variable_index.py 28.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import numpy as np
from . import unique_name
from . import core
W
WeiXin 已提交
19
import paddle
20
import warnings
21 22 23 24

MAX_INTEGER = 2**31 - 1


W
WeiXin 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
def is_list_tuple(index, contain_type):
    def _is_list_tuple(item):
        if not (isinstance(item, (list, tuple)) or type(item) == contain_type):
            return False
        if isinstance(item, (tuple, list)):
            for s in item:
                if not _is_list_tuple(s):
                    return False
        return True

    if not isinstance(index, (tuple, list)):
        return False
    for s in index:
        if not _is_list_tuple(s):
            return False
    return True


def is_one_dim_list(index, contain_type):
    if isinstance(index, list):
        for i in index:
            if not isinstance(i, contain_type):
                return False
    else:
        return False
    return True


def get_list_index_shape(var_dims, index_dims):
    var_dims_size = len(var_dims)
    index_dims_size = len(index_dims)

    out_dims_size = var_dims_size - index_dims[0] + index_dims_size - 1

    out_dims_shape = [1] * out_dims_size

61
    out_dims_shape[: index_dims_size - 1] = index_dims[1:]
W
WeiXin 已提交
62

63
    out_dims_shape[index_dims_size - 1 :] = var_dims[index_dims[0] :]
W
WeiXin 已提交
64 65 66 67 68 69 70
    return out_dims_shape


class SliceInfo:
    def __init__(self):
        self.pre_shape = None
        self.indexes = []
W
WeiXin 已提交
71
        self.dtype = None
W
WeiXin 已提交
72 73

    def update(self, index):
74
        if is_list_tuple(index, int) or isinstance(
75 76
            index, (paddle.fluid.Variable, np.ndarray)
        ):
W
WeiXin 已提交
77 78 79 80
            # convert index to Tensor
            if not isinstance(index, paddle.fluid.Variable):
                index = paddle.assign(index)

W
WeiXin 已提交
81 82 83 84 85
            if self.dtype is None:
                self.dtype = index.dtype
            else:
                if index.dtype != self.dtype:
                    raise IndexError(
86 87 88 89
                        "Data type of Tensor/List index should be same. The current data type is {}, but the previous data type is {}.".format(
                            index.dtype, self.dtype
                        )
                    )
W
WeiXin 已提交
90

W
WeiXin 已提交
91 92 93 94 95 96
            self.indexes.append(index)

            if self.pre_shape is None:
                self.pre_shape = index.shape
            else:
                if self.pre_shape != index.shape:
97
                    # broadcast
98 99 100
                    cur_shape = paddle.broadcast_shape(
                        self.pre_shape, index.shape
                    )
W
WeiXin 已提交
101
                    for i in range(len(self.indexes)):
102
                        self.indexes[i] = paddle.broadcast_to(
103 104
                            self.indexes[i], cur_shape
                        )
W
WeiXin 已提交
105 106 107
                self.pre_shape = self.indexes[-1].shape
        else:
            raise ValueError(
108 109 110 111
                "Index should be list/tuple of int or Tensor, but received {}.".format(
                    index
                )
            )
W
WeiXin 已提交
112 113 114 115 116 117 118 119 120

    def shape_stride(self, shape):
        s = [1] * len(shape)
        for i in range(len(shape) - 2, -1, -1):
            s[i] = shape[i + 1] * s[i + 1]

        return s

    def numel(self, shape):
121
        return reduce(lambda x, y: x * y, shape, 1)
W
WeiXin 已提交
122 123 124 125 126 127

    def get_offset_stride(self, tensor_shape):
        for index in self.indexes:
            if not isinstance(index, paddle.fluid.Variable):
                raise ValueError(
                    "only support list/tensor index, but received {}.".format(
128 129 130
                        type(index)
                    )
                )
W
WeiXin 已提交
131 132 133

        if len(self.indexes) <= len(tensor_shape) or len(self.indexes) == 1:
            shape = paddle.stack(self.indexes)
134 135 136
            axes = list(range(1, len(self.pre_shape) + 1)) + [
                0,
            ]
W
WeiXin 已提交
137 138 139

        else:
            raise ValueError(
140 141 142 143
                "too many indices for tensor: tensor is {}-dimensional, but {} were indexed".format(
                    len(tensor_shape), self.pre_shape[0]
                )
            )
W
WeiXin 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

