common.py 92.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle import _C_ops, _legacy_C_ops
X
xiaoting 已提交
17
from paddle.fluid.layer_helper import LayerHelper
18
from paddle.fluid.layers.tensor import fill_constant
19 20 21
from paddle.framework import core, in_dynamic_mode
from paddle.static import Variable, default_main_program
from paddle.tensor.creation import full
22 23 24 25

from ...fluid.data_feeder import (
    check_dtype,
    check_type,
26
    check_variable_and_dtype,
27
)
28
from ...fluid.framework import in_dygraph_mode
29 30
from ...tensor import clip, concat, sqrt, sum
from ...tensor.creation import zeros
Z
zhiboniu 已提交
31

32 33
# TODO: define the common functions to build a neural network
from ...tensor.manipulation import squeeze, unsqueeze
34

35 36
__all__ = []

X
xiaoting 已提交
37

38 39 40
def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    r"""

41
    Return a col buffer of sliding local blocks of input x, also known
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter sliding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \times (kernel\_sizes[1] - 1) + 1

        hout &= \frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \times kernel\_sizes[0] \times kernel\_sizes[1]

        Lout &= hout \times wout


    Parameters:
        x(Tensor):              4-D Tensor, input tensor of format [N, C, H, W],
                                  data type can be float32 or float64
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
69
        strides(int|list, optional):        The strides, should be [stride_h, stride_w]
70 71
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
72
        paddings(int|list, optional):       The paddings of each dimension, should be
73 74 75 76 77 78
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
79
        dilations(int|list, optional):      the dilations of convolution kernel, should be
80 81 82 83 84 85 86 87
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
88
        Tensor, The tensor corresponding to the sliding local blocks.
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
        The output shape is [N, Cout, Lout] as decriabled above.
        Cout is the  total number of values within each block,
        and Lout is the total number of such blocks.
        The data type of output is the same as the input :math:`x`

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((100,3,224,224))
            y = F.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'unfold')

109
    assert len(x.shape) == 4, "input should be the format of [N, C, H, W]"
110 111 112 113

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
114 115 116
        assert isinstance(kernel_sizes, list) and (
            len(kernel_sizes) == 2
        ), "kernel_sizes should either be an integer or a list of two integers"
117 118 119 120

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
121 122 123
        assert isinstance(strides, list) and (
            len(strides) == 2
        ), "strides should either be an integer or a list of two integers"
124 125 126 127

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
128 129 130
        assert isinstance(dilations, list) and (
            len(dilations) == 2
        ), "dilations should either be an integer or a list of two integers"
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
146 147
            "of 2 or 4 integers"
        )
148 149

    if in_dygraph_mode():
150
        return _C_ops.unfold(x, kernel_sizes, strides, paddings, dilations)
151 152

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
153 154 155 156 157 158 159 160 161 162 163
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations,
        },
    )
164 165 166
    return out


167 168 169 170 171 172 173 174 175 176
def interpolate(
    x,
    size=None,
    scale_factor=None,
    mode='nearest',
    align_corners=False,
    align_mode=0,
    data_format='NCHW',
    name=None,
):
X
xiaoting 已提交
177
    """
S
swtkiwi 已提交
178

179
    This API resizes a batch of images.
180

181 182
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
X
xiaoting 已提交
183
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
184 185
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
186
    and the resizing only applies on the three dimensions(depth, height and width).
X
xiaoting 已提交
187

X
xiaoting 已提交
188
    Supporting resample methods:
189 190 191 192 193 194 195

    - 'linear' : Linear interpolation
    - 'bilinear' : Bilinear interpolation
    - 'trilinear' : Trilinear interpolation
    - 'nearest' : Nearest neighbor interpolation
    - 'bicubic' : Bicubic interpolation
    - 'area': Area interpolation
196

197 198 199
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

X
xiaoting 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
X
xiaoting 已提交
214
    align_corners and align_mode are optional parameters,the calculation method
X
xiaoting 已提交
215 216 217 218 219 220 221
    of interpolation can be selected by them.

    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.

222 223
    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
224 225
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
226 227
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
228 229 230 231
    Example:

    .. code-block:: text

232
        # For scale_factor:
X
xiaoting 已提交
233 234 235 236 237
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

238
        # Linear interpolation:
239 240 241 242 243 244 245 246 247
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
248

249
        # Nearest neighbor interpolation:
X
xiaoting 已提交
250

X
xiaoting 已提交
251 252 253 254 255
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
256

257
        # Bilinear interpolation:
X
xiaoting 已提交
258 259 260 261 262 263 264 265 266 267 268 269
          if:
              align_corners = False , align_mode = 0
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

270
        # Bicubic interpolation:
X
xiaoting 已提交
271 272 273 274 275 276 277 278 279 280 281 282
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

283
        # Trilinear interpolation:
X
xiaoting 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

298 299
    For details of linear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Linear_interpolation.
300

X
xiaoting 已提交
301 302
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
303

X
xiaoting 已提交
304 305
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
306

X
xiaoting 已提交
307 308
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
309

X
xiaoting 已提交
310 311
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
312

X
xiaoting 已提交
313
    Parameters:
X
xiaoting 已提交
314
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
X
xiaoting 已提交
315
                          its data format is specified by :attr:`data_format`.
X
xiaoting 已提交
316
        size (list|tuple|Tensor|None): Output shape of image resize
317 318
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
319
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
320
             If a Tensor, its dimensions size should be a 1.
321 322 323
        scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if it is either a list or a tuple or a Tensor.
X
xiaoting 已提交
324
             Default: None.
325
        mode (str): The resample method. It supports 'linear', 'area', 'nearest', 'bilinear',
326
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
X
xiaoting 已提交
327 328
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
X
xiaoting 已提交
329
                               corner pixels.This only has an effect when 'linear', 'bilinear', 'bicubic' or 'trilinear'.
330 331 332 333
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
X
xiaoting 已提交
334
        data_format (str, optional): Specify the data format of the input, and the data format of the output
335
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`,  `"NCHW"`, `"NHWC"`, `"NCDHW"`,
X
xiaoting 已提交
336 337 338
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
339 340 341
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
X
xiaoting 已提交
342
    Returns:
343
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
X
xiaoting 已提交
344 345
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
346

347

X
xiaoting 已提交
348 349 350
    Examples:
        .. code-block:: python

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
            import paddle
            import paddle.nn.functional as F

            input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
            output_1 = F.interpolate(x=input_data, size=[12,12])
            print(output_1.shape)
            # [2L, 3L, 12L, 12L]

            # given scale
            output_2 = F.interpolate(x=input_data, scale_factor=[2,1])
            print(output_2.shape)
            # [2L, 3L, 12L, 10L]

            # bilinear interp
            output_3 = F.interpolate(x=input_data, scale_factor=[2,1], mode="bilinear")
            print(output_2.shape)
            # [2L, 3L, 12L, 10L]
X
xiaoting 已提交
368
    """
369 370 371 372 373 374 375 376 377 378
    data_format = data_format.upper()
    resample = mode.upper()
    resample_type = mode.lower()

    resample_methods = [
        'LINEAR',
        'BILINEAR',
        'TRILINEAR',
        'NEAREST',
        'BICUBIC',
379
        'AREA',
380
    ]
X
xiaoting 已提交
381 382
    if resample not in resample_methods:
        raise ValueError(
383
            "The 'resample' of image_resize can only be 'area', 'linear', 'bilinear', 'trilinear', "
384 385
            " 'bicubic' or 'nearest' currently."
        )
X
xiaoting 已提交
386

X
xiaoting 已提交
387
    if resample in ['LINEAR'] and len(x.shape) != 3:
388
        raise ValueError("'linear' only support 3-D tensor.")
389

390 391 392 393 394
    if resample in ['NEAREST'] and len(x.shape) != 4 and len(x.shape) != 5:
        raise ValueError("'NEAREST' only support 4-D  or 5-D tensor.")

    if resample in ['BILINEAR', 'BICUBIC'] and len(x.shape) != 4:
        raise ValueError("'bilinear' and 'bicubic' only support 4-D tensor.")
X
xiaoting 已提交
395
    if resample == 'TRILINEAR' and len(x.shape) != 5:
396 397 398 399
        raise ValueError("'trilinear'only support 5-D tensor.")

    if size is None and scale_factor is None:
        raise ValueError("One of size and scale_factor must not be None.")
X
xiaoting 已提交
400 401 402

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
403

X
xiaoting 已提交
404 405
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")
X
xiaoting 已提交
406 407 408 409
    if align_corners != 0 and resample == 'NEAREST':
        raise ValueError(
            "align_corners option can only be set with the interpolating modes: linear | bilinear | bicubic | trilinear"
        )
410

