecutionContext& ctx) const {
2158 2159 2160 2161 2162 2163 2164
  std::string phi_kernel_name;
  if (phi::KernelFactory::Instance().HasStructuredKernel(type_)) {
    kernel_signature_.reset(new phi::KernelSignature(type_.c_str()));
  } else {
    kernel_signature_.reset(
        new phi::KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
  }
2165
  VLOG(6) << *kernel_signature_.get();
2166
  phi_kernel_name = kernel_signature_->name;
2167 2168 2169
  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

2170 2171 2172
  auto phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
  phi_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      phi_kernel_name, phi_kernel_key)));
2173

2174
  if (phi_kernel_->IsValid()) {
2175 2176
    VLOG(6) << "Static graph mode ChoosePhiKernel - kernel name: "
            << phi_kernel_name << " | kernel key: " << phi_kernel_key
2177
            << " | kernel: " << *phi_kernel_;
2178
  } else {
2179
    VLOG(6) << "Static graph mode ChoosePhiKernel - kernel `" << phi_kernel_name
2180 2181
            << "` not found.";
  }
2182
  return phi_kernel_key;
2183 2184 2185 2186 2187 2188 2189
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
2190 2191
      kernels_iter,
      all_op_kernels.end(),
2192
      platform::errors::Unimplemented(
2193 2194 2195 2196 2197 2198
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
2199 2200

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
2201

L
Liu Yiqun 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
2211
#endif
2212 2213

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
2214
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
2215
      (kernel_iter == kernels.end() ||
Q
QingshuChen 已提交
2216 2217 2218
       !paddle::platform::is_xpu_support_op(
           type_,
           framework::TransToPhiDataType(expected_kernel_key.data_type_)))) {
2219
    VLOG(3) << "fluid missing XPU kernel: " << type_
2220 2221 2222 2223 2224
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
2225
#endif
L
Liu-xiandong 已提交
2226 2227

#ifdef PADDLE_WITH_XPU_KP
2228 2229 2230
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
Q
QingshuChen 已提交
2231 2232 2233
        paddle::platform::is_xpu_support_op(
            type_,
            framework::TransToPhiDataType(expected_kernel_key.data_type_));
2234 2235 2236
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
2237
      VLOG(3) << "fluid xpu_kp using rt mode ";
2238 2239
    }
    if (use_xpu_kp_kernel_debug) {
2240
      VLOG(3) << "fluid xpu_kp using debug mode ";
2241 2242 2243
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
2244 2245
      auto cache_expected_kernel_key_library_type =
          expected_kernel_key.library_type_;
2246 2247
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
2248
      // if can't find corresponding kernel when is_xpu_kp_support is on
H
HongyuJia 已提交
2249
      // if the fluid do not register related kernel, it can't work and have
2250 2251 2252 2253 2254 2255 2256
      // error as before
      if (kernel_iter == kernels.end()) {
        expected_kernel_key.library_type_ =
            cache_expected_kernel_key_library_type;
        expected_kernel_key.place_ = platform::CPUPlace();
        kernel_iter = kernels.find(expected_kernel_key);
      } else {
2257
        VLOG(3) << "fluid using XPU KP kernel: " << type_
2258 2259
                << ", using_kernel_key:" << expected_kernel_key;
      }
2260
    }
Q
QingshuChen 已提交
2261 2262
    bool is_xpu_unsupport = (!paddle::platform::is_xpu_support_op(
        type_, framework::TransToPhiDataType(expected_kernel_key.data_type_)));
2263 2264
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
2265
      VLOG(3) << "fluid missing XPU kernel: " << type_
2266 2267 2268 2269 2270
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
2271 2272 2273
  }
#endif

A
Allen Guo 已提交
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
2284 2285
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
2286
      platform::is_npu_place(expected_kernel_key.place_)) {
2287 2288 2289 2290 2291 2292
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
2293 2294 2295
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
2296
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
2297 2298 2299
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << expected_kernel_key.place_.GetDeviceType()
            << " kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
F
fwenguang 已提交
2311 2312 2313
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
2314
#endif
2315 2316 2317 2318 2319 2320
  PADDLE_ENFORCE_NE(
      kernel_iter,
      kernels.end(),
      platform::errors::NotFound("Operator (%s) does not have kernel for %s.",
                                 type_,
                                 KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
2321

2322 2323 2324 2325 2326
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
2327 2328
}

Y
yuyang18 已提交
2329
void OperatorWithKernel::TransferInplaceVarsBack(
2330 2331
    const Scope& scope,
    const std::vector<std::string>& inplace_vars,
Y
yuyang18 已提交
2332 2333
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
2334
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
2335
    auto* origin_var = scope.FindVar(var_name);
2336 2337 2338
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2339
    auto* original_tensor =
C
chengduo 已提交
2340
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
2341
    auto* var = transfer_scope.FindVar(var_name);
2342 2343 2344
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2345
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2346
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
2347
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
2348 2349 2350 2351 2352
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
2353 2354 2355
  }
}

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
2385
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
2405
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
2416
      phi::DenseTensor out;
2417 2418 2419 2420 2421 2422
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
2423
Scope* OperatorWithKernel::PrepareData(
2424
    const Scope& scope,
2425
    const phi::KernelKey& expected_kernel_key,
X
Xin Pan 已提交
2426
    std::vector<std::string>* transfered_inplace_vars,
2427 2428
    RuntimeContext* ctx,
    const phi::Place& place) const {
Y
yuyang18 已提交
2429
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
2430