        shape_transpose = paddle.transpose(shape, axes)
        return shape_transpose

    def get_item(self, tensor):
        shape_transpose = self.get_offset_stride(tensor.shape)
        index = paddle.assign(shape_transpose)
        return paddle.gather_nd(tensor, index)

    def set_item(self, tensor_origin, value):

        if not isinstance(value, paddle.fluid.Variable):
            value = paddle.assign(value)
        tensor_type = None

        if tensor_origin.dtype in [
160 161
            core.VarDesc.VarType.FP32,
            core.VarDesc.VarType.FP64,
W
WeiXin 已提交
162 163 164 165 166 167 168 169 170 171 172 173
        ]:
            tensor = tensor_origin
        else:
            tensor_type = tensor_origin.dtype
            tensor = tensor_origin.astype(core.VarDesc.VarType.FP32)

        if value.dtype != tensor.dtype:
            value = value.astype(tensor.dtype)

        shape_transpose = self.get_offset_stride(tensor_origin.shape)
        index = paddle.assign(shape_transpose)

174 175 176 177 178 179 180
        gather_tensor_shape = get_list_index_shape(
            tensor.shape,
            [
                len(self.indexes),
            ]
            + list(self.indexes[-1].shape),
        )
W
WeiXin 已提交
181

182 183 184
        value_dims_bd = [
            1,
        ] * len(gather_tensor_shape)
185
        value_dims_bd[-len(value.shape) :] = list(value.shape)
W
WeiXin 已提交
186 187

        for i in range(len(gather_tensor_shape)):
188
            if not (
189 190
                len(value_dims_bd) == 0
                or value_dims_bd[i] == gather_tensor_shape[i]
191 192 193 194 195 196 197
                or value_dims_bd[i] == 1
            ):
                raise ValueError(
                    "{} can not broadcast into {}".format(
                        value.shape, gather_tensor_shape
                    )
                )
W
WeiXin 已提交
198 199 200

        value_broadcast = paddle.broadcast_to(value, gather_tensor_shape)

201
        value_1d = value_broadcast.reshape(
202 203
            [-1] + gather_tensor_shape[len(index.shape) - 1 :]
        )
W
WeiXin 已提交
204 205 206 207

        index_1d = index.reshape([-1, index.shape[-1]])

        tensor_stride = paddle.assign(
208 209
            self.shape_stride(tensor.shape[: index.shape[-1]])
        )
W
WeiXin 已提交
210 211 212 213 214
        inds = []
        for i in range(index_1d.shape[0]):
            temp = (index_1d[i] * tensor_stride).sum()
            inds.append(temp)
        index_1d = paddle.stack(inds).reshape([-1])
215
        t_reshape = tensor.reshape([-1] + list(tensor.shape[index.shape[-1] :]))
W
WeiXin 已提交
216 217 218 219 220 221 222 223
        out = paddle.scatter(t_reshape, index_1d, value_1d)
        if tensor_type is not None:
            out = out.astype(tensor_type)
        tensor_origin[:] = out.reshape(tensor_origin.shape)

        return tensor_origin


224 225
def replace_ellipsis(var, item):
    from .framework import Variable
226

227 228 229 230 231 232 233 234 235 236
    # Use slice(None) to replace Ellipsis.
    # For var, var.shape = [3,4,5,6]
    #
    #   var[..., 1:2] -> var[:, :, :, 1:2]
    #   var[0, ...] -> var[0]
    #   var[0, ..., 1:2] -> var[0, :, :, 1:2]

    item = list(item)

    # Remove Variable to skip bug when counting Ellipsis
W
WeiXin 已提交
237
    item_remove_var = [
238 239
        ele
        for ele in item
240
        if not isinstance(ele, (Variable, np.ndarray)) and ele is not None
W
WeiXin 已提交
241
    ]
242 243 244 245 246 247 248 249 250 251 252
    ell_count = item_remove_var.count(Ellipsis)
    if ell_count == 0:
        return item
    elif ell_count > 1:
        raise IndexError("An index can only have a single ellipsis ('...')")

    ell_idx = item.index(Ellipsis)

    if ell_idx == len(item) - 1:
        return item[:-1]
    else:
253 254 255
        item[ell_idx : ell_idx + 1] = [slice(None)] * (
            len(var.shape) - len(item) + item.count(None) + 1
        )
256 257 258 259

    return item


W
WeiXin 已提交
260 261 262 263 264 265 266 267 268 269
def replace_ndarray(item):
    new_item = []
    for slice_item in item:
        if isinstance(slice_item, np.ndarray):
            new_item.append(paddle.assign(slice_item))
        else:
            new_item.append(slice_item)
    return new_item