X
xiaoting 已提交
411
    if resample == 'AREA':
412 413 414 415 416
        if (
            isinstance(size, list)
            or isinstance(size, tuple)
            or isinstance(size, Variable)
        ):
X
xiaoting 已提交
417 418 419 420 421 422 423 424
            if len(size) == 0:
                raise ValueError("output size can not be empty")
        if len(x.shape) == 3:
            return paddle.nn.functional.adaptive_avg_pool1d(x, size)
        elif len(x.shape) == 4:
            return paddle.nn.functional.adaptive_avg_pool2d(x, size)
        elif len(x.shape) == 5:
            return paddle.nn.functional.adaptive_avg_pool3d(x, size)
X
xiaoting 已提交
425 426
    helper = LayerHelper('{}_interp_v2'.format(resample_type), **locals())
    if len(x.shape) == 3 and data_format not in ['NCW', 'NWC']:
427
        raise ValueError(
428 429 430 431
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCW` or `NWC` supported for 3-D input."
        )
X
xiaoting 已提交
432
    elif len(x.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
X
xiaoting 已提交
433
        raise ValueError(
434 435 436 437
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCHW` or `NHWC` supported for 4-D input."
        )
X
xiaoting 已提交
438
    elif len(x.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
X
xiaoting 已提交
439
        raise ValueError(
440 441 442 443
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCDHW` or `NDHWC` supported for 5-D input."
        )
X
xiaoting 已提交
444 445

    def _is_list_or_turple_(data):
446
        return isinstance(data, list) or isinstance(data, tuple)
X
xiaoting 已提交
447

448
    if data_format == 'NCHW' or data_format == 'NCDHW' or data_format == 'NCW':
X
xiaoting 已提交
449
        data_layout = 'NCHW'
450
    if data_format == 'NHWC' or data_format == 'NDHWC' or data_format == 'NWC':
X
xiaoting 已提交
451 452
        data_layout = 'NHWC'

X
xiaoting 已提交
453 454 455 456
    if resample == 'NEAREST':
        align_corners = False

    inputs = {"X": x}
X
xiaoting 已提交
457 458 459 460 461 462 463
    attrs = {
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode,
464
        "data_layout": data_layout,
X
xiaoting 已提交
465 466
    }

467 468
    out_shape = size
    scale = scale_factor
469 470
    if out_shape is not None and scale is not None:
        raise ValueError("Only one of size or scale_factor should be defined.")
X
xiaoting 已提交
471
    if out_shape is not None:
Z
zhiboniu 已提交
472
        if isinstance(out_shape, Variable) and not in_dynamic_mode():
X
xiaoting 已提交
473 474 475
            out_shape.stop_gradient = True
            inputs['OutSize'] = out_shape
        else:
Z
zhiboniu 已提交
476
            if in_dynamic_mode():
477 478
                if isinstance(out_shape, Variable):
                    out_shape = list(out_shape.numpy())
X
xiaoting 已提交
479 480
                else:
                    out_shape = list(out_shape)
481 482 483
                for i, dim in enumerate(out_shape):
                    if isinstance(dim, Variable):
                        out_shape[i] = dim.numpy()[0]
X
xiaoting 已提交
484
            if not (_is_list_or_turple_(out_shape)):
485
                raise TypeError("size should be a list or tuple or Variable.")
X
xiaoting 已提交
486 487 488 489 490 491
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
492 493 494
                assert (
                    dim_size > 0
                ), "Each dimension size given in out_shape must be greater than 0."
X
xiaoting 已提交
495 496 497 498 499 500 501 502 503 504

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
505
                        assert isinstance(dim, int)
X
xiaoting 已提交
506
                        temp_out = helper.create_variable_for_type_inference(
507 508 509 510 511
                            'int32'
                        )
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out
                        )
X
xiaoting 已提交
512 513 514 515
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

X
xiaoting 已提交
516
            if len(x.shape) == 3:
517 518
                if len(out_shape) != 1:
                    raise ValueError(
519 520
                        "size length should be 2 for input 3-D tensor"
                    )
521 522 523 524 525
                if contain_var:
                    attrs['out_w'] = size_list[0]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_w'] = out_shape[0]
X
xiaoting 已提交
526
            if len(x.shape) == 4:
X
xiaoting 已提交
527
                if len(out_shape) != 2:
528 529 530
                    raise ValueError(
                        "size length should be 2 for " "input 4-D tensor."
                    )
X
xiaoting 已提交
531 532 533 534 535 536 537
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
X
xiaoting 已提交
538
            if len(x.shape) == 5:
X
xiaoting 已提交
539
                if len(out_shape) != 3:
540 541 542
                    raise ValueError(
                        "size length should be 3 for " "input 5-D tensor."
                    )
X
xiaoting 已提交
543 544 545 546 547 548 549 550 551 552 553
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]

    else:
Z
zhiboniu 已提交
554
        if in_dynamic_mode() and isinstance(scale, Variable):
555
            scale = list(scale.numpy())
X
xiaoting 已提交
556 557 558 559 560 561
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
        elif isinstance(scale, float) or isinstance(scale, int):
            if scale <= 0:
                raise ValueError("Attr(scale) should be greater than zero.")
X
xiaoting 已提交
562 563 564 565
            scale_list = []
            for i in range(len(x.shape) - 2):
                scale_list.append(scale)
            attrs['scale'] = list(map(float, scale_list))
X
xiaoting 已提交
566
        elif isinstance(scale, list) or isinstance(scale, tuple):
X
xiaoting 已提交
567
            if len(scale) != len(x.shape) - 2:
568 569 570 571
                raise ValueError(
                    "scale_shape length should be {} for "
                    "input {}-D tensor.".format(len(x.shape) - 2, len(x.shape))
                )
X
xiaoting 已提交
572 573 574 575
            for value in scale:
                if value <= 0:
                    raise ValueError("Attr(scale) should be greater than zero.")
            attrs['scale'] = list(map(float, scale))
X
xiaoting 已提交
576 577
        else:
            raise TypeError(
578 579
                "Attr(scale)'s type should be float, int, list, tuple, or Tensor."
            )
X
xiaoting 已提交
580

Z
zhiboniu 已提交
581
    if in_dynamic_mode():
X
xiaoting 已提交
582 583 584 585 586 587 588
        attr_list = []
        for k, v in attrs.items():
            attr_list.append(k)
            attr_list.append(v)
        dy_attr = tuple(attr_list)

        if resample_type == "linear":
589
            if in_dygraph_mode():
590
                out = _C_ops.linear_interp(
591 592
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
593 594
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
595 596 597 598 599 600 601 602 603
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
604
            else:
605
                out = _legacy_C_ops.linear_interp_v2(x, *dy_attr)
606
        elif resample_type == "bilinear":
607
            if in_dygraph_mode():
608
                out = _C_ops.bilinear_interp(
609 610
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
611 612
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
613 614 615 616 617 618 619 620 621
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
622
            else:
623
                out = _legacy_C_ops.bilinear_interp_v2(x, *dy_attr)
624
        elif resample_type == "trilinear":
625
            if in_dygraph_mode():
626
                out = _C_ops.trilinear_interp(
627 628
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
629 630
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
631 632 633 634 635 636 637 638 639
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
640
            else:
641
                out = _legacy_C_ops.trilinear_interp_v2(x, *dy_attr)
642
        elif resample_type == "nearest":
643
            if in_dygraph_mode():
644
                out = _C_ops.nearest_interp(
645 646
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
647 648
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
649 650 651 652 653 654 655 656 657
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
658
            else:
659
                out = _legacy_C_ops.nearest_interp_v2(x, *dy_attr)
660
        elif resample_type == "bicubic":
661
            if in_dygraph_mode():
662
                out = _C_ops.bicubic_interp(
663 664
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
665 666
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
667 668 669 670 671 672 673 674 675
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
676
            else:
677
                out = _legacy_C_ops.bicubic_interp_v2(x, *dy_attr)
X
xiaoting 已提交
678
        return out
W
Weilong Wu 已提交
679 680 681

    dtype = helper.input_dtype(input_param_name='x')

X
xiaoting 已提交
682
    out = helper.create_variable_for_type_inference(dtype)
683 684 685 686 687 688
    helper.append_op(
        type='{}_interp_v2'.format(resample_type),
        inputs=inputs,
        outputs={"Out": out},
        attrs=attrs,
    )
X
xiaoting 已提交
689
    return out
L
littletomatodonkey 已提交
690 691


692 693 694 695 696 697 698 699 700 701
def upsample(
    x,
    size=None,
    scale_factor=None,
    mode='nearest',
    align_corners=False,
    align_mode=0,
    data_format='NCHW',
    name=None,
):
X
xiaoting 已提交
702
    """
703

704
    This API resizes a batch of images.
705

X
xiaoting 已提交
706 707 708
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
709 710
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
711 712 713
    and the resizing only applies on the three dimensions(depth, height and width).