2431
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
2432 2433 2434 2435
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
2436 2437
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
2438 2439 2440
    }
  }

2441 2442 2443 2444 2445 2446 2447 2448 2449
  const auto& name_map = Inputs();
  auto prepare_input_data = [&](const std::string& in_name,
                                std::vector<Variable*>* in_vars,
                                const phi::TensorArgDef* in_def,
                                bool should_skip_input) -> void {
    auto& name_vec = name_map.at(in_name);
    for (size_t i = 0; i < in_vars->size(); ++i) {
      const auto& var_name = name_vec[i];
      auto* var = in_vars->at(i);
X
Xin Pan 已提交
2450

Y
yuyang18 已提交
2451
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
2452
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
2453 2454 2455
        continue;
      }

C
chengduo 已提交
2456
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2457

2458
      // When no_buffer_ins then checking of phi::DenseTensor::holder_ is
2459 2460 2461 2462 2463 2464 2465
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
2466
        // oneDNN shape of Var may differ from kNHWC Var
2467 2468
        // In such situation corressponding resized Var
        // has to be created and registered
2469
        if ((tensor_in->layout() == DataLayout::ONEDNN) &&
2470
            (var->IsType<phi::DenseTensor>() == true) &&
2471
            (expected_kernel_key.layout() != DataLayout::ONEDNN) &&
2472 2473
            (phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
             DataLayout::kNHWC) &&
2474
            (tensor_in->dims().size() >= 3)) {
2475
          // Mixed execution : oneDNN and GPU is not supported!
2476 2477 2478 2479
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
2480
          in_vars->at(i) = trans_var;
2481
          auto out = trans_var->GetMutable<phi::DenseTensor>();
2482
          out->Resize(tensor_in->dims());
2483
          phi::funcs::MatchShapeToLayout(
2484
              out, tensor_in->layout(), DataLayout::kNHWC);
2485
          VLOG(7) << "Created reshaped dummy input based on oneDNN "
2486
                     "phi::DenseTensor , "
2487
                     "but kNHWC layout"
2488
                  << in_name << " in Operator " << type_;
2489
        } else {
2490 2491
          VLOG(7) << "Skip scanning input " << in_name << " in Operator "
                  << type_;
2492 2493 2494 2495 2496
        }
#endif
        continue;
      }

Y
yuyang18 已提交
2497 2498 2499 2500
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2501 2502 2503
      auto kernel_type_for_var =
          GetKernelTypeForVar(in_name, *tensor_in, expected_kernel_key);
      bool need_trans_dtype =
2504
          NeedTransformDataType(expected_kernel_key, kernel_type_for_var);
2505
      bool need_trans_layout = NeedTransformLayout(
2506
          kernel_type_for_var.layout(), expected_kernel_key.layout());
2507 2508
      if (!need_trans_dtype && !need_trans_layout) {
        if (!run_phi_kernel_ &&
2509 2510
            backends_are_same_class(kernel_type_for_var.backend(),
                                    expected_kernel_key.backend())) {
2511 2512 2513
          continue;
        }
      }
Y
yuyang18 已提交
2514

2515
      std::unique_ptr<phi::KernelKey> new_expected_kernel_key = nullptr;
2516 2517
      if (run_phi_kernel_ && in_def != nullptr &&
          in_def->backend != phi::Backend::ALL_BACKEND) {
2518 2519
        auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
        if ((in_def->backend != tensor_backend &&
2520 2521 2522 2523 2524 2525
             !(in_def->backend == phi::Backend::GPUDNN &&
               tensor_backend == phi::Backend::GPU) &&
             !(in_def->backend == phi::Backend::KPS &&
               tensor_backend == phi::Backend::XPU) &&
             !(in_def->backend == phi::Backend::ONEDNN &&
               tensor_backend == phi::Backend::CPU)) ||
2526
            tensor_in->place().GetType() == AllocationType::GPUPINNED) {
2527 2528 2529 2530
          new_expected_kernel_key =
              std::make_unique<phi::KernelKey>(in_def->backend,
                                               expected_kernel_key.layout(),
                                               expected_kernel_key.dtype());
2531 2532 2533 2534 2535 2536 2537
        }
      }

      if (!need_trans_dtype && !need_trans_layout) {
        if (run_phi_kernel_ && new_expected_kernel_key == nullptr) {
          continue;
        }
Y
yuyang18 已提交
2538 2539
      }

M
minqiyang 已提交
2540
      VLOG(3) << "Transform Variable " << var_name << " from "
2541 2542 2543
              << kernel_type_for_var << " to "
              << (new_expected_kernel_key ? *new_expected_kernel_key
                                          : expected_kernel_key);
Y
yuyang18 已提交
2544