270 271 272 273 274 275 276 277 278 279 280
def replace_none(item):
    new_item = []
    none_axes = []
    for i, slice_item in enumerate(item):
        if slice_item is None:
            none_axes.append(i)
        else:
            new_item.append(slice_item)
    return new_item, none_axes


281 282
def is_integer_or_scalar_tensor(ele):
    from .framework import Variable
283

284 285 286
    if isinstance(ele, int):
        return True
    elif isinstance(ele, Variable):
J
JYChen 已提交
287 288 289 290 291 292 293 294 295
        # NOTE(zoooo0820): For compatibility, if FLAGS_set_to_1d is set to True,
        # 1-D tensor is still treated as a scalar, which means basic indexing.
        # This will be removed in future.
        if paddle.get_flags('FLAGS_set_to_1d')['FLAGS_set_to_1d']:
            if len(ele.shape) == 1 and ele.shape[0] == 1:
                warnings.warn(
                    "1-D Tensor will be treat as advanced indexing in future version. Currently, 1-D Tensor means a scalar, not vector, and please modify it to 0-D Tensor. If advanced indexing is needed, please use `export FLAGS_set_to_1d=False` to set the flag."
                )
                return True
296
        if len(ele.shape) == 0:
297 298 299 300
            return True
    return False


301 302
def is_bool_tensor(ele):
    from .framework import Variable
303

304 305 306 307 308
    if isinstance(ele, Variable) and ele.dtype == paddle.bool:
        return True
    return False


309 310 311
def deal_attrs(attrs, attr, attr_name, tensor_attr_name, inputs, infer_flags):
    from .framework import Variable

312 313
    if paddle.utils._contain_var(attr):
        inputs[tensor_attr_name] = paddle.utils._convert_to_tensor_list(
314 315
            attr, dtype="int64"
        )
316 317 318 319 320 321 322 323 324 325
        for i, dim in enumerate(attr):
            if isinstance(dim, Variable):
                attrs[attr_name].append(-1)
                infer_flags[i] = -1
            else:
                attrs[attr_name].append(dim)
    else:
        attrs[attr_name] = attr


326
# the item is a tensor of bool
327 328
def get_value_for_bool_tensor(var, item):
    if len(item.shape) > len(var.shape):
329 330 331 332 333
        raise IndexError(
            "The dims of bool index doesn't match indexed array, "
            "the dims of bool index except to be equal or less "
            "than {}, but received {}.".format(len(var.shape), len(item.shape))
        )
334 335 336 337 338
    i = 0
    item_shape = item.shape
    while i < len(item.shape):
        dim_len = item_shape[i]
        if dim_len != -1 and var.shape[i] != -1 and dim_len != var.shape[i]:
339
            raise IndexError(
340 341 342 343 344
                "The dimension of bool index doesn't match indexed array along "
                "dimension {}, the target dimension is {}, but received {}.".format(
                    i, var.shape[i], dim_len
                )
            )
345 346
        i += 1
    empty_shape = [0] + list(var.shape[i:])
347 348 349 350

    def idx_not_empty(var, item):
        from ..tensor import gather_nd

351
        bool_2_idx = paddle.nonzero(item == True)
352 353
        return gather_nd(var, bool_2_idx)

354
    from paddle.static.nn import cond
355 356

    return cond(
357 358 359
        item.any(),
        lambda: idx_not_empty(var, item),
        lambda: paddle.empty(empty_shape, var.dtype),
360
    )
361 362


363 364 365 366 367 368 369 370 371 372
def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """
373
    from .framework import default_main_program, Variable
374

