logic.py 35.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
# TODO: define logic functions of a tensor

17
import paddle
18

19
from ..common_ops_import import Variable
20
from ..fluid.data_feeder import check_type, check_variable_and_dtype
21
from ..fluid.framework import global_var
22
from .layer_function_generator import templatedoc
23

24
if global_var._in_eager_mode_:
25
    Tensor = paddle.fluid.framework.core.eager.Tensor
W
Weilong Wu 已提交
26 27
else:
    from ..framework import VarBase as Tensor
28

29
from paddle import _C_ops
30
from paddle.tensor.creation import full
31

32 33
from ..framework import LayerHelper, in_dygraph_mode

34 35
__all__ = []

36

37
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
38
    if in_dygraph_mode():
39 40 41 42 43
        op = getattr(_C_ops, op_name)
        if binary_op:
            return op(x, y)
        else:
            return op(x)
44
    else:
45
        check_variable_and_dtype(
46 47
            x,
            "x",
48
            ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
49 50
            op_name,
        )
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
        if y is not None:
            check_variable_and_dtype(
                y,
                "y",
                [
                    "bool",
                    "int8",
                    "int16",
                    "int32",
                    "int64",
                    "float32",
                    "float64",
                ],
                op_name,
            )
        if out is not None:
            check_type(out, "out", Variable, op_name)
68

69
        helper = LayerHelper(op_name, **locals())
70

71 72 73 74 75
        if binary_op and x.dtype != y.dtype:
            raise ValueError(
                "(InvalidArgument) The DataType of %s Op's Variable must be consistent, but received %s and %s."
                % (op_name, x.dtype, y.dtype)
            )
76

77 78
        if out is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
79

80 81 82 83 84 85 86 87
        if binary_op:
            helper.append_op(
                type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
            )
        else:
            helper.append_op(
                type=op_name, inputs={"X": x}, outputs={"Out": out}
            )
88

89
        return out
90 91 92 93 94


def logical_and(x, y, out=None, name=None):
    r"""

95
    Compute element-wise logical AND on ``x`` and ``y``, and return ``out``. ``out`` is N-dim boolean ``Tensor``.
96 97 98 99 100 101
    Each element of ``out`` is calculated by

    .. math::

        out = x \&\& y

102
    Note:
I
Infinity_lee 已提交
103 104 105
        ``paddle.logical_and`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
106 107 108 109

    Args:
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
110
        out(Tensor, optional): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([True])
            y = paddle.to_tensor([True, False, True, False])
            res = paddle.logical_and(x, y)
            print(res) # [True False True False]
    """
    if in_dygraph_mode():
127
        return _C_ops.logical_and(x, y)
128

129 130 131
    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True
    )
132 133 134 135 136 137 138 139 140 141 142 143


def logical_or(x, y, out=None, name=None):
    """

    ``logical_or`` operator computes element-wise logical OR on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = x || y

144
    Note:
I
Infinity_lee 已提交
145 146 147
        ``paddle.logical_or`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
148

149 150 151 152 153 154 155 156 157 158 159 160 161 162
    Args:
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        out(Tensor): The ``Variable`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle

163 164
            x = paddle.to_tensor([True, False], dtype="bool").reshape([2, 1])
            y = paddle.to_tensor([True, False, True, False], dtype="bool").reshape([2, 2])
165
            res = paddle.logical_or(x, y)
166 167 168 169
            print(res)
            # Tensor(shape=[2, 2], dtype=bool, place=Place(cpu), stop_gradient=True,
            #        [[True , True ],
            #         [True , False]])
170 171
    """
    if in_dygraph_mode():
172
        return _C_ops.logical_or(x, y)
173 174 175
    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True
    )
176 177 178 179 180 181 182 183 184 185 186 187


def logical_xor(x, y, out=None, name=None):
    r"""

    ``logical_xor`` operator computes element-wise logical XOR on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = (x || y) \&\& !(x \&\& y)