H
HongyuJia 已提交
2545 2546 2547
      // In the inference scenario, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memory explosion
      // over the running of operators.
2548
      // We use a thread_local cache to fix that issue, the key in the cache is
2549 2550 2551 2552 2553
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
2554 2555
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
2556
      // variables, that behavior a lot different.
2557 2558 2559 2560 2561 2562
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
2563 2564
      if (!run_by_executor_) {
        if (new_expected_kernel_key) {
2565 2566 2567 2568
          if (kernel_type_for_var.backend() == phi::Backend::GPU ||
              kernel_type_for_var.backend() == phi::Backend::GPUDNN ||
              new_expected_kernel_key->backend() == phi::Backend::GPU ||
              new_expected_kernel_key->backend() == phi::Backend::GPUDNN) {
2569 2570 2571 2572
            new_scope = TryCreateTransferScope(
                kernel_type_for_var, *new_expected_kernel_key, &scope);
            enable_cache_transfer_scope_ = true;
          }
2573 2574 2575 2576
        } else if (kernel_type_for_var.backend() == phi::Backend::GPU ||
                   kernel_type_for_var.backend() == phi::Backend::GPUDNN ||
                   expected_kernel_key.backend() == phi::Backend::GPU ||
                   expected_kernel_key.backend() == phi::Backend::GPUDNN) {
2577 2578 2579 2580
          new_scope = TryCreateTransferScope(
              kernel_type_for_var, expected_kernel_key, &scope);
          enable_cache_transfer_scope_ = true;
        }
2581
      }
2582

2583
      if (!new_scope) {
Y
yuyang18 已提交
2584 2585
        new_scope = &scope.NewScope();
      }
2586 2587 2588 2589
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
2590
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
2591 2592
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
2593
      if (enable_cache_runtime_context_) {
2594 2595
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
2596 2597

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
2598
      auto* trans_var = new_scope->Var(var_name);
2599
      in_vars->at(i) = trans_var;
L
Leo Chen 已提交
2600 2601 2602 2603 2604 2605 2606

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
2607
            VLOG(4) << "Found inplace between input(" << in_name
L
Leo Chen 已提交
2608 2609 2610 2611 2612 2613 2614 2615 2616
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
2617
      phi::DenseTensor out;
2618 2619 2620 2621 2622 2623 2624 2625 2626
      TransformData(
          new_expected_kernel_key ? *new_expected_kernel_key
                                  : expected_kernel_key,
          kernel_type_for_var,
          *tensor_in,
          &out,
          new_expected_kernel_key
              ? phi::TransToPhiPlace(new_expected_kernel_key->backend())
              : place);
Y
yuyang18 已提交
2627 2628
      SetTensorToVariable(*var, out, trans_var);
    }
2629 2630
  };

2631 2632
  if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                             phi::KernelRegisteredType::FUNCTION) {
2633
    const auto& input_names = kernel_signature_->input_names;
2634
    const auto& input_defs = phi_kernel_->args_def().input_defs();
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
    PADDLE_ENFORCE_EQ(input_names.size(),
                      input_defs.size(),
                      platform::errors::InvalidArgument(
                          "The size of inputs_args names (%d) must be equal to "
                          "the size of kernel input_defs (%d).",
                          input_names.size(),
                          input_defs.size()));
    for (size_t i = 0; i < input_defs.size(); ++i) {
      auto& in_def = input_defs.at(i);
      std::string input_name = input_names[i];
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      auto& ins_vector = iter->second;
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
      prepare_input_data(input_name, &ins_vector, &in_def, should_skip_input);
    }
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
#ifdef PADDLE_WITH_MKLDNN
    // For input that is Extra, only MKLDNN will use Extra Inputs
    auto& extra_input_names =
        paddle::operators::ExtraInfoUtils::Instance().GetExtraInputNamesMap(
            Type());
    for (const auto& input_name : extra_input_names) {
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
      std::vector<Variable*>& input_vars = iter->second;
      prepare_input_data(input_name, &input_vars, nullptr, should_skip_input);
    }
#endif
2670 2671 2672 2673 2674 2675 2676 2677 2678
  } else {
    for (auto& var_name_item : Inputs()) {
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;

      std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];
      prepare_input_data(
          var_name_item.first, &input_vars, nullptr, should_skip_input);
    }
Y
yuyang18 已提交
2679
  }
L
Leo Chen 已提交
2680

2681 2682 2683 2684 2685 2686
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
2687 2688 2689 2690 2691 2692

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
2693 2694
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
2695 2696 2697

  return new_scope;
}
Q
Qiao Longfei 已提交
2698

2699
void OperatorWithKernel::ParseInputDataType(
2700 2701
    const Variable* var,
    const std::string& name,
2702 2703
    proto::VarType::Type* data_type) const {
  if (var != nullptr) {
2704 2705 2706
    const phi::DenseTensor* t = nullptr;
    if (var->IsType<phi::DenseTensor>()) {
      t = &var->Get<phi::DenseTensor>();
2707 2708
    } else if (var->IsType<phi::DenseTensor>()) {
      t = &var->Get<phi::DenseTensor>();
2709 2710
    } else if (var->IsType<phi::SelectedRows>()) {
      t = &(var->Get<phi::SelectedRows>().value());
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
    } else if (var->IsType<phi::SparseCooTensor>()) {
      const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
      PADDLE_ENFORCE_EQ(
          sp_t->initialized(),
          true,
          platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                            "contains uninitialized Tensor.",
                                            Type(),
                                            name));
      *data_type = paddle::framework::TransToProtoVarType(sp_t->dtype());
      return;
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
    } else if (var->IsType<LoDTensorArray>()) {
      auto t_arr = &var->Get<LoDTensorArray>();
      for (size_t j = 0; j < t_arr->size(); j++) {
        if (t_arr->at(j).IsInitialized()) {
          t = &(t_arr->at(j));
        }
      }
    }
    if (t != nullptr) {
      *data_type = paddle::framework::TransToProtoVarType(t->dtype());
    }
  }
}