    Supporting resample methods:
714 715 716 717 718 719
    - 'linear' : Linear interpolation
    - 'bilinear' : Bilinear interpolation
    - 'trilinear' : Trilinear interpolation
    - 'nearest' : Nearest neighbor interpolation
    - 'bicubic' : Bicubic interpolation

720 721 722
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

X
xiaoting 已提交
723 724 725 726 727 728 729 730
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.
731

X
xiaoting 已提交
732 733 734 735
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
736

X
xiaoting 已提交
737 738 739
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
740

X
xiaoting 已提交
741 742 743
    The linear interpolation is performed on three directions.
    align_corners and align_mode are optional parameters,the calculation method
    of interpolation can be selected by them.
744 745 746 747 748 749 750

    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
751
    Example:
752
        .. code-block:: text
753

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
            For scale_factor:
                if align_corners = True && out_size > 1 :
                scale_factor = (in_size-1.0)/(out_size-1.0)
                else:
                scale_factor = float(in_size/out_size)
            Linear interpolation:
                if:
                    align_corners = False , align_mode = 0
                    input : (N,C,W_in)
                    output: (N,C,W_out) where:
                    W_out = (W_{in}+0.5) * scale_{factor} - 0.5
                else:
                    input : (N,C,W_in)
                    output: (N,C,W_out) where:
                    W_out = W_{in} * scale_{factor}
            Nearest neighbor interpolation:
            if:
                align_corners = False
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = floor (H_{in} * scale_{factor})
                W_out = floor (W_{in} * scale_{factor})
X
xiaoting 已提交
776
            else:
777 778 779 780 781 782 783
                align_corners = True
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = round(H_{in} * scale_{factor})
                W_out = round(W_{in} * scale_{factor})

            Bilinear interpolation:
X
xiaoting 已提交
784 785
            if:
                align_corners = False , align_mode = 0
786 787 788
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = (H_{in}+0.5) * scale_{factor} - 0.5
X
xiaoting 已提交
789 790
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = H_{in} * scale_{factor}
                W_out = W_{in} * scale_{factor}
            Bicubic interpolation:
            if:
                align_corners = False
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = (H_{in}+0.5) * scale_{factor} - 0.5
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = H_{in} * scale_{factor}
                W_out = W_{in} * scale_{factor}
            Trilinear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,D_in,H_in,W_in)
                output: (N,C,D_out,H_out,W_out) where:
                D_out = (D_{in}+0.5) * scale_{factor} - 0.5
                H_out = (H_{in}+0.5) * scale_{factor} - 0.5
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,D_in,H_in,W_in)
                output: (N,C,D_out,H_out,W_out) where:
                D_out = D_{in} * scale_{factor}
                H_out = H_{in} * scale_{factor}
X
xiaoting 已提交
820
                W_out = W_{in} * scale_{factor}
821

X
xiaoting 已提交
822
    For details of linear interpolation, please refer to Wikipedia:
823
    https://en.wikipedia.org/wiki/Linear_interpolation.
824

X
xiaoting 已提交
825 826
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
827

X
xiaoting 已提交
828 829
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
830

X
xiaoting 已提交
831 832
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
833

X
xiaoting 已提交
834 835
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
836

X
xiaoting 已提交
837 838 839
    Parameters:
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
840
        size (list|tuple|Tensor|None, optional): Output shape of image resize
841 842
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
843
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
844
             If a Tensor , its dimensions size should be a 1.
845
        scale_factor (float|Tensor|list|tuple|None, optional): The multiplier for the input height or width. At
846
             least one of :attr:`size` or :attr:`scale_factor` must be set.
847
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if
848
             it is either a list or a tuple or a Tensor.
X
xiaoting 已提交
849
             Default: None.
850
        mode (str, optional): The resample method. It supports 'linear', 'nearest', 'bilinear',
X
xiaoting 已提交
851
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
852
        align_corners(bool, optional) :  An optional bool, If True, the centers of the 4 corner pixels of the
X
xiaoting 已提交
853 854 855
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
                               Default: False
856
        align_mode(int, optional)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
X
xiaoting 已提交
857 858 859 860 861 862 863 864 865 866
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
867

X
xiaoting 已提交
868 869 870 871
    Returns:
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
872

873 874
    Examples:
        .. code-block:: python
875

876 877
            import paddle
            import paddle.nn as nn
X
xiaoting 已提交
878

879 880
            input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
            upsample_out = paddle.nn.Upsample(size=[12,12])
881

882 883 884
            output = upsample_out(x=input_data)
            print(output.shape)
            # [2L, 3L, 12L, 12L]
X
xiaoting 已提交
885 886

    """
887 888 889
    return interpolate(
        x, size, scale_factor, mode, align_corners, align_mode, data_format
    )
X
xiaoting 已提交
890 891


892 893 894 895
def bilinear(x1, x2, weight, bias=None, name=None):
    """

    This layer performs bilinear on two inputs.
896
    See :ref:`api_nn_Bilinear` for details and output shape.
897 898

    Parameters:
899 900 901 902 903 904
        x1 (Tensor): the first input tensor, it's data type should be float32, float64.
        x2 (Tensor): the second input tensor, it's data type should be float32, float64.
        weight (Parameter): The learnable weights of this layer, shape is [out_features, in1_features, in2_features].
        bias (Parameter, optional): The learnable bias(Bias) of this layer, shape is [1, out_features]. If it is set to None, no bias will be added to the output units. The default value is None.
        name (str, optional): The default value is None. Normally there is no need for user
            to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
905 906

    Returns:
907
        Tensor: A 2-D Tensor of shape [batch_size, out_features].
908 909

    Examples:
910
        .. code-block:: python
911

912 913
            import paddle
            import paddle.nn.functional as F
914

915 916 917 918
            x1 = paddle.randn((5, 5)).astype(paddle.float32)
            x2 = paddle.randn((5, 4)).astype(paddle.float32)
            w = paddle.randn((1000, 5, 4)).astype(paddle.float32)
            b = paddle.randn((1, 1000)).astype(paddle.float32)
919

920 921 922
            result = F.bilinear(x1, x2, w, b)
            print(result.shape)
            # [5, 1000]
923 924
    """

925
    if in_dygraph_mode():
W
wanghuancoder 已提交
926
        return _C_ops.bilinear_tensor_product(x1, x2, weight, bias)
927 928 929
    else:
        check_variable_and_dtype(x1, 'x1', ['float32', 'float64'], 'bilinear')
        check_variable_and_dtype(x2, 'x2', ['float32', 'float64'], 'bilinear')
930

931 932 933
        inputs = {"X": x1, "Y": x2, "Weight": weight}
        if bias is not None:
            inputs["Bias"] = bias
934

935 936
        helper = LayerHelper("bilinear", **locals())
        out = helper.create_variable_for_type_inference(dtype=x1.dtype)
937

938 939 940
        helper.append_op(
            type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out}
        )
941

942
        return out
943 944


945 946 947
def dropout(
    x, p=0.5, axis=None, training=True, mode="upscale_in_train", name=None
):
948
    r"""
949 950 951 952 953 954 955
    Dropout is a regularization technique for reducing overfitting by preventing
    neuron co-adaption during training. The dropout operator randomly sets the
    outputs of some units to zero, while upscale others according to the given
    dropout probability.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
956 957 958
        p (float|int, optional): Probability of setting units to zero. Default: 0.5.
        axis (int|list|tuple, optional): The axis along which the dropout is performed. Default: None.
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default: True.
959
        mode(str, optional): ['upscale_in_train'(default) | 'downscale_in_infer'].
960

961
            1. upscale_in_train (default), upscale the output at training time
962

963 964
                - train: :math:`out = input \times \frac{mask}{(1.0 - dropout\_prob)}`
                - inference: :math:`out = input`
965

966
            2. downscale_in_infer, downscale the output at inference
967

968 969
                - train: :math:`out = input \times mask`
                - inference: :math:`out = input \times (1.0 - dropout\_prob)`
970

971
        name (str, optional): Name for the operation, Default: None. For more information, please refer to :ref:`api_guide_Name`.
972 973 974 975

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x` .

976

977 978
    Examples:
        We use ``p=0.5`` in the following description for simplicity.
979

980
        1. When ``axis=None`` , this is commonly used dropout, which dropout each element of x randomly.
981 982 983

        ..  code-block:: text

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
            Let's see a simple case when x is a 2d tensor with shape 2*3:
            [[1 2 3]
             [4 5 6]]
            we generate mask with the same shape as x, which is 2*3. The value of mask is
            sampled from a Bernoulli distribution randomly. For example, we may get such mask:
            [[0 1 0]
             [1 0 1]]
            So the output is obtained from elementwise multiply of x and mask:
            [[0 2 0]
             [4 0 6]]
            Using default setting, i.e. ``mode='upscale_in_train'`` ,
            if in training phase, the final upscale output is:
            [[0 4 0 ]
             [8 0 12]]
            if in test phase, the output is the same as input:
            [[1 2 3]
             [4 5 6]]
            we can also set ``mode='downscale_in_infer'`` , then
            if in training phase, the final output is:
            [[0 2 0]
             [4 0 6]]
            if in test phase, the scale output is:
            [[0.5 1.  1.5]
             [2.  2.5 3. ]]

1009 1010


1011
        2. When ``axis!=None`` , this is useful for dropping whole channels from an image or sequence.
1012 1013 1014