188
    Note:
I
Infinity_lee 已提交
189 190 191
        ``paddle.logical_xor`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

    Args:
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle

207 208
            x = paddle.to_tensor([True, False], dtype="bool").reshape([2, 1])
            y = paddle.to_tensor([True, False, True, False], dtype="bool").reshape([2, 2])
209
            res = paddle.logical_xor(x, y)
210 211 212 213
            print(res)
            # Tensor(shape=[2, 2], dtype=bool, place=Place(cpu), stop_gradient=True,
            #        [[False, True ],
            #         [True , False]])
214 215
    """
    if in_dygraph_mode():
216
        return _C_ops.logical_xor(x, y)
217

218 219 220
    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True
    )
221 222 223 224 225 226 227 228 229 230 231 232 233


@templatedoc()
def logical_not(x, out=None, name=None):
    """

    ``logical_not`` operator computes element-wise logical NOT on ``x``, and returns ``out``. ``out`` is N-dim boolean ``Variable``.
    Each element of ``out`` is calculated by

    .. math::

        out = !x

I
Infinity_lee 已提交
234 235 236 237 238
    Note:
        ``paddle.logical_not`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
    Args:
        x(Tensor):  Operand of logical_not operator. Must be a Tensor of type bool, int8, int16, in32, in64, float32, or float64.
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor` will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for users to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([True, False, True, False])
            res = paddle.logical_not(x)
            print(res) # [False  True False  True]
    """
    if in_dygraph_mode():
257
        return _C_ops.logical_not(x)
258 259 260
    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False
    )
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294


def is_empty(x, name=None):
    """

    Test whether a Tensor is empty.

    Args:
        x (Tensor): The Tensor to be tested.
        name (str, optional): The default value is ``None`` . Normally users
                            don't have to set this parameter. For more information,
                            please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: A bool scalar Tensor. True if 'x' is an empty Tensor.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 32, 32], dtype='float32')
            res = paddle.is_empty(x=input)
            print("res:", res)
            # ('res:', Tensor: eager_tmp_1
            #    - place: CPUPlace
            #    - shape: [1]
            #    - layout: NCHW
            #    - dtype: bool
            #    - data: [0])

    """
    if in_dygraph_mode():
        return _C_ops.is_empty(x)
295 296 297 298 299
    else:
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'is_empty'
        )
        check_type(name, "name", (str, type(None)), "is_empty")
300

301 302 303 304 305 306 307
        helper = LayerHelper("is_empty", **locals())
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True
        helper.append_op(
            type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]}
        )
        return cond
308 309


W
wawltor 已提交
310
def equal_all(x, y, name=None):
311
    """
312
    Returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise.
313

314
    Note:
315
        The output has no gradient.
316 317

    Args:
318 319
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
W
wawltor 已提交
320 321
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
322 323

    Returns:
W
wawltor 已提交
324
        Tensor: output Tensor, data type is bool, value is [False] or [True].
325 326 327 328 329

    Examples:
        .. code-block:: python

          import paddle
W
wawltor 已提交
330

331 332 333
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 2, 3])
          z = paddle.to_tensor([1, 4, 3])
W
wawltor 已提交
334
          result1 = paddle.equal_all(x, y)
N
Noel 已提交
335
          print(result1) # result1 = [True ]
W
wawltor 已提交
336
          result2 = paddle.equal_all(x, z)
N
Noel 已提交
337
          print(result2) # result2 = [False ]
338
    """
H
hong 已提交
339
    if in_dygraph_mode():
340
        return _C_ops.equal_all(x, y)
341 342 343 344 345 346 347 348 349
    else:
        helper = LayerHelper("equal_all", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(
            type='equal_all',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
Z
Zhen Wang 已提交
350 351 352


@templatedoc()
353
def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
354 355 356 357 358 359
    r"""
    Check if all :math:`x` and :math:`y` satisfy the condition:

    .. math::
        \left| x - y \right| \leq atol + rtol \times \left| y \right|

H
hg-1099255210 已提交
360
    elementwise, for all elements of :math:`x` and :math:`y`. This is analogous to :math:`numpy.allclose`, namely that it returns :math:`True` if
361
    two tensors are elementwise equal within a tolerance.
Z
Zhen Wang 已提交
362 363

    Args:
364 365
        x(Tensor): The input tensor, it's data type should be float32, float64..
        y(Tensor): The input tensor, it's data type should be float32, float64..
H
huangxu96 已提交
366 367
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
368 369 370
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.
Z
Zhen Wang 已提交
371 372

    Returns:
373
        Tensor: The output tensor, it's data type is bool.
374

Z
Zhen Wang 已提交
375 376 377 378 379
    Examples:
        .. code-block:: python

          import paddle

380 381
          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
382
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
383
                                  equal_nan=False, name="ignore_nan")
384
          # [False]
385

386
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
387
                                      equal_nan=True, name="equal_nan")
388 389
          # [False]

390 391
          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
392 393 394
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          # [False]
395

396 397 398
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          # [True]
Z
Zhen Wang 已提交
399 400
    """

401
    if in_dygraph_mode():
402
        return _C_ops.allclose(x, y, rtol, atol, equal_nan)
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
    else:
        check_variable_and_dtype(x, "input", ['float32', 'float64'], 'allclose')
        check_variable_and_dtype(y, "input", ['float32', 'float64'], 'allclose')
        check_type(rtol, 'rtol', float, 'allclose')
        check_type(atol, 'atol', float, 'allclose')
        check_type(equal_nan, 'equal_nan', bool, 'allclose')

        helper = LayerHelper("allclose", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')

        inputs = {'Input': x, 'Other': y}
        outputs = {'Out': out}
        attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
        helper.append_op(
            type='allclose', inputs=inputs, outputs=outputs, attrs=attrs
418
        )
Z
Zhen Wang 已提交
419

420
        return out
421 422


W
wawltor 已提交
423 424
@templatedoc()
def equal(x, y, name=None):
425
    """
S
swtkiwi 已提交
426

427
    This layer returns the truth value of :math:`x == y` elementwise.
N
Noel 已提交
428

429
    Note:
430
        The output has no gradient.
431 432

    Args:
陈沧夜 已提交
433 434
        x(Tensor): Tensor, data type is bool, float16, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float16, float32, float64, int32, int64.
435 436 437 438
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
W
wawltor 已提交
439
        Tensor: output Tensor, it's shape is the same as the input's Tensor,
440
        and the data type is bool. The result of this op is stop_gradient.
441 442 443 444

    Examples:
        .. code-block:: python

W
wawltor 已提交
445 446
          import paddle

447 448
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
449
          result1 = paddle.equal(x, y)
N
Noel 已提交
450
          print(result1)  # result1 = [True False False]
451
    """
452 453
    if not isinstance(y, (int, bool, float, Variable)):
        raise TypeError(
454 455 456 457
            "Type of input args must be float, bool, int or Tensor, but received type {}".format(
                type(y)
            )
        )
458
    if not isinstance(y, Variable):
459
        y = full(shape=[], dtype=x.dtype, fill_value=y)
460

J
Jiabin Yang 已提交
461
    if in_dygraph_mode():
462
        return _C_ops.equal(x, y)
J
Jiabin Yang 已提交
463
    else:
464 465 466
        check_variable_and_dtype(
            x,
            "x",
陈沧夜 已提交
467
            ["bool", "float16", "float32", "float64", "int32", "int64"],
468 469 470 471 472
            "equal",
        )
        check_variable_and_dtype(
            y,
            "y",
陈沧夜 已提交
473
            ["bool", "float16", "float32", "float64", "int32", "int64"],
474 475 476 477 478
            "equal",
        )
        helper = LayerHelper("equal", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
479

480 481 482 483 484 485
        helper.append_op(
            type='equal',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
486

W
wawltor 已提交
487 488 489 490

@templatedoc()
def greater_equal(x, y, name=None):
    """
491
    Returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
N
Noel 已提交
492