void OperatorWithKernel::ParseMultiInputDataType(
2737 2738
    const std::vector<Variable*>& vars,
    const std::string& name,
2739
    proto::VarType::Type* data_type) const {
2740
  proto::VarType::Type default_data_type =
2741 2742 2743 2744
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
2745 2746 2747
      const phi::DenseTensor* t = nullptr;
      if (var->IsType<phi::DenseTensor>()) {
        t = &var->Get<phi::DenseTensor>();
2748 2749
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
      } else if (var->IsType<phi::SparseCooTensor>()) {
        const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
        PADDLE_ENFORCE_EQ(
            sp_t->initialized(),
            true,
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(),
                                              name));
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(sp_t->dtype());
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(),
                           name,
                           DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
        *data_type = tmp;
2773
      } else if (var->IsType<LoDTensorArray>()) {
2774 2775 2776 2777
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
2778 2779
          }
        }
2780 2781
      }
      if (t != nullptr) {
2782 2783 2784 2785 2786 2787 2788
        PADDLE_ENFORCE_EQ(t->IsInitialized(),
                          true,
                          platform::errors::InvalidArgument(
                              "The %s Op's Input Variable `%s` "
                              "contains uninitialized phi::DenseTensor.",
                              Type(),
                              name));
2789 2790
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
2791 2792 2793 2794 2795 2796 2797
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
2798 2799 2800
                           Type(),
                           name,
                           DataTypeToString(tmp),
2801
                           DataTypeToString(*data_type)));
2802 2803 2804 2805 2806 2807
        *data_type = tmp;
      }
    }
  }
}

2808
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
2809
    const ExecutionContext& ctx) const {
2810 2811 2812
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2813

2814
  for (auto* name : ctx.InNameList()) {
2815 2816 2817 2818 2819
    if (ctx.InputSize(*name) == 1UL) {
      ParseInputDataType(ctx.InputVar(*name), *name, &data_type);
    } else {
      ParseMultiInputDataType(ctx.MultiInputVar(*name), *name, &data_type);
    }
Y
Yu Yang 已提交
2820
  }
2821
  PADDLE_ENFORCE_NE(
2822 2823
      data_type,
      dafault_data_type,
2824 2825
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
2826 2827 2828 2829 2830 2831 2832 2833
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2834 2835 2836 2837 2838
  if (ctx.InputSize(name) == 1UL) {
    ParseInputDataType(ctx.InputVar(name), name, &data_type);
  } else {
    ParseMultiInputDataType(ctx.MultiInputVar(name), name, &data_type);
  }
2839
  PADDLE_ENFORCE_NE(
2840 2841
      data_type,
      dafault_data_type,
2842 2843
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
2844
          "data type is empty or not phi::DenseTensor or SelectedRows or "
2845
          "LoDTensorArray.",
2846 2847
          name,
          Type()));
2848
  return data_type;
Y
Yu Yang 已提交
2849
}
2850

2851
phi::DenseTensor* OperatorWithKernel::GetTensorFormInputSafely(
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
2864 2865 2866
  phi::DenseTensor* t = nullptr;
  if (var->IsType<phi::DenseTensor>()) {
    t = var->GetMutable<phi::DenseTensor>();
2867 2868
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
2869 2870 2871 2872
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
2873 2874 2875 2876 2877 2878 2879
  PADDLE_ENFORCE_NOT_NULL(t,
                          platform::errors::InvalidArgument(
                              "The phi::DenseTensor of variable %s is nullptr "
                              "when promote complex types."));
  PADDLE_ENFORCE_EQ(
      t->IsInitialized(),
      true,
2880
      platform::errors::InvalidArgument(
2881 2882 2883 2884 2885
          "The phi::DenseTensor in the %s Op's Input Variable %s(%s) is "
          "not initialized.",
          Type(),
          name,
          ctx.InputName(name)));
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
2897 2898
    const ExecutionContext& ctx,
    const std::string& name1,
2899 2900 2901 2902 2903 2904
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
2905 2906
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
2907 2908 2909 2910 2911 2912 2913

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

2914
phi::KernelKey OperatorWithKernel::GetExpectedKernelType(
2915
    const ExecutionContext& ctx) const {
2916
  return phi::KernelKey(IndicateDataType(ctx), ctx.GetPlace());
2917 2918
}

2919
phi::KernelKey OperatorWithKernel::GetKernelTypeForVar(
2920
    const std::string& var_name,
2921
    const phi::DenseTensor& tensor,
2922
    const phi::KernelKey& expected_kernel_type) const {
2923 2924 2925 2926
#ifdef PADDLE_WITH_MKLDNN
  // When the op is first oneDNN op (there was some non oneDNN op
  // previously)
  // then we also need to rotate shape NHWC -> NCWH
2927
  if ((expected_kernel_type.layout() == phi::DataLayout::ONEDNN) &&
2928
      (tensor.layout() != phi::DataLayout::ONEDNN) &&
2929 2930
      phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
          phi::DataLayout::kNHWC) {
2931 2932
    return phi::KernelKey(
        tensor.place(), phi::DataLayout::kNHWC, expected_kernel_type.dtype());
2933 2934
  }
#endif
2935 2936
  return phi::KernelKey(
      tensor.place(), tensor.layout(), expected_kernel_type.dtype());
2937 2938
}