W
WeiXin 已提交
375 376 377
    if isinstance(item, list):
        if not is_one_dim_list(item, int):
            item = tuple(item)
378 379

    if not isinstance(item, tuple):
380
        item = (item,)
381 382 383 384 385 386

    decrease_axes = []
    axes = []
    starts = []
    ends = []
    steps = []
387
    reverse_axes = []
388 389

    use_strided_slice = False
W
WeiXin 已提交
390
    item = replace_ndarray(item)
391
    item = replace_ellipsis(var, item)
392
    item, none_axes = replace_none(item)
W
WeiXin 已提交
393
    slice_info = SliceInfo()
394 395 396 397
    is_tensor_array = (
        hasattr(var, "desc")
        and var.desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY
    )
398 399

    for dim, slice_item in enumerate(item):
400 401 402 403
        if is_integer_or_scalar_tensor(slice_item) and not is_bool_tensor(
            slice_item
        ):
            if (
404 405
                not is_tensor_array
                and isinstance(slice_item, int)
406 407 408 409
                and var.shape[dim] is not None
                and var.shape[dim] >= 0
                and slice_item >= var.shape[dim]
            ):
410 411 412 413 414 415 416 417
                # For python, if users write a, b = var, the __getitem__
                # method will iterate through 0, 1, 2 ... until __getitem__
                # throws an IndexError, then stop. The var[0], var[1] will
                # be given to a, b respectively. If more values are given,
                # the unpack size would cause error.
                # We raises IndexError here to support grammar like `a, b = var`
                raise IndexError(
                    "slice_item %d at dim %d should be >= 0 and < var.shape[%d]: %d"
418 419
                    % (slice_item, dim, dim, var.shape[dim])
                )
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
            decrease_axes.append(dim)
            start = slice_item
            step = 1
            end = slice_item + 1 if slice_item != -1 else MAX_INTEGER

        elif isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            step = 1 if step is None else step

435 436 437
            if start is None:
                start = 0 if step > 0 else MAX_INTEGER
            if end is None:
438
                if (
439
                    paddle.fluid.framework._non_static_mode()
440
                    or not is_tensor_array
441
                ) and var.shape[dim] != -1:
442 443 444
                    end = var.shape[dim] if step > 0 else -1
                else:
                    end = MAX_INTEGER if step > 0 else -1
445

446
        elif isinstance(slice_item, list):
Z
zyfncg 已提交
447
            all_bool = True
W
WeiXin 已提交
448 449 450 451 452

            if is_list_tuple(slice_item, int):
                slice_info.update(slice_item)
                continue

453
            for i in slice_item:
Z
zyfncg 已提交
454 455 456
                if type(i) is int:
                    all_bool = False
                elif not isinstance(i, bool):
457 458
                    raise TypeError("Only support int or bool in index list.")

459 460
            if len(item) != 1:
                raise IndexError(
461 462 463 464
                    "When index contains a list, its length must be 1, but received {}.".format(
                        len(item)
                    )
                )
Z
zyfncg 已提交
465 466 467 468
            new_slice_item = []
            if all_bool:
                if len(slice_item) != var.shape[0]:
                    raise IndexError(
469 470 471 472 473
                        "The dimension of bool index doesn't match indexed array along "
                        "dimension 0, the target dimension is {}, but received {}.".format(
                            var.shape[0], len(slice_item)
                        )
                    )
474 475 476 477
                for idx, ele in enumerate(slice_item):
                    if ele is True:
                        new_slice_item.append(idx)
                slice_item = new_slice_item
Z
zyfncg 已提交
478 479 480 481 482 483 484 485 486
            else:
                for idx, ele in enumerate(slice_item):
                    if type(ele) is int:
                        new_slice_item.append(ele)
                    elif ele is True:
                        new_slice_item.append(1)
                    else:
                        new_slice_item.append(0)
                slice_item = new_slice_item
487

488 489
            from ..tensor import index_select

490
            idx = paddle.assign(np.array(slice_item).astype("int32"))
491 492
            return index_select(var, index=idx, axis=0)

W
wanghuancoder 已提交
493
        elif isinstance(slice_item, (Variable, core.eager.Tensor)):
W
WeiXin 已提交
494
            if len(item) == 1:
495

496
                from ..tensor import index_select
Z
zyfncg 已提交
497

W
WeiXin 已提交
498
                if slice_item.dtype == paddle.bool:
499
                    return get_value_for_bool_tensor(var, slice_item)
W
WeiXin 已提交
500 501 502 503 504 505 506 507 508
                else:
                    if len(slice_item.shape) == 1:
                        return index_select(var, index=slice_item, axis=0)
                    else:
                        slice_info.update(slice_item)
                        continue
            else:
                slice_info.update(slice_item)
                continue
509

510 511
        else:
            raise IndexError(
512 513 514 515
                "Valid index accept int or slice or ellipsis or list, but received {}.".format(
                    slice_item
                )
            )
516 517 518 519 520 521 522

        axes.append(dim)
        starts.append(start)
        ends.append(end)
        steps.append(step)
        use_strided_slice = True if step != 1 else use_strided_slice