        ..  code-block:: text

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
            Let's see the simple case when x is a 2d tensor with shape 2*3 again:
            [[1 2 3]
             [4 5 6]]
            (1) If ``axis=0`` , this means the dropout is only performed in axis `0` .
                we generate mask with the shape 2*1. Only in axis `0` the value is randomly selected.
                For example, we may get such mask:
                [[1]
                 [0]]
                The output is obtained from elementwise multiply of x and mask. Doing that the mask will be
                broadcast from 2*1 to 2*3:
                [[1 1 1]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[1 2 3]
                 [0 0 0]]
                then we can do upscale or downscale according to the setting of other arguments.
            (2) If ``axis=1`` , this means the dropout is only performed in axis `1` .
                we generate mask with the shape 1*3. Only in axis `1` the value is randomly selected.
                For example, we may get such mask:
                [[1 0 1]]
                Doing elementwise multiply the mask will be broadcast from 1*3 to 2*3:
                [[1 0 1]
                 [1 0 1]]
                and the result after elementwise multiply is:
                [[1 0 3]
                 [4 0 6]]
            (3) What about ``axis=[0, 1]`` ? This means the dropout is performed in all axes of x,
                which is the same case as default setting ``axis=None`` .
1043
            (4) You may note that logically `axis=None` means the dropout is performed in none axis of x,
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
                We generate mask with the shape 1*1. Whole input is randomly selected or dropped.
                For example, we may get such mask:
                [[0]]
                Doing elementwise multiply the mask will be broadcast from 1*1 to 2*3:
                [[0 0 0]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[0 0 0]
                 [0 0 0]]
                Actually this is not what we want because all elements may set to zero~
1054

1055 1056
        When x is a 4d tensor with shape `NCHW`, where `N` is batch size, `C` is the number of channels, H and W are the height and width of the feature, we can set ``axis=[0,1]`` and the dropout will be performed in channel `N` and `C`, `H` and `W` is tied, i.e. paddle.nn.dropout(x, p, axis=[0,1]) . Please refer to ``paddle.nn.functional.dropout2d`` for more details.
        Similarly, when x is a 5d tensor with shape `NCDHW`, where `D` is the depth of the feature, we can set ``axis=[0,1]`` to perform dropout3d. Please refer to ``paddle.nn.functional.dropout3d`` for more details.
1057 1058

        .. code-block:: python
1059

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
            import paddle

            x = paddle.to_tensor([[1,2,3], [4,5,6]]).astype(paddle.float32)
            y_train = paddle.nn.functional.dropout(x, 0.5)
            y_test = paddle.nn.functional.dropout(x, 0.5, training=False)
            y_0 = paddle.nn.functional.dropout(x, axis=0)
            y_1 = paddle.nn.functional.dropout(x, axis=1)
            y_01 = paddle.nn.functional.dropout(x, axis=[0,1])
            print(x)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[1., 2., 3.],
            #         [4., 5., 6.]])
            print(y_train)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[2. , 0. , 6. ],
            #         [8. , 0. , 12.]])
            print(y_test)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[1., 2., 3.],
            #         [4., 5., 6.]])
            print(y_0)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0. , 0. , 0. ],
            #         [8. , 10., 12.]])
            print(y_1)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[2. , 0. , 6. ],
            #         [8. , 0. , 12.]])
            print(y_01)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0. , 0. , 0. ],
            #         [8. , 0. , 12.]])
1092 1093

    """
1094 1095 1096 1097 1098
    if not isinstance(p, (float, int, Variable)):
        raise TypeError("p argument should be a number or Variable")

    if isinstance(p, (int, float)):
        # fast return for p == 0
1099 1100
        if p == 0:
            return x
1101 1102
        elif p < 0 or p > 1:
            raise ValueError("p argument should between 0 and 1")
1103 1104
    if mode not in ('downscale_in_infer', 'upscale_in_train'):
        raise ValueError(
1105 1106
            "mode argument should be 'downscale_in_infer' or 'upscale_in_train'"
        )
1107
    if axis and not isinstance(axis, (int, list, tuple)):
1108 1109
        raise TypeError("datatype of axis argument should be int or list")

1110
    if axis is None:  # commonly used dropout
1111
        seed = None
1112 1113 1114
        mode = (
            'downgrade_in_infer' if mode == 'downscale_in_infer' else mode
        )  # semantic transfer
1115

1116
        if in_dygraph_mode():
1117 1118
            if default_main_program().random_seed != 0:
                seed = default_main_program().random_seed
H
hong 已提交
1119

1120
            out, mask = _C_ops.dropout(
1121
                x,
1122
                None,
1123 1124 1125
                p,
                not training,
                mode,
1126 1127
                seed if seed is not None else 0,
                seed is not None,
1128
            )
1129

1130 1131 1132 1133 1134 1135
            return out
        else:
            helper = LayerHelper('dropout', **locals())
            check_variable_and_dtype(
                x, 'x', ['float16', 'float32', 'float64'], 'dropout'
            )
1136

1137 1138 1139 1140
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            mask = helper.create_variable_for_type_inference(
                dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
            )
1141

1142 1143 1144
            def get_attrs(prog, dropout_prob, is_test, seed):
                if (seed is None or seed == 0) and prog.random_seed != 0:
                    seed = prog.random_seed
1145

1146 1147 1148 1149 1150 1151 1152
                if isinstance(
                    dropout_prob, Variable
                ) and not dropout_prob.shape != [1]:
                    raise TypeError(
                        "Required p.shape == [1] if type(p) is Variable, but received p.shape = {}".format(
                            p.shape
                        )
1153
                    )
1154 1155 1156 1157 1158 1159 1160 1161
                attrs = {
                    'dropout_prob': dropout_prob,
                    'is_test': is_test,
                    'fix_seed': seed is not None,
                    'seed': seed if seed is not None else 0,
                    'dropout_implementation': mode,
                }
                return attrs
1162

1163
            attrs = get_attrs(helper.main_program, p, not training, seed)
1164

1165 1166 1167 1168 1169 1170 1171
            helper.append_op(
                type='dropout',
                inputs={'X': [x]},
                outputs={'Out': [out], 'Mask': [mask]},
                attrs=attrs,
            )
            return out
1172
    else:  # sometimes called dropout_nd #TODO: optimize with c++
Z
zhiboniu 已提交
1173
        if not in_dynamic_mode():
1174 1175 1176 1177
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'dropout')
        dtype = x.dtype
        keep_prob = 1 - p
        if training:
1178 1179
            if in_dynamic_mode() and p == 1.0:
                return paddle.scale(x, scale=0.0)
1180

1181 1182 1183 1184 1185
            scale_input = (
                paddle.scale(x, scale=1 / keep_prob)
                if mode == 'upscale_in_train'
                else x
            )
1186

1187
            # get mask shape
1188
            input_shape = x.shape
Z
zhiboniu 已提交
1189
            if not in_dynamic_mode():
1190
                input_shape_tensor = paddle.shape(x)
1191
            drop_axes = [axis] if isinstance(axis, int) else list(axis)
1192
            if min(drop_axes) < 0 or max(drop_axes) > len(input_shape) - 1:
1193 1194 1195 1196 1197
                raise ValueError(
                    "axis value should be greater than or equal to 0 and less than dimensions of x:{}, but get axis value:{} ".format(
                        len(input_shape), max(drop_axes)
                    )
                )
1198 1199
            if len(drop_axes) > len(input_shape):
                raise ValueError(
1200 1201 1202 1203
                    "length of axis should not be greater than dimensions of x:{}, but get length of axis: {}".format(
                        len(input_shape), len(drop_axes)
                    )
                )
1204
            mask_shape = [1] * len(input_shape)
Z
zhiboniu 已提交
1205
            if not in_dynamic_mode():
1206 1207 1208 1209 1210
                for i in drop_axes:
                    mask_shape[i] = input_shape_tensor[i]
            else:
                for i in drop_axes:
                    mask_shape[i] = input_shape[i]
1211

1212 1213 1214 1215
            # get mask
            random_tensor = paddle.uniform(
                mask_shape, dtype='float32', min=0.0, max=1.0
            )
Z
zhiboniu 已提交
1216
            p = full(shape=[1], fill_value=p, dtype='float32')
1217
            keep_mask = paddle.greater_equal(random_tensor, p)
1218

1219 1220
            scale_input = paddle.cast(scale_input, dtype)
            keep_mask = paddle.cast(keep_mask, dtype)
1221 1222 1223
            ret = paddle.multiply(scale_input, keep_mask, name=name)
            return ret
        else:  # test
1224 1225 1226 1227 1228
            ret = (
                paddle.scale(x, scale=keep_prob)
                if mode == 'downscale_in_infer'
                else x
            )
1229 1230 1231 1232 1233 1234 1235 1236 1237
            return ret


def dropout2d(x, p=0.5, training=True, data_format='NCHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 4d tensor with the shape `NCHW` ,
    a channel is a 2D feature map with the shape `HW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

1238
    See :ref:`api_paddle_nn_functional_dropout` for more details.
1239 1240 1241 1242

    Args:
        x (Tensor):  The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C].
                     The data type is float32 or float64.
1243 1244 1245 1246
        p (float, optional): Probability of setting units to zero. Default: 0.5.
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default: True.
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from `NCHW` or `NHWC` . When it is `NCHW` , the data is stored in the order of: [batch_size, input_channels, input_height, input_width]. Default: `NCHW` .
        name (str, optional): Name for the operation, Default: None. For more information, please refer to :ref:`api_guide_Name`.
1247 1248 1249 1250

    Returns:
        A Tensor representing the dropout2d, has same shape and data type as `x` .