2939
phi::KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
2940
    const ExecutionContext& ctx) const {
2941
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
2942
  if (arg_map_fn_ == nullptr) {
2943 2944 2945 2946
    auto* arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(type_);
    if (arg_map_fn) {
      arg_map_fn_.reset(new phi::ArgumentMappingFn(*arg_map_fn));
    } else {
2947 2948 2949
      auto func =
          [this](
              const phi::ArgumentMappingContext& ctx) -> phi::KernelSignature {
2950 2951 2952 2953
        return phi::DefaultKernelSignatureMap::Instance().Get(type_);
      };
      arg_map_fn_.reset(new phi::ArgumentMappingFn(func));
    }
2954 2955
  }
  return (*arg_map_fn_)(arg_mapping_ctx);
2956 2957
}

2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
static void SetDnnAttrIntoDeviceContext(
    phi::DeviceContext* dev_ctx,
    const Attribute& attr,
    const std::string& attr_name,
    const operators::ExtraAttrPropertySet& attr_propertys) {
#ifdef PADDLE_WITH_MKLDNN
  if (phi::OneDNNContext::classof(dev_ctx) &&
      attr_propertys.Support(operators::ExtraAttrProperty::ONEDNN)) {
    VLOG(4) << "Runtime attr `" << attr_name << "` is passed to OneDNNContext.";
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    switch (AttrTypeID(attr)) {
      case proto::AttrType::FLOAT:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(float, attr));
        break;
      case proto::AttrType::INT:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(int, attr));
        break;
      case proto::AttrType::STRING:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(std::string, attr));
        break;
      case proto::AttrType::INTS:
        one_dnn_ctx->SetDnnAttr(attr_name,
                                PADDLE_GET_CONST(std::vector<int>, attr));
        break;
      case proto::AttrType::FLOATS:
        one_dnn_ctx->SetDnnAttr(attr_name,
                                PADDLE_GET_CONST(std::vector<float>, attr));
        break;
      case proto::AttrType::BOOLEAN:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(bool, attr));
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported Attribute value type `%s` for phi.",
            platform::demangle(attr.type().name())));
    }
  }
#endif
#ifdef PADDLE_WITH_CUDA
  if (phi::GPUContext::classof(dev_ctx) &&
      attr_propertys.Support(operators::ExtraAttrProperty::GPUDNN)) {
    VLOG(4) << "Runtime attr `" << attr_name << "` is passed to GPUDNNContext.";
    phi::GPUContext* gpu_dnn_ctx = static_cast<phi::GPUContext*>(dev_ctx);
    switch (AttrTypeID(attr)) {
      case proto::AttrType::INT:
        gpu_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(int, attr));
        break;
      case proto::AttrType::BOOLEAN:
        gpu_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(bool, attr));
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported Attribute value type `%s` for phi.",
            platform::demangle(attr.type().name())));
    }
  }
#endif
}

3017
void OperatorWithKernel::BuildPhiKernelContext(
3018 3019
    const RuntimeContext& ctx,
    platform::DeviceContext* dev_ctx,
3020 3021
    phi::KernelContext* phi_kernel_context) const {
  phi_kernel_context->SetDeviceContext(dev_ctx);
3022

3023 3024 3025
  auto& input_names = kernel_signature_->input_names;
  auto& attr_names = kernel_signature_->attr_names;
  auto& output_names = kernel_signature_->output_names;
3026

3027 3028 3029
  auto input_defs = phi_kernel_->args_def().input_defs();
  auto attr_defs = phi_kernel_->args_def().attribute_defs();
  auto output_defs = phi_kernel_->args_def().output_defs();
3030

3031 3032 3033 3034 3035 3036 3037 3038 3039
#if defined(PADDLE_WITH_MKLDNN)
  if (phi::OneDNNContext::classof(dev_ctx)) {
    // Onednn holds this op's variable's name and init them here.
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    one_dnn_ctx->SetInputsName(Inputs());
    one_dnn_ctx->SetOutputsName(Outputs());
  }
#endif

3040 3041
  PADDLE_ENFORCE_EQ(input_names.size(),
                    input_defs.size(),
3042 3043 3044
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
3045 3046
                        input_names.size(),
                        input_defs.size()));
3047

3048 3049
  PADDLE_ENFORCE_EQ(output_names.size(),
                    output_defs.size(),
3050 3051 3052
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
3053 3054
                        output_names.size(),
                        output_defs.size()));
3055

3056 3057
  PADDLE_ENFORCE_EQ(attr_names.size(),
                    attr_defs.size(),
3058 3059 3060
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
3061 3062
                        attr_names.size(),
                        attr_defs.size()));
3063
  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
3064
    auto it = ctx.inputs.find(input_names[i]);
3065 3066 3067

    // calcute the start and end index of the input tensors
    size_t start_idx =
3068
        (i == 0 ? 0 : phi_kernel_context->InputRangeAt(i - 1).second);
H
hong 已提交
3069
    // deal with optional here
3070
    if ((it == ctx.inputs.end() || it->second.size() == 0) &&
H
hong 已提交
3071
        (input_defs[i].type_index ==
3072
             std::type_index(typeid(paddle::optional<phi::DenseTensor>)) ||
H
hong 已提交
3073
         input_defs[i].type_index ==
3074
             std::type_index(typeid(paddle::optional<phi::SelectedRows>)) ||
3075
         input_defs[i].type_index ==
3076 3077
             std::type_index(typeid(
                 paddle::optional<std::vector<const phi::DenseTensor*>>)))) {
3078
      phi_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
H
hong 已提交
3079
      auto end_idx = start_idx + 1;
3080 3081
      phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                           i);
3082