493
    Note:
494
        The output has no gradient.
W
wawltor 已提交
495 496

    Args:
497 498
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
W
wawltor 已提交
499 500 501
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
502
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
503 504 505

    Examples:
        .. code-block:: python
N
Noel 已提交
506

W
wawltor 已提交
507 508
            import paddle

509 510
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
511
            result1 = paddle.greater_equal(x, y)
N
Noel 已提交
512
            print(result1)  # result1 = [True False True]
W
wawltor 已提交
513
    """
J
Jiabin Yang 已提交
514
    if in_dygraph_mode():
515
        return _C_ops.greater_equal(x, y)
J
Jiabin Yang 已提交
516
    else:
517 518 519
        check_variable_and_dtype(
            x,
            "x",
520
            ["bool", "float16", "float32", "float64", "int32", "int64"],
521 522 523 524 525
            "greater_equal",
        )
        check_variable_and_dtype(
            y,
            "y",
526
            ["bool", "float16", "float32", "float64", "int32", "int64"],
527 528 529 530 531
            "greater_equal",
        )
        helper = LayerHelper("greater_equal", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
532

533 534 535 536 537 538
        helper.append_op(
            type='greater_equal',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
W
wawltor 已提交
539 540 541 542 543


@templatedoc()
def greater_than(x, y, name=None):
    """
544
    Returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
N
Noel 已提交
545

546
    Note:
547
        The output has no gradient.
W
wawltor 已提交
548 549

    Args:
J
Jx-qi 已提交
550 551
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
W
wawltor 已提交
552 553 554
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
555
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
556 557 558

    Examples:
        .. code-block:: python
N
Noel 已提交
559

W
wawltor 已提交
560 561
            import paddle

562 563
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
564
            result1 = paddle.greater_than(x, y)
N
Noel 已提交
565
            print(result1)  # result1 = [False False True]
W
wawltor 已提交
566
    """
J
Jiabin Yang 已提交
567
    if in_dygraph_mode():
568
        return _C_ops.greater_than(x, y)
J
Jiabin Yang 已提交
569
    else:
570 571 572
        check_variable_and_dtype(
            x,
            "x",
J
Jx-qi 已提交
573
            ["bool", "float16", "float32", "float64", "int32", "int64"],
574 575 576 577 578
            "greater_than",
        )
        check_variable_and_dtype(
            y,
            "y",
J
Jx-qi 已提交
579
            ["bool", "float16", "float32", "float64", "int32", "int64"],
580 581 582 583 584
            "greater_than",
        )
        helper = LayerHelper("greater_than", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
585

586 587 588 589 590 591
        helper.append_op(
            type='greater_than',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
W
wawltor 已提交
592 593 594 595 596


@templatedoc()
def less_equal(x, y, name=None):
    """
597
    Returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
N
Noel 已提交
598

599
    Note:
600
        The output has no gradient.
W
wawltor 已提交
601 602

    Args:
B
BellaZYL 已提交
603 604
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
W
wawltor 已提交
605 606 607 608
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
609
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
610 611 612

    Examples:
        .. code-block:: python
N
Noel 已提交
613

W
wawltor 已提交
614 615
            import paddle

616 617
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
618
            result1 = paddle.less_equal(x, y)
N
Noel 已提交
619
            print(result1)  # result1 = [True True False]
W
wawltor 已提交
620
    """
J
Jiabin Yang 已提交
621
    if in_dygraph_mode():
622
        return _C_ops.less_equal(x, y)
J
Jiabin Yang 已提交
623
    else:
624 625 626
        check_variable_and_dtype(
            x,
            "x",
B
BellaZYL 已提交
627
            ["bool", "float16", "float32", "float64", "int32", "int64"],
628 629 630 631 632
            "less_equal",
        )
        check_variable_and_dtype(
            y,
            "y",
B
BellaZYL 已提交
633
            ["bool", "float16", "float32", "float64", "int32", "int64"],
634 635 636 637 638
            "less_equal",
        )
        helper = LayerHelper("less_equal", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
639