1251

1252 1253
    Examples:
        .. code-block:: python
1254

1255 1256
            import paddle

1257
            x = paddle.randn(shape=(2, 3, 4, 5)).astype(paddle.float32)
1258 1259 1260 1261
            y_train = paddle.nn.functional.dropout2d(x)  #train
            y_test = paddle.nn.functional.dropout2d(x, training=False) #test
            for i in range(2):
                for j in range(3):
1262 1263 1264 1265
                    print(x[i,j,:,:])
                    print(y_train[i,j,:,:]) # may all 0
                    print(y_test[i,j,:,:])

1266 1267 1268
    """
    input_shape = x.shape
    if len(input_shape) != 4:
1269 1270 1271 1272 1273
        raise ValueError(
            "dimensions of x should be 4, but received {} != 4".format(
                len(input_shape)
            )
        )
1274 1275 1276 1277

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1278 1279
            "Attr(data_format): %s." % str(data_format)
        )
1280

1281 1282 1283 1284 1285 1286 1287 1288
    return dropout(
        x,
        p=p,
        axis=[0, 1] if data_format == 'NCHW' else [0, 3],
        training=training,
        mode="upscale_in_train",
        name=name,
    )
1289 1290 1291 1292 1293 1294 1295 1296


def dropout3d(x, p=0.5, training=True, data_format='NCDHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 5d tensor with the shape `NCDHW` ,
    a channel is a 3D feature map with the shape `DHW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

1297
    See :ref:`api_paddle_nn_functional_dropout` for more details.
1298 1299 1300 1301

    Args:
        x (Tensor):  The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C].
                     The data type is float32 or float64.
1302 1303 1304 1305
        p (float, optional): Probability of setting units to zero. Default: 0.5.
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default: True.
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from ``NCDHW`` or ``NDHWC``. When it is ``NCDHW`` , the data is stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width]. Default: ``NCDHW`` .
        name (str, optional): Name for the operation, Default: None. For more information, please refer to :ref:`api_guide_Name`.
1306 1307 1308 1309

    Returns:
        A Tensor representing the dropout3d, has same shape and data type with `x` .

1310

1311 1312
    Examples:
        .. code-block:: python
1313

1314
            import paddle
1315

1316 1317 1318 1319 1320 1321
            x = paddle.randn(shape=(2, 3, 4, 5, 6)).astype(paddle.float32)
            y_train = paddle.nn.functional.dropout3d(x)  #train
            y_test = paddle.nn.functional.dropout3d(x, training=False) #test
            print(x[0,0,:,:,:])
            print(y_train[0,0,:,:,:]) # may all 0
            print(y_test[0,0,:,:,:])
1322 1323 1324 1325 1326

    """

    input_shape = x.shape
    if len(input_shape) != 5:
1327 1328 1329 1330 1331
        raise ValueError(
            "dimensions of x should be 5, but received {} != 5".format(
                len(input_shape)
            )
        )
1332 1333 1334 1335

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1336 1337
            "Attr(data_format): %s." % str(data_format)
        )
1338

1339 1340 1341 1342 1343 1344 1345 1346
    return dropout(
        x,
        p=p,
        axis=[0, 1] if data_format == 'NCDHW' else [0, 4],
        training=training,
        mode="upscale_in_train",
        name=name,
    )
1347 1348


1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
def alpha_dropout(x, p=0.5, training=True, name=None):
    """
    Alpha Dropout is a type of Dropout that maintains the self-normalizing property.
    For an input with zero mean and unit standard deviation, the output of Alpha Dropout
    maintains the original mean and standard deviation of the input.
    Alpha Dropout fits well to SELU activate function by randomly setting activations to the negative saturation value.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
        p (float | int): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x`.

    Examples:
        .. code-block:: python
1367

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
            import paddle

            x = paddle.to_tensor([[-1, 1], [-1, 1]]).astype(paddle.float32)
            y_train = paddle.nn.functional.alpha_dropout(x, 0.5)
            y_test = paddle.nn.functional.alpha_dropout(x, 0.5, training=False)
            print(y_train)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-0.10721093, -0.77919382],
            #         [-0.10721093,  1.66559887]]) (randomly)
            print(y_test)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-1.,  1.],
            #         [-1.,  1.]])
1381 1382 1383 1384 1385 1386
    """
    if not isinstance(p, (float, int)):
        raise TypeError("p argument should be a float or int")
    if p < 0 or p > 1:
        raise ValueError("p argument should between 0 and 1")

Z
zhiboniu 已提交
1387
    if not in_dynamic_mode():
1388 1389 1390
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'alpha_dropout'
        )
1391 1392

    if training:
1393
        if p == 1:
1394 1395
            return paddle.scale(x, scale=0.0)
        # get transformation params
1396 1397 1398
        alpha = 1.6732632423543772848170429916717
        scale = 1.0507009873554804934193349852946
        alpha_p = -alpha * scale
1399
        a = ((1 - p) * (1 + p * alpha_p**2)) ** -0.5
1400 1401 1402 1403 1404
        b = -a * alpha_p * p

        dtype = x.dtype
        input_shape = x.shape

1405 1406 1407 1408
        # get mask
        random_tensor = paddle.uniform(
            input_shape, dtype='float32', min=0.0, max=1.0
        )
Z
zhiboniu 已提交
1409
        p = full(shape=[1], fill_value=p, dtype='float32')
1410 1411 1412
        keep_mask = paddle.greater_equal(random_tensor, p)
        keep_mask = paddle.cast(keep_mask, dtype)
        drop_mask = paddle.subtract(
1413 1414
            full(shape=input_shape, fill_value=1.0, dtype=dtype), keep_mask
        )
1415

1416
        # apply mask
Z
zhiboniu 已提交
1417
        b = full(shape=[1], fill_value=b, dtype=dtype)
1418 1419 1420 1421
        y = paddle.add(
            paddle.multiply(x, keep_mask),
            paddle.scale(drop_mask, scale=alpha_p),
        )
1422
        res = paddle.add(paddle.scale(y, scale=a), b, name=name)
1423 1424 1425 1426 1427
        return res
    else:  # test
        return x


1428
def pad(x, pad, mode='constant', value=0.0, data_format="NCHW", name=None):
L
littletomatodonkey 已提交
1429
    """
1430 1431
    Pad tensor according to ``'pad'`` and ``'mode'``.
    If mode is ``'constant'`` and length of pad is twice as length of x dimension,
L
littletomatodonkey 已提交
1432
    then the padding will be started from the first dimension and moved back onto x
1433 1434
    according to ``'pad'`` and ``'value'``.
    If mode is ``'reflect'``, pad[0] and pad[1] must be no greater
L
littletomatodonkey 已提交
1435 1436 1437 1438
    than width-1. The height and depth dimension has the same condition.

    Parameters:
        x (Tensor): The input tensor with data type float32/double/int32/int64_t.
1439
        pad (Tensor|list[int]|tuple[int]): The padding size with data type int.
1440
            If mode is ``'constant'`` and length of pad is twice as length of x dimension, then x will
1441 1442
            be padded from the first  dimension to the last dimension.
            Else: 1. If input dimension is 3, then the pad has the form (pad_left,
1443 1444
            pad_right). 2. If the input dimension is 4, then the pad has the form (pad_left, pad_right,
            pad_top, pad_bottom). 3. If the input dimension is 5, then the pad has the form
L
littletomatodonkey 已提交
1445
            (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
1446
        mode (str, optional): Four modes: ``'constant'`` (default), ``'reflect'``, ``'replicate'``, ``'circular'``. Default is ``'constant'``.
1447 1448 1449 1450 1451 1452

           - 'constant' mode, uses a constant value to pad the input tensor.
           - 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
           - 'replicate' mode, uses input boundaries to pad the input tensor.
           - 'circular' mode, uses circular input to pad the input tensor.

1453 1454 1455 1456
        value (float, optional): The value to fill the padded areas in 'constant' mode . Default is :math:`0.0`.
        data_format (str, optional): An string from: ``'NCL'``, ``'NLC'``, ``'NHWC'``, ``'NCHW'``, ``'NCDHW'``, ``'NDHWC'``. Specify the data format of
           the input data. Default: ``'NCHW'``.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: ``'None'``.
1457 1458

    Returns:
1459
        Tensor, a Tensor padded according to pad and mode and data type is same as input.
L
littletomatodonkey 已提交
1460

1461
    Example:
1462

L
littletomatodonkey 已提交
1463 1464 1465 1466 1467 1468
        .. code-block:: text

            x = [[[[[1., 2., 3.],
                    [4., 5., 6.]]]]]

            Case 0:
1469 1470 1471 1472 1473 1474 1475 1476 1477
                pad = [0, 0, 0, 0, 0, 0, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0., 0., 0.],
                          [1., 2., 3.],
                          [4., 5., 6.],
                          [0., 0., 0.]]]]]

            Case 1:
L
littletomatodonkey 已提交
1478 1479 1480 1481 1482 1483 1484 1485
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0. 0. 0. 0. 0. 0. 0.]
                          [0. 0. 1. 2. 3. 0. 0.]
                          [0. 0. 4. 5. 6. 0. 0.]
                          [0. 0. 0. 0. 0. 0. 0.]]]]]

1486
            Case 2:
L
littletomatodonkey 已提交
1487 1488 1489 1490 1491 1492 1493
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'reflect'
                Out = [[[[[6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]
                          [6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]]]]]

1494
            Case 3:
L
littletomatodonkey 已提交
1495 1496 1497 1498 1499 1500 1501
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'replicate'
                Out = [[[[[1. 1. 1. 2. 3. 3. 3.]
                          [1. 1. 1. 2. 3. 3. 3.]
                          [4. 4. 4. 5. 6. 6. 6.]
                          [4. 4. 4. 5. 6. 6. 6.]]]]]