H
hong 已提交
3083 3084 3085 3086
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
3087
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
3088
      const phi::TensorBase* tensor_in = nullptr;
3089
      auto* var = ins_vector[offset];
3090 3091
      if (var->IsType<phi::DenseTensor>()) {
        tensor_in = &(var->Get<phi::DenseTensor>());
3092
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3093 3094
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
3095
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3096 3097 3098
      } else if (var->IsType<phi::SparseCooTensor>()) {
        tensor_in = &(var->Get<phi::SparseCooTensor>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3099
      } else if (var->IsType<framework::LoDTensorArray>()) {
3100
        need_prepare_phi_data_ = true;
3101 3102
        tensor_in = &(var->Get<framework::LoDTensorArray>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3103 3104 3105
      } else if (var->IsType<framework::Vocab>()) {
        tensor_in = &(var->Get<framework::Vocab>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3106 3107 3108
      } else if (var->IsType<framework::FeedList>()) {
        tensor_in = &(var->Get<framework::FeedList>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3109 3110 3111 3112
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
3113
      }
3114
    }
3115
    // Note: here cannot deal with vector<LoDTensorArray> input
3116
    phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
3117
  }
3118
  VLOG(4) << "Done inputs";
3119
  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
3120
    auto it = ctx.outputs.find(output_names[i]);
3121
    size_t start_idx =
3122
        (i == 0 ? 0 : phi_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
3123 3124

    if (it == ctx.outputs.end() || it->second.empty()) {
3125
      VLOG(4) << "Output " << output_names[i] << " not found";
H
hong 已提交
3126 3127 3128 3129
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
3130
      phi_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
H
hong 已提交
3131
      auto end_idx = start_idx + 1;
3132 3133
      phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                            i);
H
hong 已提交
3134 3135 3136 3137
      continue;
    }
    auto& outs_vector = it->second;

3138
    size_t end_idx = start_idx + outs_vector.size();
3139 3140

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
3141
      phi::TensorBase* tensor_out = nullptr;
3142
      auto* var = outs_vector[offset];
3143
      if (var) {
3144 3145
        if (var->template IsType<phi::DenseTensor>()) {
          tensor_out = var->template GetMutable<phi::DenseTensor>();
3146
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3147 3148
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
3149
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3150 3151 3152
        } else if (var->template IsType<phi::SparseCooTensor>()) {
          tensor_out = var->template GetMutable<phi::SparseCooTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3153
        } else if (var->template IsType<framework::LoDTensorArray>()) {
3154
          tensor_out = var->template GetMutable<framework::LoDTensorArray>();
3155 3156
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
3157
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3158 3159 3160
        } else if (var->template IsType<framework::Strings>()) {
          tensor_out = var->template GetMutable<framework::Strings>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3161 3162 3163 3164 3165 3166 3167
        } else if (var->template IsType<paddle::framework::RawTensor>()) {
          tensor_out = var->template GetMutable<paddle::framework::RawTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
        } else if (!var->IsInitialized()) {
          // The following is for RAW type of var
          tensor_out = var->template GetMutable<paddle::framework::RawTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3168 3169 3170 3171 3172
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
3173
      } else {
3174
        VLOG(4) << "Output " << output_names[i] << " is nullptr";
3175
        phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3176
      }
3177
    }
3178 3179
    phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                          i);
3180
  }
3181
  VLOG(4) << "Done outputs";
3182
  for (size_t i = 0; i < attr_names.size(); ++i) {
3183 3184
    VLOG(6) << "BuildPhiKernelContext: " << attr_names[i] << ": "
            << attr_defs[i].type_index;
3185 3186
    // attribute with Variable type has been placed into Inputs(), and
    // we can parse them from RuntimeContext.inputs.
3187 3188 3189 3190 3191 3192 3193
    auto attr_iter = Attrs().find(attr_names[i]);
    switch (attr_defs[i].type_index) {
      case phi::AttributeType::SCALAR:
        if (attr_iter != Attrs().end()) {
          // scalar is in the attribute
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::FLOAT:
3194
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
3195
                  phi::Scalar(PADDLE_GET_CONST(float, attr_iter->second))));
3196
              break;
3197 3198 3199 3200
            case proto::AttrType::FLOAT64:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(double, attr_iter->second))));
              break;
3201
            case proto::AttrType::INT:
3202
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
3203
                  phi::Scalar(PADDLE_GET_CONST(int, attr_iter->second))));
3204
              break;
3205 3206 3207 3208
            case proto::AttrType::LONG:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(int64_t, attr_iter->second))));
              break;
3209
            case proto::AttrType::STRING:
3210
              phi_kernel_context->EmplaceBackAttr(std::move(phi::Scalar(
R
Ruibiao Chen 已提交
3211
                  PADDLE_GET_CONST(std::string, attr_iter->second))));
3212
              break;
3213 3214 3215 3216
            case proto::AttrType::BOOLEAN:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(bool, attr_iter->second))));
              break;
3217 3218 3219 3220 3221 3222 3223
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to Scalar when construct "
                  "KernelContext in dygraph.",
                  attr_names[i]));
          }
        } else {  // scalar is in the input
3224
          need_prepare_phi_data_ = true;
3225
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
3226 3227
          phi_kernel_context->EmplaceBackAttr(
              std::move(framework::MakePhiScalarFromVar(*ins_vector.front())));
3228
        }
3229 3230 3231 3232 3233
        break;
      case phi::AttributeType::INT_ARRAY:
        if (attr_iter != Attrs().end()) {
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::INTS:
3234
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3235
                  PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second))));
3236 3237
              break;
            case proto::AttrType::LONGS:
3238
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3239
                  PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second))));
3240 3241
              break;
            case proto::AttrType::INT:
3242
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3243
                  &PADDLE_GET_CONST(int32_t, attr_iter->second), 1)));
3244 3245
              break;
            case proto::AttrType::LONG:
3246
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3247
                  &PADDLE_GET_CONST(int64_t, attr_iter->second), 1)));
3248 3249 3250 3251 3252 3253 3254 3255
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to IntArray when "
                  "construct KernelContext.",
                  attr_names[i]));
          }
        } else {  // shape is in the input
3256
          need_prepare_phi_data_ = true;
3257 3258
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
          if (ins_vector.size() == 1) {  // ShapeTensor
3259
            phi_kernel_context->EmplaceBackAttr(std::move(
3260
                framework::MakePhiIntArrayFromVar(*ins_vector.front())));
3261
          } else {  // ShapeTensorList
3262 3263
            phi_kernel_context->EmplaceBackAttr(
                std::move(framework::MakePhiIntArrayFromVarList(ins_vector)));
3264
          }
3265
        }
3266
        break;
3267