640 641 642 643 644 645
        helper.append_op(
            type='less_equal',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
W
wawltor 已提交
646 647 648 649 650


@templatedoc()
def less_than(x, y, name=None):
    """
651
    Returns the truth value of :math:`x < y` elementwise, which is equivalent function to the overloaded operator `<`.
N
Noel 已提交
652

653
    Note:
654
        The output has no gradient.
W
wawltor 已提交
655 656

    Args:
H
hh-qiao 已提交
657 658
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
W
wawltor 已提交
659 660 661 662
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
663
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
664 665 666

    Examples:
        .. code-block:: python
N
Noel 已提交
667

W
wawltor 已提交
668 669
            import paddle

670 671
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
672
            result1 = paddle.less_than(x, y)
N
Noel 已提交
673
            print(result1)  # result1 = [False True False]
W
wawltor 已提交
674
    """
J
Jiabin Yang 已提交
675
    if in_dygraph_mode():
676
        return _C_ops.less_than(x, y)
J
Jiabin Yang 已提交
677
    else:
678 679 680
        check_variable_and_dtype(
            x,
            "x",
H
hh-qiao 已提交
681
            ["bool", "float16", "float32", "float64", "int32", "int64"],
682 683 684 685 686
            "less_than",
        )
        check_variable_and_dtype(
            y,
            "y",
H
hh-qiao 已提交
687
            ["bool", "float16", "float32", "float64", "int32", "int64"],
688 689 690 691 692
            "less_than",
        )
        helper = LayerHelper("less_than", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
693

694 695 696 697 698 699
        helper.append_op(
            type='less_than',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
W
wawltor 已提交
700 701 702 703 704


@templatedoc()
def not_equal(x, y, name=None):
    """
705
    Returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
706 707

    Note:
708
        The output has no gradient.
W
wawltor 已提交
709 710

    Args:
711 712
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
713 714 715 716
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
717
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
718 719 720

    Examples:
        .. code-block:: python
721

W
wawltor 已提交
722 723
            import paddle

724 725
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
726
            result1 = paddle.not_equal(x, y)
N
Noel 已提交
727
            print(result1)  # result1 = [False True True]
W
wawltor 已提交
728
    """
J
Jiabin Yang 已提交
729
    if in_dygraph_mode():
730
        return _C_ops.not_equal(x, y)
J
Jiabin Yang 已提交
731
    else:
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
        check_variable_and_dtype(
            x,
            "x",
            ["bool", "float32", "float64", "int32", "int64"],
            "not_equal",
        )
        check_variable_and_dtype(
            y,
            "y",
            ["bool", "float32", "float64", "int32", "int64"],
            "not_equal",
        )
        helper = LayerHelper("not_equal", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
747

748 749 750 751 752 753
        helper.append_op(
            type='not_equal',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
Z
zhulei 已提交
754 755 756 757 758


def is_tensor(x):
    """

C
Chen Long 已提交
759
    Tests whether input object is a paddle.Tensor.
Z
zhulei 已提交
760 761 762 763 764

    Args:
        x (object): Object to test.

    Returns:
C
Chen Long 已提交
765
        A boolean value. True if ``x`` is a paddle.Tensor, otherwise False.
Z
zhulei 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.rand(shape=[2, 3, 5], dtype='float32')
            check = paddle.is_tensor(input1)
            print(check)  #True

            input3 = [1, 4]
            check = paddle.is_tensor(input3)
            print(check)  #False
779