1502
            Case 4:
L
littletomatodonkey 已提交
1503 1504 1505 1506 1507 1508 1509
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'circular'
                Out = [[[[[5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]
                          [5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]]]]]

1510
    Examples:
L
littletomatodonkey 已提交
1511
        .. code-block:: python
L
littletomatodonkey 已提交
1512

L
littletomatodonkey 已提交
1513 1514
            import paddle
            import paddle.nn.functional as F
1515

L
littletomatodonkey 已提交
1516 1517
            # example 1
            x_shape = (1, 1, 3)
1518
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
1519
            y = F.pad(x, [0, 0, 0, 0, 2, 3], value=1, mode='constant', data_format="NCL")
L
littletomatodonkey 已提交
1520
            print(y)
L
littletomatodonkey 已提交
1521
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
1522

L
littletomatodonkey 已提交
1523
            # example 2
1524
            x_shape = (1, 1, 3)
1525
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
1526 1527 1528
            y = F.pad(x, [2, 3], value=1, mode='constant', data_format="NCL")
            print(y)
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
1529

1530
            # example 3
L
littletomatodonkey 已提交
1531
            x_shape = (1, 1, 2, 3)
1532
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
L
littletomatodonkey 已提交
1533 1534
            y = F.pad(x, [1, 2, 1, 1], value=1, mode='circular')
            print(y)
L
littletomatodonkey 已提交
1535 1536 1537 1538 1539
            # [[[[6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]
            #    [6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]]]]
    """
1540 1541 1542 1543 1544 1545 1546 1547
    assert mode in [
        'reflect',
        'replicate',
        'constant',
        'circular',
    ], "mode should be one of constant, reflect, replicate, circular, but got {}.".format(
        mode
    )
L
littletomatodonkey 已提交
1548 1549

    data_format = data_format.upper()
1550 1551
    assert data_format in ["NCL", "NCHW", "NCDHW", "NLC", "NHWC", "NDHWC"], (
        "data_format should be in one of [NCL, NCHW, NCDHW, NLC, NHWC, NDHWC], "
L
littletomatodonkey 已提交
1552
        "but got {}".format(data_format)
1553
    )
L
littletomatodonkey 已提交
1554 1555 1556

    x_dim = len(x.shape)

1557 1558 1559 1560 1561
    if (
        mode == "constant"
        and isinstance(pad, (list, tuple))
        and len(pad) == x_dim * 2
    ):
1562 1563
        paddings = pad
        pad_value = value
1564 1565

        if in_dygraph_mode():
1566
            out = _C_ops.pad(x, paddings, float(pad_value))
1567 1568
            return out

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
        check_variable_and_dtype(
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            "pad",
        )
1583

1584 1585 1586 1587
        check_type(pad_value, 'pad_value', (float, int, Variable), 'pad')
        if isinstance(pad_value, int):
            pad_value = float(pad_value)

1588 1589 1590
        helper = LayerHelper('pad', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
1591 1592 1593 1594 1595 1596
        helper.append_op(
            type='pad',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'paddings': paddings, 'pad_value': pad_value},
        )
1597
        return out
L
littletomatodonkey 已提交
1598

1599
    assert x_dim in [
1600 1601 1602
        3,
        4,
        5,
1603 1604 1605 1606 1607 1608 1609
    ], "input tesor dimension must be in [3, 4, 5] but got {}".format(x_dim)

    supported_format_map = {
        3: ["NCL", "NLC"],
        4: ["NCHW", "NHWC"],
        5: ["NCDHW", "NDHWC"],
    }
1610 1611 1612 1613 1614
    assert (
        data_format in supported_format_map[x_dim]
    ), "input tensor dimension is {}, it's data format should be in {} but got {}".format(
        x_dim, supported_format_map[x_dim], data_format
    )
1615

L
littletomatodonkey 已提交
1616 1617 1618 1619 1620 1621
    unsqueezed_dim = []

    if isinstance(pad, Variable):
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
1622
                pad = concat([zeros((4,), dtype="int32"), pad], axis=0)
L
littletomatodonkey 已提交
1623
                unsqueezed_dim = [3, 4]
1624
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1625
            elif x_dim == 4:
1626
                pad = concat([pad, zeros((2,), dtype="int32")], axis=0)
L
littletomatodonkey 已提交
1627
                unsqueezed_dim = [2]
1628
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1629 1630 1631
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
1632
                pad = concat([zeros((4,), dtype="int32"), pad], axis=0)
L
littletomatodonkey 已提交
1633
                unsqueezed_dim = [2, 3]
1634
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1635
            elif x_dim == 4:
1636
                pad = concat([pad, zeros((2,), dtype="int32")], axis=0)
L
littletomatodonkey 已提交
1637
                unsqueezed_dim = [1]
1638
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1639
    else:
1640
        pad = list(pad)
L
littletomatodonkey 已提交
1641 1642 1643 1644 1645
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [3, 4]
1646
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1647 1648 1649
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [2]
1650
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1651 1652 1653 1654 1655
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [2, 3]
1656
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1657 1658 1659
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [1]
1660
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1661

J
Jiabin Yang 已提交
1662
    if in_dygraph_mode():
L
littletomatodonkey 已提交
1663
        if isinstance(pad, Variable):
J
Jiabin Yang 已提交
1664
            pad = pad.numpy().tolist()
1665
        out = _C_ops.pad3d(x, pad, mode, value, data_format)
J
Jiabin Yang 已提交
1666
    else:
1667 1668 1669 1670 1671
        attrs = {'mode': mode, 'value': value, 'data_format': data_format}
        inputs = {'X': [x]}
        if isinstance(pad, Variable):
            inputs['Paddings'] = [pad]
            attrs['paddings'] = []
1672
        else:
1673
            attrs['paddings'] = pad
L
littletomatodonkey 已提交
1674

1675
        helper = LayerHelper('pad3d', **locals())
L
littletomatodonkey 已提交
1676

1677 1678 1679 1680 1681
        dtype = helper.input_dtype(input_param_name='input')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='pad3d', inputs=inputs, outputs={"Out": out}, attrs=attrs
        )
L
littletomatodonkey 已提交
1682 1683

    if len(unsqueezed_dim) != 0:
1684
        out = squeeze(out, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1685 1686 1687 1688

    return out


1689 1690 1691 1692 1693 1694 1695 1696 1697
def zeropad2d(x, padding, data_format="NCHW", name=None):
    """
    Pads the input tensor boundaries with zero according to 'pad'.

    Args:
        x(Tensor): The input tensor with data type float16/float32/float64/int32/int64.
        padding(int | Tensor | List[int] | Tuple[int]): The padding size with data type int.
            The input dimension should be 4 and pad has the form (pad_left, pad_right,
            pad_top, pad_bottom).
1698
        data_format(str, optional): An string from: "NHWC", "NCHW". Specify the data format of
1699 1700 1701 1702
            the input data. Default: "NCHW".
        name(str, optional): The default value is None. Normally there is no need for user
            to set this property.

1703
    Returns:
1704
        Tensor, padded with 0 according to pad and data type is same as input.
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn.functional as F

            x_shape = (1, 1, 2, 3)
            x = paddle.arange(np.prod(x_shape), dtype="float32").reshape(x_shape) + 1
            y = F.zeropad2d(x, [1, 2, 1, 1])
            # [[[[0. 0. 0. 0. 0. 0.]
            #    [0. 1. 2. 3. 0. 0.]
            #    [0. 4. 5. 6. 0. 0.]
            #    [0. 0. 0. 0. 0. 0.]]]]
    """

1722 1723 1724 1725 1726 1727 1728 1729
    return pad(
        x,
        pad=padding,
        mode='constant',
        value=0,
        data_format=data_format,
        name=name,
    )
1730 1731


Y
Yang Zhang 已提交
1732
def cosine_similarity(x1, x2, axis=1, eps=1e-8):
L
littletomatodonkey 已提交
1733
    """
Y
Yang Zhang 已提交
1734
    Compute cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1735 1736 1737 1738

    Parameters:
        x1 (Tensor): First input. float32/double.
        x2 (Tensor): Second input. float32/double.
1739 1740
        axis (int, optional): Dimension of vectors to compute cosine similarity. Default is 1.
        eps(float, optional): Small value to avoid division by zero. Default is 1e-8.
1741 1742

    Returns:
1743
        Tensor, a Tensor representing cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1744 1745 1746

    Examples:
        .. code-block:: text
1747

L
littletomatodonkey 已提交
1748 1749 1750 1751 1752 1753 1754 1755 1756
            Case 0:
                x1 = [[0.8024077  0.9927354  0.27238318 0.8344984 ]
                     [0.48949873 0.5797396  0.65444374 0.66510963]
                     [0.1031398  0.9614342  0.08365563 0.6796464 ]
                     [0.10760343 0.7461209  0.7726148  0.5801006 ]]
                x2 = [[0.62913156 0.1536727  0.9847992  0.04591406]
                     [0.9098952  0.15715368 0.8671125  0.3156102 ]
                     [0.4427798  0.54136837 0.5276275  0.32394758]
                     [0.3769419  0.8535014  0.48041078 0.9256797 ]]
Y
Yang Zhang 已提交
1757
                axis = 1
L
littletomatodonkey 已提交
1758 1759 1760 1761 1762
                eps = 1e-8
                Out: [0.5275037  0.8368967  0.75037485 0.9245899]