3268 3269
      case phi::AttributeType::SCALARS: {
        PADDLE_ENFORCE_NE(
3270 3271
            attr_iter,
            Attrs().end(),
3272 3273 3274 3275 3276 3277
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind static KernelContext.",
                                       attr_names[i]));
        switch (AttrTypeID(attr_iter->second)) {
          case proto::AttrType::INTS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3278
                PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second);
3279 3280 3281 3282 3283
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3284
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3285 3286 3287
          } break;
          case proto::AttrType::LONGS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3288
                PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second);
3289 3290 3291 3292 3293
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3294
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3295 3296 3297
          } break;
          case proto::AttrType::FLOATS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3298
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second);
3299 3300 3301 3302 3303
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3304
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3305 3306 3307
          } break;
          case proto::AttrType::FLOAT64S: {
            const auto& vec =
R
Ruibiao Chen 已提交
3308
                PADDLE_GET_CONST(std::vector<double>, attr_iter->second);
3309 3310 3311 3312 3313
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3314
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3315 3316 3317
          } break;
          case proto::AttrType::BOOLEANS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3318
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second);
3319 3320 3321 3322 3323
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3324
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3325 3326 3327 3328 3329
          } break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` to vector<Scalar> when "
                "construct KernelContext.",
H
hong 已提交
3330 3331
                attr_names[i]));
        }
3332 3333
      } break;
      default: {
3334
        if (attr_iter == Attrs().end()) {
3335
          // TODO(chenweihang): remove this backup searching later
3336 3337 3338 3339 3340 3341 3342 3343 3344
          attr_iter = RuntimeAttrs().find(attr_names[i]);
          PADDLE_ENFORCE_NE(attr_iter,
                            RuntimeAttrs().end(),
                            platform::errors::NotFound(
                                "(%s) is not found in AttributeMap when "
                                "buildind static KernelContext.",
                                attr_names[i]));
        }

3345 3346
        switch (attr_defs[i].type_index) {
          case phi::AttributeType::FLOAT32:
3347
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3348
                PADDLE_GET_CONST(float, attr_iter->second));
3349
            break;
3350 3351 3352 3353
          case phi::AttributeType::FLOAT64:
            phi_kernel_context->EmplaceBackAttr(
                PADDLE_GET_CONST(double, attr_iter->second));
            break;
3354
          case phi::AttributeType::INT32:
3355
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3356
                PADDLE_GET_CONST(int, attr_iter->second));
3357 3358
            break;
          case phi::AttributeType::BOOL:
3359
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3360
                PADDLE_GET_CONST(bool, attr_iter->second));
3361 3362
            break;
          case phi::AttributeType::INT64:
3363
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3364
                PADDLE_GET_CONST(int64_t, attr_iter->second));
3365 3366
            break;
          case phi::AttributeType::INT32S:
3367
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3368
                PADDLE_GET_CONST(std::vector<int>, attr_iter->second));
3369
            break;
3370 3371 3372 3373
          case phi::AttributeType::BOOLS:
            phi_kernel_context->EmplaceBackAttr(
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second));
            break;
3374 3375 3376
          case phi::AttributeType::DATA_TYPE: {
            auto data_type = framework::TransToPhiDataType(
                static_cast<framework::proto::VarType::Type>(
R
Ruibiao Chen 已提交
3377
                    PADDLE_GET_CONST(int, attr_iter->second)));
3378
            phi_kernel_context->EmplaceBackAttr(data_type);
3379 3380
          } break;
          case phi::AttributeType::STRING:
3381
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3382
                std::move(PADDLE_GET_CONST(std::string, attr_iter->second)));
3383 3384 3385 3386
            break;
          case phi::AttributeType::INT64S:
            switch (AttrTypeID(attr_iter->second)) {
              case proto::AttrType::LONGS:
3387
                phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3388
                    PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second));
3389 3390 3391
                break;
              case proto::AttrType::INTS: {
                const auto& vector_int_attr =
R
Ruibiao Chen 已提交
3392
                    PADDLE_GET_CONST(std::vector<int>, attr_iter->second);
3393 3394
                const std::vector<int64_t> vector_int64_attr(
                    vector_int_attr.begin(), vector_int_attr.end());
3395
                phi_kernel_context->EmplaceBackAttr(vector_int64_attr);
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
              } break;
              default:
                PADDLE_THROW(platform::errors::Unimplemented(
                    "Unsupported cast op attribute `%s` to vector<int64_t> "
                    "when "
                    "construct KernelContext.",
                    attr_names[i]));
            }
            break;
          case phi::AttributeType::FLOAT32S:
3406
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3407
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second));
3408 3409
            break;
          case phi::AttributeType::STRINGS:
3410
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3411
                PADDLE_GET_CONST(std::vector<std::string>, attr_iter->second));
3412 3413 3414 3415 3416 3417
            break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` when construct "
                "KernelContext in dygraph.",
                attr_names[i]));
3418
        }
3419 3420 3421
      }
    }
  }
3422
  VLOG(4) << "Done attributes";
3423