Z
zhulei 已提交
780
    """
781 782 783 784
    if in_dygraph_mode():
        return isinstance(x, (Tensor, paddle.fluid.core.eager.Tensor))
    else:
        return isinstance(x, Variable)
785 786 787


def _bitwise_op(op_name, x, y, out=None, name=None, binary_op=True):
788
    if in_dygraph_mode():
W
wanghuancoder 已提交
789
        op = getattr(_C_ops, op_name)
790 791 792 793
        if binary_op:
            return op(x, y)
        else:
            return op(x)
794
    else:
795
        check_variable_and_dtype(
796 797
            x,
            "x",
798 799 800
            ["bool", "uint8", "int8", "int16", "int32", "int64"],
            op_name,
        )
801 802 803 804 805 806 807 808 809
        if y is not None:
            check_variable_and_dtype(
                y,
                "y",
                ["bool", "uint8", "int8", "int16", "int32", "int64"],
                op_name,
            )
        if out is not None:
            check_type(out, "out", Variable, op_name)
810

811 812 813
        helper = LayerHelper(op_name, **locals())
        if binary_op:
            assert x.dtype == y.dtype
814

815 816
        if out is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
817

818 819 820 821 822 823 824 825
        if binary_op:
            helper.append_op(
                type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
            )
        else:
            helper.append_op(
                type=op_name, inputs={"X": x}, outputs={"Out": out}
            )
826

827
        return out
828 829 830


def bitwise_and(x, y, out=None, name=None):
831 832 833 834 835 836 837 838 839 840 841
    r"""

    Apply ``bitwise_and`` on Tensor ``X`` and ``Y`` .

    .. math::
        Out = X \& Y

    .. note::
        ``paddle.bitwise_and`` supports broadcasting. If you want know more about broadcasting, please refer to please refer to `Introduction to Tensor`_ .

    .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor.
842

843
    Args:
844 845 846
        x (Tensor): Input Tensor of ``bitwise_and`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        y (Tensor): Input Tensor of ``bitwise_and`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        out(Tensor): Result of ``bitwise_and`` . It is a N-D Tensor with the same data type of input Tensor.
847 848

    Returns:
849
        Tensor: Result of ``bitwise_and`` . It is a N-D Tensor with the same data type of input Tensor.
850

851 852 853 854 855 856 857 858 859
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_and(x, y)
            print(res)  # [0, 2, 1]
    """
0
0x45f 已提交
860
    if in_dygraph_mode() and out is None:
861
        return _C_ops.bitwise_and(x, y)
862 863 864
    return _bitwise_op(
        op_name="bitwise_and", x=x, y=y, name=name, out=out, binary_op=True
    )
865 866 867


def bitwise_or(x, y, out=None, name=None):
868 869 870 871 872 873 874 875 876 877 878
    r"""

    Apply ``bitwise_or`` on Tensor ``X`` and ``Y`` .

    .. math::
        Out = X | Y

    .. note::
        ``paddle.bitwise_or`` supports broadcasting. If you want know more about broadcasting, please refer to please refer to `Introduction to Tensor`_ .

    .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor.
879

880
    Args:
881 882 883
        x (Tensor): Input Tensor of ``bitwise_or`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        y (Tensor): Input Tensor of ``bitwise_or`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        out(Tensor): Result of ``bitwise_or`` . It is a N-D Tensor with the same data type of input Tensor.
884 885

    Returns:
886
        Tensor: Result of ``bitwise_or`` . It is a N-D Tensor with the same data type of input Tensor.
887 888 889 890 891 892 893 894 895 896

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_or(x, y)
            print(res)  # [-1, -1, -3]
    """
0
0x45f 已提交
897
    if in_dygraph_mode() and out is None:
898
        return _C_ops.bitwise_or(x, y)
H
hong 已提交
899

900 901 902
    return _bitwise_op(
        op_name="bitwise_or", x=x, y=y, name=name, out=out, binary_op=True
    )
903 904 905


def bitwise_xor(x, y, out=None, name=None):
906 907 908 909 910 911 912 913 914 915 916
    r"""

    Apply ``bitwise_xor`` on Tensor ``X`` and ``Y`` .

    .. math::
        Out = X ^\wedge Y

    .. note::
        ``paddle.bitwise_xor`` supports broadcasting. If you want know more about broadcasting, please refer to please refer to `Introduction to Tensor`_ .