    Code Examples:
        .. code-block:: python
1763

L
littletomatodonkey 已提交
1764 1765 1766
            import paddle
            import paddle.nn as nn

1767 1768 1769 1770
            paddle.seed(1)
            x1 = paddle.randn(shape=[2, 3])
            x2 = paddle.randn(shape=[2, 3])

Y
Yang Zhang 已提交
1771
            result = paddle.nn.functional.cosine_similarity(x1, x2, axis=0)
L
littletomatodonkey 已提交
1772
            print(result)
1773
            # [0.97689527,  0.99996042, -0.55138415]
1774

L
littletomatodonkey 已提交
1775
    """
1776 1777 1778
    w12 = sum(paddle.multiply(x1, x2), axis=axis)
    w1 = sum(paddle.multiply(x1, x1), axis=axis)
    w2 = sum(paddle.multiply(x2, x2), axis=axis)
Y
Yang Zhang 已提交
1779
    n12 = sqrt(clip(w1 * w2, min=eps * eps))
L
littletomatodonkey 已提交
1780 1781
    cos_sim = w12 / n12
    return cos_sim
1782 1783 1784


def linear(x, weight, bias=None, name=None):
1785
    r"""
1786

1787 1788
    Fully-connected linear transformation operator. For each input :math:`X` ,
    the equation is:
1789 1790 1791

    .. math::

1792
        Out = XW + b
1793

1794
    where :math:`W` is the weight and :math:`b` is the bias.
1795

1796 1797 1798 1799
    If the weight is a 2-D tensor of shape :math:`[in\_features, out\_features]` ,
    input should be a multi-dimensional tensor of shape
    :math:`[batch\_size, *, in\_features]` , where :math:`*` means any number of
    additional dimensions. The linear operator multiplies input tensor with
1800
    weight and produces an output tensor of shape :math:`[batch\_size, *, out\_features]` ,
1801 1802
    If :math:`bias` is not None, the bias should be a 1-D tensor of shape
    :math:`[out\_features]` and will be added to the output.
1803

1804 1805 1806 1807 1808 1809 1810
    Parameters:
        x (Tensor): Input tensor. The data type should be float16, float32 or float64.
        weight (Tensor): Weight tensor. The data type should be float16, float32 or float64.
        bias (Tensor, optional): Bias tensor. The data type should be float16, float32 or float64.
                                 If it is set to None, no bias will be added to the output units.
        name (str, optional): Normally there is no need for user to set this parameter.
                              For detailed information, please refer to :ref:`api_guide_Name` .
1811 1812

    Returns:
1813 1814
        Tensor, the shape is :math:`[batch\_size, *, out\_features]` and the
        data type is the same with input :math:`x` .
1815 1816 1817

    Examples:
        .. code-block:: python
1818

1819
          import paddle
1820

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
          x = paddle.randn((3, 2), dtype="float32")
          # x: [[-0.32342386 -1.200079  ]
          #     [ 0.7979031  -0.90978354]
          #     [ 0.40597573  1.8095392 ]]
          weight = paddle.full(shape=[2, 4], fill_value="0.5", dtype="float32", name="weight")
          # weight: [[0.5 0.5 0.5 0.5]
          #          [0.5 0.5 0.5 0.5]]
          bias = paddle.ones(shape=[4], dtype="float32", name="bias")
          # bias: [1. 1. 1. 1.]
          y = paddle.nn.functional.linear(x, weight, bias)
          # y: [[0.23824859 0.23824859 0.23824859 0.23824859]
          #     [0.9440598  0.9440598  0.9440598  0.9440598 ]
          #     [2.1077576  2.1077576  2.1077576  2.1077576 ]]
1834
    """
J
Jiabin Yang 已提交
1835
    if in_dygraph_mode():
1836
        # TODO(jiabin): using addmm for fast forward route
1837
        return _C_ops.linear(x, weight, bias)
1838
    else:
1839 1840
        helper = LayerHelper('linear', **locals())
        dtype = x.dtype
J
Jiabin Yang 已提交
1841

1842 1843 1844 1845
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'linear'
        )
        check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'], 'linear')
J
Jiabin Yang 已提交
1846

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
        inputs = {'X': [x], 'Y': [weight]}
        attrs = {'trans_x': False, 'trans_y': False}
        tmp = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='matmul_v2',
            inputs=inputs,
            outputs={'Out': tmp},
            attrs=attrs,
        )
        if bias is not None:
            res = helper.create_variable_for_type_inference(dtype)
1858
            helper.append_op(
1859 1860 1861 1862
                type='elementwise_add',
                inputs={'X': [tmp], 'Y': [bias]},
                outputs={'Out': [res]},
                attrs={'axis': len(x.shape) - 1},
1863
            )
1864 1865 1866
        else:
            res = tmp
        return res
1867 1868 1869


def label_smooth(label, prior_dist=None, epsilon=0.1, name=None):
1870
    r"""
1871
    Label smoothing is a mechanism to regularize the classifier layer and is called
1872 1873 1874 1875
    label-smoothing regularization (LSR).Label smoothing is proposed to encourage
    the model to be less confident, since optimizing the log-likelihood of the
    correct label directly may cause overfitting and reduce the ability of the
    model to adapt.
1876

1877
    Label smoothing replaces the ground-truth label :math:`y` with the weighted sum
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Parameters:
        label(Tensor): The input variable containing the label data. The
                        label data should use one-hot representation. It's
                        a multidimensional tensor with a shape of
                        :math:`[N_1, ..., Depth]`, where Depth is class number. The dtype can be "float32" and "float64".
        prior_dist(Tensor, optional): The prior distribution to be used to smooth
                        labels. If not provided, an uniform distribution
                        is used. It's a multidimensional tensor with a shape of
                        :math:`[1, class\_num]` . The default value is None.
        epsilon(float, optional): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution. The default value is
                        0.1.
        name(str, optional): The default value is None. Normally there is no need for user
                        to set this property. For more information, please refer to
                        :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor containing the smoothed labels.

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_static()
1915 1916 1917 1918

            x = paddle.to_tensor([[[0, 1, 0],
                                [ 1,  0, 1]]], dtype="float32", stop_gradient=False)

1919
            output = paddle.nn.functional.label_smooth(x)
1920
            print(output)
1921 1922 1923
            # Tensor(shape=[1, 2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=False,
            #        [[[0.03333334, 0.93333334, 0.03333334],
            #          [0.93333334, 0.03333334, 0.93333334]]])
1924
    """
1925
    if epsilon > 1.0 or epsilon < 0.0:
1926 1927
        raise ValueError("The value of epsilon must be between 0 and 1.")

1928
    if in_dygraph_mode():
1929
        return _C_ops.label_smooth(label, prior_dist, float(epsilon))
1930

1931
    elif paddle.in_dynamic_mode():
1932 1933 1934
        return _legacy_C_ops.label_smooth(
            label, prior_dist, 'epsilon', float(epsilon)
        )
1935

1936 1937 1938
    check_variable_and_dtype(
        label, 'label', ['float32', 'float64'], 'label_smooth'
    )
1939 1940 1941 1942

    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_variable_for_type_inference(label.dtype)
1943 1944 1945 1946 1947 1948 1949 1950
    helper.append_op(
        type="label_smooth",
        inputs={"X": label, "PriorDist": prior_dist}
        if prior_dist
        else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)},
    )
1951
    return smooth_label
1952 1953


G
Guoxia Wang 已提交
1954
def class_center_sample(label, num_classes, num_samples, group=None):
1955 1956
    """
    Class center sample method is proposed from the paper PartialFC that only sample a subset of the class centers.
1957
    The process of sampling subset class centers is straightforward:
1958 1959 1960 1961

    1. First select the positive class centers;
    2. Then randomly sample negative class centers.

1962
    Specifically, given a label tensor, shape [batch_size], select all the positive class centers and randomly
1963 1964 1965 1966
    sample negative class centers, then remap the input label tensor using the sampled class centers.

    For more information, Partial FC: Training 10 Million Identities on a Single Machine
    arxiv: https://arxiv.org/abs/2010.05222
1967

1968
    .. hint::
1969
        If the number of the positive class centers is greater than the input num_samples, it keeps all the positive
1970
        class centers and the shape of sampled_class_center will be [num_positive_class_centers].
1971

1972 1973
        The API supports CPU, single GPU and multi GPU.

1974 1975 1976 1977
        For data parallel mode, set ``group=False``.

        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.

1978
    Args:
G
Guoxia Wang 已提交
1979 1980
        label (Tensor): 1-D tensor with shape [N], each label in [0, num_classes)
        num_classes (int): A positive integer to specify the number of classes at local rank.
1981
            Note that num_classes of each GPU can be different.
G
Guoxia Wang 已提交
1982
        num_samples (int): A positive integer to specify the number of class center to sample.
1983
        group (Group, optional): The group instance return by paddle.distributed.new_group
1984 1985
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
1986 1987 1988 1989 1990 1991 1992 1993

    Returns:
        Tuple of two ``Tensor`` : (remapped_label, sampled_class_center), remapped label using sampled class center,
        sampled class center from [0, num_classes).