W
WeiXin 已提交
523 524 525
    if slice_info.indexes:
        if len(slice_info.indexes) != len(item):
            raise IndexError(
526 527 528 529
                "Valid index accept int or slice or ellipsis or list, but received {}.".format(
                    item
                )
            )
W
WeiXin 已提交
530 531
        return slice_info.get_item(var)

532 533 534 535 536
    inputs = {'Input': [var]}
    attrs = {
        'axes': axes,
        'starts': [],
        'ends': [],
537
        'decrease_axis': decrease_axes,
538 539 540 541 542 543 544
    }
    if use_strided_slice:
        attrs['strides'] = []

    infer_flags = [1] * len(axes)
    deal_attrs(attrs, starts, "starts", "StartsTensorList", inputs, infer_flags)
    deal_attrs(attrs, ends, "ends", "EndsTensorList", inputs, infer_flags)
545 546 547
    deal_attrs(
        attrs, steps, "strides", "StridesTensorList", inputs, infer_flags
    )
548 549 550 551 552
    attrs['infer_flags'] = infer_flags

    out = var
    if len(axes) > 0:
        op_type = "strided_slice" if use_strided_slice else "slice"
553 554 555 556 557 558 559 560 561
        if paddle.fluid.framework.in_dygraph_mode() and op_type == "slice":
            if "StartsTensorList" in inputs.keys():
                st = inputs['StartsTensorList']
            else:
                st = attrs['starts']
            if "EndsTensorList" in inputs.keys():
                end = inputs['EndsTensorList']
            else:
                end = attrs['ends']
562 563 564
            out = paddle._C_ops.slice(
                var, axes, st, end, attrs['infer_flags'], attrs['decrease_axis']
            )
565 566 567 568
        else:
            target_block = default_main_program().current_block()

            slice_out_var = target_block.create_var(
569 570 571 572 573 574 575 576 577 578 579
                name=unique_name.generate_with_ignorable_key(
                    var.name + "_" + op_type
                ),
                dtype=var.dtype,
            )
            target_block.append_op(
                type=op_type,
                inputs=inputs,
                outputs={'Out': [slice_out_var]},
                attrs=attrs,
            )
580
            out = slice_out_var
581

582
    if len(reverse_axes) > 0:
583
        from .layers.tensor import reverse
584

585 586
        out = reverse(out, axis=reverse_axes)

587 588 589 590 591
    # NOTE(zoooo0820): When all axes are decreased, the output will be 1-D
    # with FLAGS_set_to_1d=True. In this case, one `None` should be pop out,
    # otherwise the output shape will be not correct.
    set_to_1d = paddle.get_flags('FLAGS_set_to_1d')['FLAGS_set_to_1d']
    if set_to_1d and len(decrease_axes) == len(var.shape):
592 593 594
        warnings.warn(
            "Warning: In Tensor '__getitem__', if the number of scalar elements in the index is equal to the rank of the Tensor, the output should be 0-D. In order to be consistent with the behavior of previous versions, it will be processed to 1-D. But it is not correct and will be removed in release 2.6. If 1-D is still wanted, please modify the index element from scalar to slice (e.g. 'x[i]' => 'x[i:i+1]')."
        )
595 596
        none_axes = none_axes[1:]

597 598 599 600 601 602 603 604 605 606 607
    if len(none_axes) > 0:
        # Deal with cases that decrease_axes is not empty
        # For example:
        # # x.shape: (2,3,4)
        # out = x[0, 0:2, None] # out.shape : (2, 1, 4)
        for idx, axis in enumerate(none_axes):
            l = len([i for i in decrease_axes if i < axis])
            new_axis = axis - l
            none_axes[idx] = new_axis

        from ..tensor import unsqueeze
608

609
        out = unsqueeze(out, axis=none_axes)
610 611 612 613

    return out


614
def _setitem_for_tensor_array(var, item, value):
615 616 617 618 619 620 621
    """branches for tensor array setitem operation.
    A item can be a:
    (1) int/Variable, which is a simple number/variable such as [1], [-2]
    (2) Slice, which is represented by bounds such as [2:-1]
    (3) Tuple, which includes the above two cases such as [2:-1, 1]
    If item is case (1), we perform paddle.tensor.array_write,
    in other cases, we raise a NotImplementedError.
622 623 624
    """
    from ..framework import LayerHelper, core, _non_static_mode
    from .framework import Variable
625 626 627

    assert (
        not _non_static_mode()
628 629
    ), "setitem for tensor_array must be called in static graph mode."
    if isinstance(item, (Variable, int)):
630
        from paddle.jit.dy2static.variable_trans_func import (
631 632
            to_static_variable,
        )
633 634
        from paddle import cast
        from paddle.tensor import array_write
635

