parallel_executor.cc 8.9 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
Q
qiaolongfei 已提交
16

C
chengduoZH 已提交
17
#include <string>
18
#include <tuple>
Q
qiaolongfei 已提交
19
#include <vector>
Y
Yu Yang 已提交
20

Y
Yu Yang 已提交
21
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
22
#include "paddle/fluid/platform/nccl_helper.h"
Y
Yu Yang 已提交
23
#endif
Y
Yang Yang 已提交
24

Y
yuyang18 已提交
25
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
26
#include "paddle/fluid/framework/details/ssa_graph_builder_factory.h"
Y
Yu Yang 已提交
27
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
28
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
29

Y
Yang Yang 已提交
30
namespace paddle {
Y
Yu Yang 已提交
31 32
namespace framework {

Y
Yu Yang 已提交
33 34 35
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
36
      : places_(places) {}
Y
Yu Yang 已提交
37 38 39 40

  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
  Scope *global_scope_;
Y
Yu Yang 已提交
41
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
42

Y
Yu Yang 已提交
43
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
44
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
45
#endif
C
chengduoZH 已提交
46 47
  bool own_local_scope_;
  bool use_cuda_;
Y
Yu Yang 已提交
48 49
};

50 51 52 53
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
54
ParallelExecutor::ParallelExecutor(
55
    const std::vector<platform::Place> &places,
Y
Yu Yang 已提交
56
    const std::unordered_set<std::string> &params,
57 58
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
59
    Scope *scope, const std::vector<Scope *> &local_scopes,
60
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
61
    size_t num_trainers, size_t trainer_id)
Y
Yu Yang 已提交
62
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
63
  member_->global_scope_ = scope;
64
  member_->use_cuda_ = exec_strategy.use_cuda_;
Y
Yu Yang 已提交
65

66
  // Step 1. Bcast the params to devs.
Y
Yu Yang 已提交
67
  // Create local scopes
68
  if (local_scopes.empty()) {
C
chengduoZH 已提交
69
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
70 71
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
72
      member_->local_scopes_.emplace_back(&scope->NewScope());
73 74
    }
  } else {
C
chengduoZH 已提交
75
    member_->own_local_scope_ = false;
76 77
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
78
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
79
    }
Y
Yu Yang 已提交
80 81
  }

C
chengduoZH 已提交
82
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
83 84
// Bcast Parameters to all GPUs
#ifdef PADDLE_WITH_CUDA
C
chengduoZH 已提交
85 86 87 88 89 90 91 92 93
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
    ncclUniqueId *nccl_id = nullptr;
    if (nccl_id_var != nullptr) {
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
    }
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
        member_->places_, nccl_id, num_trainers, trainer_id));
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
94
#endif
C
chengduoZH 已提交
95 96 97
  }

  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
98
    BCastParamsToGPUs(bcast_vars);
Y
Yu Yang 已提交
99
  }
Y
yuyang18 已提交
100 101 102 103 104 105 106 107 108 109
  // Startup Program has been run. All local scopes has correct parameters.

  // Step 2. Create vars in each scope;
  std::vector<details::VariableInfo> var_infos;
  for (auto *var : main_program.Block(0).AllVars()) {
    var_infos.emplace_back();
    var_infos.back().name_ = var->Name();
    var_infos.back().type_ = var->GetType();
    var_infos.back().persistable_ = var->Persistable();
  }
Y
Yu Yang 已提交
110

Y
yuyang18 已提交
111 112 113
  // Step 3. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  details::SSAGraphBuilderFactory builder_factory(
Y
Yancey1989 已提交
114
      member_->places_, loss_var_name, params, member_->local_scopes_,
Y
yuyang18 已提交
115
      build_strategy);
C
chengduoZH 已提交
116
  if (member_->use_cuda_) {
Y
yuyang18 已提交
117
#ifdef PADDLE_WITH_CUDA
C
chengduoZH 已提交
118 119 120
    builder_factory.SetNCCLContextMap(member_->nccl_ctxs_.get());
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
121
#endif
C
chengduoZH 已提交
122
  }
Y
yuyang18 已提交
123

F
fengjiayi 已提交
124
  builder_ = builder_factory.Create();
Y
Yu Yang 已提交
125
  member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
Y
yuyang18 已提交
126
      exec_strategy, member_->local_scopes_, places,
127
      builder_->Build(main_program)));
Y
Yu Yang 已提交
128

Y
yuyang18 已提交
129 130 131
  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
      exec_strategy, member_->local_scopes_, std::move(var_infos),
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
132 133 134
}

void ParallelExecutor::BCastParamsToGPUs(
135
    const std::unordered_set<std::string> &vars) const {
136 137 138
  // the the initialize bcast, all vars would be bcast from device(0), otherwise
  // bcast from the specified device.
  bool initialize = builder_.get() == nullptr ? true : false;
Y
Yu Yang 已提交
139

140
  for (auto &var : vars) {
141 142 143 144 145 146 147 148 149 150 151
    int var_dev_id =
        builder_.get() == nullptr ? -1 : builder_->GetVarDeviceID(var);
    if (!initialize && var_dev_id == -1) continue;

    framework::Variable *main_var = nullptr;
    if (initialize) {
      main_var = member_->local_scopes_[0]->FindVar(var);
    } else {
      main_var = member_->local_scopes_[var_dev_id]->FindVar(var);
    }

J
JiayiFeng 已提交
152
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
153 154 155 156 157 158
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
C
chengduoZH 已提交
159
#ifdef PADDLE_WITH_CUDA
160
      std::vector<void *> buffers;
161 162 163 164 165
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
166

Y
Yancey1989 已提交
167
        if ((initialize && i == 0) || (!initialize && i == var_dev_id)) {
168 169
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
170
          auto local_scope = member_->local_scopes_[i];
171
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
172
          t->Resize(dims);
173
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
174
        }
175
        buffers.push_back(buffer);
176
      }
177

178 179 180 181 182 183 184
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
185 186
                                       nccl_ctx.comm_, nccl_ctx.stream());
        }
187
        member_->nccl_ctxs_->WaitAll();
188
      }
189

C
chengduoZH 已提交
190 191 192
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
193 194 195 196 197 198 199 200
    } else {
      platform::CPUPlace cpu;
      for (size_t i = 1; i < member_->places_.size(); ++i) {
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
        t->Resize(dims);
        t->mutable_data(cpu, main_tensor.type());
        paddle::framework::TensorCopy(main_tensor, cpu, t);
Y
Yu Yang 已提交
201
      }
Y
Stash  
Yu Yang 已提交
202 203
    }
  }
Y
Yu Yang 已提交
204
}
Y
Yu Yang 已提交
205

Y
Yu Yang 已提交
206 207
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
X
Xin Pan 已提交
208
  platform::RecordBlock b(0);
Y
Yu Yang 已提交
209 210 211
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
212
}
Y
Yu Yang 已提交
213

Y
Yu Yang 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
233 234 235 236 237
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
238 239
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
240
      auto t =
Y
Yu Yang 已提交
241
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
242 243
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
244 245 246 247
    }
  }
}

248
ParallelExecutor::~ParallelExecutor() {
C
chengduoZH 已提交
249
  if (member_->own_local_scope_) {
250 251 252 253 254 255
    for (size_t i = 1; i < member_->local_scopes_.size(); ++i) {
      member_->global_scope_->DeleteScope(member_->local_scopes_[i]);
    }
  }
}

Y
Yu Yang 已提交
256
}  // namespace framework
Y
Yang Yang 已提交
257
}  // namespace paddle