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
1994
        :name: code-example1
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

        # CPU or single GPU
        import paddle
        num_classes = 20
        batch_size = 10
        num_samples = 6
        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes, num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        # the output is
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [11, 5 , 1 , 3 , 12, 2 , 15, 19, 18, 19])
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [4, 3, 0, 2, 5, 1, 6, 8, 7, 8])
        #Tensor(shape=[9], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [1 , 2 , 3 , 5 , 11, 12, 15, 18, 19])

    .. code-block:: python
G
Guoxia Wang 已提交
2017
        :name: code-example2
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048

        # required: distributed
        # Multi GPU, test_class_center_sample.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        batch_size = 10
        num_samples = 6
        rank_id = dist.get_rank()
        # num_classes of each GPU can be different, e.g num_classes_list = [10, 8]
        num_classes_list = [10, 10]
        num_classes = paddle.sum(paddle.to_tensor(num_classes_list))
        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes_list[rank_id], num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        #python -m paddle.distributed.launch --gpus=0,1 test_class_center_sample.py
        # rank 0 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [0, 2, 4, 8, 9, 3])
2049

2050 2051 2052 2053 2054 2055 2056 2057
        # rank 1 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[7], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [0, 1, 2, 3, 5, 7, 8])
    """
2058
    if not (group is False or group is None or hasattr(group, 'is_member')):
2059 2060
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
2061 2062 2063 2064
             (got group: {})'.format(
                group
            )
        )
2065 2066 2067
        return

    if hasattr(group, 'is_member') and not group.is_member():
2068 2069
        return

2070
    ring_id = 0
2071 2072
    rank = 0
    nranks = 1
2073
    if group is not False:
2074 2075 2076
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
2077 2078 2079 2080 2081
            rank = (
                global_rank
                if group is None
                else group.get_group_rank(global_rank)
            )
2082
            nranks = parallel_env.world_size if group is None else group.nranks
2083 2084 2085

    if num_samples > num_classes:
        raise ValueError(
2086 2087 2088 2089
            'Expected num_samples less than or equal to {}, got num_samples {}'.format(
                num_classes, num_samples
            )
        )
2090

G
Guoxia Wang 已提交
2091 2092 2093
    label_size = 1
    for dim in list(label.shape):
        label_size *= dim
2094
    if label_size != -1 and label_size < 1:
2095 2096 2097 2098 2099 2100
        raise ValueError(
            'Expected label_size > 0 \
             (got label_size: {})'.format(
                label_size
            )
        )
G
Guoxia Wang 已提交
2101 2102 2103

    label_dims = len(list(label.shape))
    if label_dims != 1:
2104 2105 2106 2107 2108 2109
        raise ValueError(
            'Expected label_dims == 1 \
             (got label_dims: {})'.format(
                label_dims
            )
        )
G
Guoxia Wang 已提交
2110 2111

    seed = None
2112 2113 2114
    if (seed is None or seed == 0) and default_main_program().random_seed != 0:
        seed = default_main_program().random_seed

2115
    if in_dygraph_mode():
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
        return _C_ops.class_center_sample(
            label,
            num_classes,
            num_samples,
            ring_id,
            rank,
            nranks,
            seed is not None,
            seed if seed is not None else 0,
        )
2126
    elif paddle.in_dynamic_mode():
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
        (
            remapped_label,
            sampled_class_center,
        ) = _legacy_C_ops.class_center_sample(
            label,
            'num_classes',
            num_classes,
            'num_samples',
            num_samples,
            'ring_id',
            ring_id,
            'nranks',
            nranks,
            'rank',
            rank,
            'fix_seed',
            seed is not None,
            'seed',
            seed if seed is not None else 0,
        )
2147 2148
        return remapped_label, sampled_class_center

2149 2150 2151
    check_variable_and_dtype(
        label, 'label', ['int64', 'int32'], 'class_center_sample'
    )
2152 2153 2154
    op_type = 'class_center_sample'
    helper = LayerHelper(op_type, **locals())
    remapped_label = helper.create_variable_for_type_inference(
2155 2156
        dtype=label.dtype
    )
2157
    sampled_class_center = helper.create_variable_for_type_inference(
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
        dtype=label.dtype
    )
    helper.append_op(
        type=op_type,
        inputs={'Label': label},
        outputs={
            'RemappedLabel': remapped_label,
            'SampledLocalClassCenter': sampled_class_center,
        },
        attrs={
            'num_classes': num_classes,
            'num_samples': num_samples,
            'ring_id': ring_id,
            'nranks': nranks,
            'rank': rank,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0,
        },
    )
2177
    return remapped_label, sampled_class_center
X
xiaoting 已提交
2178 2179


2180 2181 2182
def fold(
    x, output_sizes, kernel_sizes, strides=1, paddings=0, dilations=1, name=None
):
X
xiaoting 已提交
2183
    r"""
2184

2185
    Combines an array of sliding local blocks into a large containing
2186 2187
    tensor. also known as col2im when operated on batched 2D image tensor. Fold calculates each
    combined value in the resulting large tensor by summing all values from all containing blocks.
X
xiaoting 已提交
2188 2189 2190 2191 2192 2193


    For each input :math:`x` with shape [N, C_in , L], the output shape [N, C_out, H_out, W_out]
    can be calculated as following.

    .. math::
2194

2195 2196 2197
        H_{out} &= output\_size[0] \\
        W_{out} &= output\_size[1] \\
        C_{out} &= \frac{C_{in}}{kernel\_sizes[0]\times kernel\_sizes[1]} \\
X
xiaoting 已提交
2198 2199 2200 2201

    Parameters:
        x(Tensor):                3-D Tensor, input tensor of format [N, C, L],
                                  data type can be float32 or float64
X
xiaoting 已提交
2202
        output_sizes(int|list|tuple):       The size of output size, should be [output_size_h, output_size_w]
X
xiaoting 已提交
2203
                                  or an interger o treated as [o, o].
X
xiaoting 已提交
2204
        kernel_sizes(int|list|tuple):   The size of convolution kernel, should be [k_h, k_w]
X
xiaoting 已提交
2205
                                  or an integer k treated as [k, k].
2206
        strides(int|list|tuple, optional):        The strides, should be [stride_h, stride_w]
X
xiaoting 已提交
2207 2208
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
2209
        paddings(int|list|tuple, optional):       The paddings of each dimension, should be
X
xiaoting 已提交
2210 2211 2212 2213 2214 2215
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
2216
        dilations(int|list|tuple, optional):      the dilations of convolution kernel, should be
X
xiaoting 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
        The tensor formed by combining a group of sliding local blocks
        The output shape is [N, Cout, H, W] as decriabled above.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

X
xiaoting 已提交
2235 2236 2237
            x = paddle.randn([2,3*2*2,12])
            y = F.fold(x, output_sizes=[4, 5], kernel_sizes=2)
            # y.shape = [2,3,4,5]
X
xiaoting 已提交
2238 2239 2240 2241 2242 2243 2244

    """

    helper = LayerHelper("fold", **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'fold')

2245
    assert len(x.shape) == 3, "input should be the format of [N, C, L]"
X
xiaoting 已提交
2246

X
xiaoting 已提交
2247
    def _is_list_or_turple_(data):
2248
        return isinstance(data, list) or isinstance(data, tuple)
X
xiaoting 已提交
2249

X
xiaoting 已提交
2250 2251 2252
    if isinstance(output_sizes, int):
        output_sizes = [output_sizes, output_sizes]
    else:
2253 2254 2255
        assert _is_list_or_turple_(output_sizes) and (
            len(output_sizes) == 2
        ), "output_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2256 2257 2258 2259

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
2260 2261 2262
        assert _is_list_or_turple_(kernel_sizes) and (
            len(kernel_sizes) == 2
        ), "kernel_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2263 2264 2265 2266

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
2267 2268 2269
        assert _is_list_or_turple_(strides) and (
            len(strides) == 2
        ), "strides should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2270 2271 2272 2273

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
2274 2275 2276
        assert _is_list_or_turple_(dilations) and (
            len(dilations) == 2
        ), "dilations should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
2292 2293
            "of 2 or 4 integers"
        )
X
xiaoting 已提交
2294

X
xiaoting 已提交
2295
    if in_dygraph_mode():
2296 2297 2298
        out = _C_ops.fold(
            x, output_sizes, kernel_sizes, strides, paddings, dilations
        )
X
xiaoting 已提交
2299
    elif in_dynamic_mode():
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
        out = _legacy_C_ops.fold(
            x,
            "output_sizes",
            output_sizes,
            "kernel_sizes",
            kernel_sizes,
            "strides",
            strides,
            "paddings",
            paddings,
            "dilations",
            dilations,
        )
X
xiaoting 已提交
2313 2314
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
        helper.append_op(
            type="fold",
            inputs={"X": x},
            outputs={"Y": out},
            attrs={
                "output_sizes": output_sizes,
                "kernel_sizes": kernel_sizes,
                "strides": strides,
                "paddings": paddings,
                "dilations": dilations,
            },
        )
X
xiaoting 已提交
2327
    return out