636 637 638 639 640
        item = paddle.cast(to_static_variable(item), dtype='int64')
        value = to_static_variable(value)
        array_write(x=value, i=item, array=var)
    else:
        raise NotImplementedError(
641 642 643 644
            "Only support __setitem__ by Int/Variable in tensor_array, but gets {}".format(
                type(item)
            )
        )
645 646


647 648
def _setitem_impl_(var, item, value):
    from .framework import default_main_program, Variable
649
    from paddle.fluid import core
650

651 652
    if var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        return _setitem_for_tensor_array(var, item, value)
653 654

    inputs = {'Input': var}
W
WeiXin 已提交
655 656 657
    if isinstance(item, list):
        if not is_one_dim_list(item, int):
            item = tuple(item)
658 659
    # 1. Parse item
    if not isinstance(item, tuple):
660
        item = (item,)
661 662 663 664 665 666 667

    decrease_axes = []
    axes = []
    starts = []
    ends = []
    steps = []

W
WeiXin 已提交
668
    item = replace_ndarray(item)
669
    item = replace_ellipsis(var, item)
670
    item, none_axes = replace_none(item)
W
WeiXin 已提交
671
    slice_info = SliceInfo()
Z
zyfncg 已提交
672 673
    dim = 0
    for _, slice_item in enumerate(item):
674 675 676
        if is_integer_or_scalar_tensor(slice_item) and not is_bool_tensor(
            slice_item
        ):
677 678 679 680 681 682 683 684 685 686 687
            decrease_axes.append(dim)
            start = slice_item
            end = slice_item + 1 if slice_item != -1 else MAX_INTEGER
            step = 1

        elif isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
Z
zyfncg 已提交
688
                dim += 1
689 690 691 692 693 694 695
                continue

            step = 1 if step is None else step

            if not isinstance(step, Variable) and step == 0:
                raise ValueError(
                    "When assign a value to a paddle.Tensor, step can not be 0, "
696 697
                    "but received step is {}.".format(step)
                )
698 699 700 701 702 703 704 705 706 707 708 709

            if isinstance(step, Variable) and (start is None or end is None):
                raise ValueError(
                    "When assign a value to a paddle.Tensor, it's not supported that "
                    "the start or end is None when the type of step is paddle.Tensor."
                )

            if start is None:
                start = 0 if step > 0 else MAX_INTEGER

            if end is None:
                end = MAX_INTEGER if step > 0 else (0 - MAX_INTEGER)
Z
zyfncg 已提交
710 711 712 713 714 715 716
        elif isinstance(slice_item, list):
            if is_list_tuple(slice_item, int):
                slice_info.update(slice_item)
                continue

            for i in slice_item:
                if not isinstance(i, bool):
717 718 719
                    raise TypeError(
                        "Doesn't support {} in index list.".format(type(i))
                    )
Z
zyfncg 已提交
720 721 722

            if len(item) != 1:
                raise IndexError(
723 724 725 726
                    "When index contains a bool list, its length must be 1, but received {}.".format(
                        len(item)
                    )
                )
Z
zyfncg 已提交
727

728
            idx_tensor = paddle.assign(slice_item)
Z
zyfncg 已提交
729 730 731 732 733 734
            return set_value_for_bool_tensor(var, idx_tensor, value)

        elif isinstance(slice_item, Variable):
            if slice_item.dtype == core.VarDesc.VarType.BOOL:
                if len(item) != 1:
                    raise IndexError(
735 736 737 738
                        "When index contains a bool tensor, its length must be 1, but received {}.".format(
                            len(item)
                        )
                    )
Z
zyfncg 已提交
739 740 741 742
                return set_value_for_bool_tensor(var, slice_item, value)
            else:
                slice_info.update(slice_item)
                continue
743 744
        else:
            raise IndexError(
Z
zyfncg 已提交
745
                "Valid index accept int, slice, ellipsis, None, list of bool, Variable, "
746 747
                "but received {}.".format(slice_item)
            )
748 749 750 751 752 753

        axes.append(dim)
        starts.append(start)
        ends.append(end)
        steps.append(step)