3424 3425 3426 3427 3428 3429
// Clear All old attrs before add new attrs,
// because sometimes old attrs may be misused.
#if defined(PADDLE_WITH_MKLDNN)
  if (phi::OneDNNContext::classof(dev_ctx)) {
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    one_dnn_ctx->ClearDnnAttr();
3430
    if (!RuntimeAttrs().empty()) need_prepare_phi_data_ = true;
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
  }
#endif

  // Note(YuanRisheng): Now, we can't open code below.
  // Because some unittest run OLD dygraph and ExtraAttr is not supported in OLD
  // dygraph. So, here we use trick that dev_ctx is a global object. We can
  // store ExtraAttr in static graph and when unittest run OLD dygraph, it can
  // obtain these ExtraAttr. We can open this code when OLD dygraph is no longer
  // used.
  /*
  #if defined(PADDLE_WITH_CUDA)
    if(phi::GPUContext::classof(dev_ctx)) {
      phi::GPUContext* gpu_dnn_ctx = static_cast<phi::GPUContext*>(dev_ctx);
      gpu_dnn_ctx->ClearDnnAttr();
    }
  #endif
  */
3448 3449 3450 3451 3452 3453
  // For compatible with Op with extra attrs for specific backend
#if defined(PADDLE_WITH_MKLDNN) || defined(PADDLE_WITH_CUDA)
  auto& runtime_attrs = RuntimeAttrs();
  for (const auto& attr_iter : runtime_attrs) {
    auto& attr_name = attr_iter.first;
    auto& attr = attr_iter.second;
H
HongyuJia 已提交
3454
    auto attr_propertys = paddle::operators::GetExtraAttrProperties(attr_name);
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
    SetDnnAttrIntoDeviceContext(dev_ctx, attr, attr_name, attr_propertys);
  }
  // TODO(chenweihang): Since the pass will still `SetAttr` in the OpDesc,
  // we try to add these Attrs to the RuntimeAttrs, but these OpDesc will lose
  // the RuntimeAttrs information in the process of converting the Graph to
  // the Program, so additional record configuration will be introduced,
  // which increases the The cost of development and understanding, so we
  // still use Attrs to get and the attributes set by these passes from Attrs
  // for the time being. In the future, it is necessary to clarify the
  // positioning of RuntimeAttrs and expand related functions.
  auto& attrs = Attrs();
  for (const auto& attr_iter : attrs) {
    auto& attr_name = attr_iter.first;
    auto& attr = attr_iter.second;
H
HongyuJia 已提交
3469
    auto attr_propertys = paddle::operators::GetExtraAttrProperties(attr_name);
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
    SetDnnAttrIntoDeviceContext(dev_ctx, attr, attr_name, attr_propertys);
  }
  VLOG(4) << "Done runtime attributes";
#endif

// For compatible with Op with extra input for onednn backend
#ifdef PADDLE_WITH_MKLDNN
  if (phi::OneDNNContext::classof(dev_ctx)) {
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    auto& extra_input_names =
        paddle::operators::ExtraInfoUtils::Instance().GetExtraInputNamesMap(
            Type());
    for (const auto& input_name : extra_input_names) {
      auto it = ctx.inputs.find(input_name);
      if (it == ctx.inputs.end() || it->second.size() == 0) {
        one_dnn_ctx->SetDnnInput(input_name, nullptr);
      } else {
        auto ins_vector = it->second;
        PADDLE_ENFORCE_EQ(
            ins_vector.size(),
            1UL,
            phi::errors::InvalidArgument(
                "OneDNN's extra input only allows one input tensor."));
        auto* var = ins_vector[0];
        PADDLE_ENFORCE_EQ(var->IsType<phi::DenseTensor>(),
                          true,
                          phi::errors::InvalidArgument(
                              "OneDNN's extra input only can be DenseTensor."));
        one_dnn_ctx->SetDnnInput(input_name, &(var->Get<phi::DenseTensor>()));
      }
    }
  }
  VLOG(4) << "Done runtime extra inputs";
#endif
3504 3505
}

Q
Qiao Longfei 已提交
3506
}  // namespace framework
L
liaogang 已提交
3507
}  // namespace paddle