    .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor.
917 918

    Args:
919 920 921
        x (Tensor): Input Tensor of ``bitwise_xor`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        y (Tensor): Input Tensor of ``bitwise_xor`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        out(Tensor): Result of ``bitwise_xor`` . It is a N-D Tensor with the same data type of input Tensor.
922 923

    Returns:
924
        Tensor: Result of ``bitwise_xor`` . It is a N-D Tensor with the same data type of input Tensor.
925 926 927 928 929 930 931 932 933 934

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_xor(x, y)
            print(res) # [-1, -3, -4]
    """
0
0x45f 已提交
935
    if in_dygraph_mode() and out is None:
936
        return _C_ops.bitwise_xor(x, y)
937 938 939
    return _bitwise_op(
        op_name="bitwise_xor", x=x, y=y, name=name, out=out, binary_op=True
    )
940 941 942


def bitwise_not(x, out=None, name=None):
943 944 945 946 947 948 949 950 951 952 953
    r"""

    Apply ``bitwise_not`` on Tensor ``X``.

    .. math::
        Out = \sim X

    .. note::
        ``paddle.bitwise_not`` supports broadcasting. If you want know more about broadcasting, please refer to please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor.
954 955

    Args:
956 957
        x (Tensor): Input Tensor of ``bitwise_not`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        out(Tensor): Result of ``bitwise_not`` . It is a N-D Tensor with the same data type of input Tensor.
958

959
    Returns:
960
        Tensor: Result of ``bitwise_not`` . It is a N-D Tensor with the same data type of input Tensor.
961 962 963 964 965 966 967 968 969

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            res = paddle.bitwise_not(x)
            print(res) # [4, 0, -2]
    """
0
0x45f 已提交
970
    if in_dygraph_mode() and out is None:
971
        return _C_ops.bitwise_not(x)
972

973 974 975
    return _bitwise_op(
        op_name="bitwise_not", x=x, y=None, name=name, out=out, binary_op=False
    )
A
andyjpaddle 已提交
976 977 978 979


@templatedoc()
def isclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
980
    r"""
981
    Check if all :math:`x` and :math:`y` satisfy the condition:
982 983 984 985 986 987 988 989

    .. math::

        \left| x - y \right| \leq atol + rtol \times \left| y \right|

    elementwise, for all elements of :math:`x` and :math:`y`. The behaviour of this
    operator is analogous to :math:`numpy.isclose`, namely that it returns :math:`True` if
    two tensors are elementwise equal within a tolerance.
A
andyjpaddle 已提交
990 991

    Args:
992 993
        x(Tensor): The input tensor, it's data type should be float32, float64.
        y(Tensor): The input tensor, it's data type should be float32, float64.
A
andyjpaddle 已提交
994 995
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
996
        equal_nan(equalnantype, optional): If :math:`True` , then two :math:`NaNs` will be compared as equal. Default: :math:`False` .
A
andyjpaddle 已提交
997 998 999 1000
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.

    Returns:
1001
        Tensor: The output tensor, it's data type is bool.
A
andyjpaddle 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

    Examples:
        .. code-block:: python

          import paddle

          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          # [True, False]

          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          # [True, True]
    """

1027
    if in_dygraph_mode():
1028
        return _C_ops.isclose(x, y, rtol, atol, equal_nan)
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
    else:
        check_variable_and_dtype(x, "input", ['float32', 'float64'], 'isclose')
        check_variable_and_dtype(y, "input", ['float32', 'float64'], 'isclose')
        check_type(rtol, 'rtol', float, 'isclose')
        check_type(atol, 'atol', float, 'isclose')
        check_type(equal_nan, 'equal_nan', bool, 'isclose')

        helper = LayerHelper("isclose", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')

        inputs = {'Input': x, 'Other': y}
        outputs = {'Out': out}
        attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
        helper.append_op(
            type='isclose', inputs=inputs, outputs=outputs, attrs=attrs
1044
        )
1045
        return out