Z
zyfncg 已提交
754
        dim += 1
W
WeiXin 已提交
755 756 757
    if slice_info.indexes:
        if len(slice_info.indexes) != len(item):
            raise IndexError(
758 759 760 761
                "Valid index accept int or slice or ellipsis or list, but received {}.".format(
                    item
                )
            )
W
WeiXin 已提交
762
        return slice_info.set_item(var, value)
763 764 765 766 767
    attrs = {
        'axes': axes,
        'starts': starts,
        'ends': ends,
        'steps': steps,
Z
zyfncg 已提交
768
        'decrease_axes': decrease_axes,
769
        'none_axes': none_axes,
770 771
    }

772 773 774 775
    if paddle.utils._contain_var(starts):
        inputs['StartsTensorList'] = paddle.utils._convert_to_tensor_list(
            starts
        )
776
        del attrs['starts']
777 778
    if paddle.utils._contain_var(ends):
        inputs['EndsTensorList'] = paddle.utils._convert_to_tensor_list(ends)
779
        del attrs['ends']
780 781
    if paddle.utils._contain_var(steps):
        inputs['StepsTensorList'] = paddle.utils._convert_to_tensor_list(steps)
782 783 784 785 786 787 788
        del attrs['steps']

    # 2. Parse value
    dtype = var.dtype
    attrs['dtype'] = dtype

    from .data_feeder import convert_dtype
789

790 791
    #  2.1 value is an integer, float or complex
    if isinstance(value, (bool, int, float, complex)):
792 793 794 795 796
        value = np.array([value]).astype(convert_dtype(dtype))

    #  2.2 value is a np.ndarray
    if isinstance(value, np.ndarray):
        shape = list(value.shape)
797 798
        values = value.ravel().tolist()
        attrs["values"] = values
799 800
        attrs["shape"] = shape

W
wanghuancoder 已提交
801
    elif isinstance(value, (Variable, core.eager.Tensor)):
802 803 804 805 806
        inputs["ValueTensor"] = value
    else:
        raise TypeError(
            "Only support to assign an integer, float, numpy.ndarray or "
            "paddle.Tensor to a paddle.Tensor, but received {}".format(
807 808 809
                type(value)
            )
        )
810

811
    if paddle.fluid.framework._non_static_mode():
Z
zyfncg 已提交
812 813
        var._bump_inplace_version()

814
    cur_block = default_main_program().current_block()
815 816 817 818 819 820 821
    cur_block.append_op(
        type="set_value",
        inputs=inputs,
        outputs={'Out': var},
        attrs=attrs,
        inplace_map={"Input": "Out"},
    )
822 823

    return var
Z
zyfncg 已提交
824 825


826
# the item is a tensor of bool
Z
zyfncg 已提交
827 828
def set_value_for_bool_tensor(var, item, value):
    if len(item.shape) > len(var.shape):
829 830 831 832 833
        raise IndexError(
            "The dims of bool index doesn't match indexed array, "
            "the dims of bool index except to be equal or less "
            "than {}, but received {}.".format(len(var.shape), len(item.shape))
        )
Z
zyfncg 已提交
834
    for i, dim_len in enumerate(item.shape):
835
        if dim_len != -1 and var.shape[i] != -1 and dim_len != var.shape[i]:
Z
zyfncg 已提交
836 837
            raise IndexError(
                "The dimension of bool index doesn't match indexed array along "
838 839 840 841
                "dimension {}, the target dimension is {}, but received {}.".format(
                    i, var.shape[i], dim_len
                )
            )
Z
zyfncg 已提交
842 843 844 845 846 847

    def idx_not_empty(var, item, value):
        from .framework import Variable
        from ..tensor import gather_nd, scatter_nd_add

        if not isinstance(value, Variable):
848
            value = paddle.assign(value).cast(var.dtype)
Z
zyfncg 已提交
849

850
        idx = paddle.nonzero(item)
Z
zyfncg 已提交
851 852 853 854 855
        gather_val = gather_nd(var, idx)
        gather_val_new = value - gather_val
        out = scatter_nd_add(var, idx, gather_val_new)
        var[:] = out

856
    from paddle.static.nn import cond
857

Z
zyfncg 已提交
858 859 860 861
    # If all the bool index is False, just do nothing
    cond(item.any(), lambda: idx_not_empty(var, item, value))

    return var