rnn.py 78.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
Feiyu Chan 已提交
15
import math
16
from collections.abc import Sequence
17
from functools import partial, reduce
F
Feiyu Chan 已提交
18

19
import numpy as np
20

F
Feiyu Chan 已提交
21
import paddle
22
from paddle import _C_ops, _legacy_C_ops, framework, in_dynamic_mode
23
from paddle.common_ops_import import Variable
24
from paddle.fluid.data_feeder import check_type, check_variable_and_dtype
25 26 27 28 29 30
from paddle.fluid.framework import (
    _non_static_mode,
    default_startup_program,
    in_dygraph_mode,
    program_guard,
)
31
from paddle.fluid.layers import control_flow
Z
zhiboniu 已提交
32
from paddle.framework import core
33 34 35
from paddle.nn import Layer
from paddle.nn import functional as F
from paddle.nn import initializer as I
L
liu zhengxi 已提交
36
from paddle.tensor.manipulation import tensor_array_to_tensor
37

38
from .container import LayerList
Z
zhiboniu 已提交
39

40 41
__all__ = []

F
Feiyu Chan 已提交
42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
def rnn(
    cell,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
    is_reverse=False,
    **kwargs
):
    r"""
    rnn creates a recurrent neural network specified by RNNCell `cell`,
    which performs :code:`cell.call()` (for dygraph mode :code:`cell.forward`)
    repeatedly until reaches to the maximum length of `inputs`.

    Parameters:
        cell(RNNCellBase): An instance of `RNNCellBase`.
        inputs(Tensor): the input sequences.
            If time_major is True, the shape is
            `[time_steps, batch_size, input_size]`
            else the shape is `[batch_size, time_steps, input_size]`.
        initial_states(Tensor|tuple|list, optional): the initial state of the
            rnn cell. Tensor or a possibly nested structure of tensors. If not
            provided, `cell.get_initial_states` would be called to produce
            the initial state. Defaults to None.
        sequence_length (Tensor, optional): shape `[batch_size]`, dtype: int64
            or int32. The valid lengths of input sequences. Defaults to None.
            If `sequence_length` is not None, the inputs are treated as
            padded sequences. In each input sequence, elements whose time step
            index are not less than the valid length are treated as paddings.
        time_major (bool, optional): Whether the first dimension of the input means the
            time steps. Defaults to False.
        is_reverse (bool, optional): Indicate whether to calculate in the reverse
            order of input sequences. Defaults to False.
        **kwargs: Additional keyword arguments to pass to `forward` of the cell.

    Returns:
        outputs (Tensor|list|tuple): the output sequence. Tensor or nested
            structure of Tensors.
            If `time_major` is True, the shape of each tensor in outpus is
            `[time_steps, batch_size, hidden_size]`, else
            `[batch_size, time_steps, hidden_size]`.
        final_states (Tensor|list|tuple): final states. A (possibly nested structure of)
            tensor[s], representing the final state for RNN. It has the same
            structure of intial state. Each tensor in final states has the same
            shape and dtype as the corresponding tensor in initial states.

    Examples:

        .. code-block:: python

            import paddle
            paddle.disable_static()

            cell = paddle.nn.SimpleRNNCell(16, 32)

            inputs = paddle.rand((4, 23, 16))
            prev_h = paddle.randn((4, 32))
            outputs, final_states = paddle.nn.layer.rnn(cell, inputs, prev_h)

    """

    if _non_static_mode():
        return _rnn_dynamic_graph(
            cell,
            inputs,
            initial_states,
            sequence_length,
            time_major,
            is_reverse,
            **kwargs
        )
    else:
        return _rnn_static_graph(
            cell,
            inputs,
            initial_states,
            sequence_length,
            time_major,
            is_reverse,
            **kwargs
        )


class ArrayWrapper:
    def __init__(self, x):
        self.array = [x]

    def append(self, x):
        self.array.append(x)
        return self

    def __getitem__(self, item):
        return self.array.__getitem__(item)


def _maybe_copy(state, new_state, step_mask):
    """update rnn state or just pass the old state through"""
    new_state = paddle.tensor.math._multiply_with_axis(
        new_state, step_mask, axis=0
    ) + paddle.tensor.math._multiply_with_axis(state, (1 - step_mask), axis=0)
    return new_state


def _transpose_batch_time(x):
    perm = [1, 0] + list(range(2, len(x.shape)))
    return paddle.transpose(x, perm)


def _rnn_dynamic_graph(
    cell,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
    is_reverse=False,
    **kwargs
):
    time_step_index = 0 if time_major else 1
161
    flat_inputs = paddle.utils.flatten(inputs)
162 163 164 165 166 167 168 169
    time_steps = flat_inputs[0].shape[time_step_index]

    if initial_states is None:
        initial_states = cell.get_initial_states(
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )

    if not time_major:
170
        inputs = paddle.utils.map_structure(_transpose_batch_time, inputs)
171 172

    if sequence_length is not None:
173
        mask = paddle.static.nn.sequence_lod.sequence_mask(
174 175 176 177 178
            sequence_length, maxlen=time_steps, dtype=inputs.dtype
        )
        mask = paddle.transpose(mask, [1, 0])

    if is_reverse:
179 180 181
        inputs = paddle.utils.map_structure(
            lambda x: paddle.reverse(x, axis=[0]), inputs
        )
182 183 184 185 186 187 188 189 190
        mask = (
            paddle.reverse(mask, axis=[0])
            if sequence_length is not None
            else None
        )

    states = initial_states
    outputs = []
    for i in range(time_steps):
191
        step_inputs = paddle.utils.map_structure(lambda x: x[i], inputs)
192 193
        step_outputs, new_states = cell(step_inputs, states, **kwargs)
        if sequence_length is not None:
194
            new_states = paddle.utils.map_structure(
195 196 197 198
                partial(_maybe_copy, step_mask=mask[i]), states, new_states
            )
        states = new_states
        outputs = (
199
            paddle.utils.map_structure(lambda x: ArrayWrapper(x), step_outputs)
200
            if i == 0
201
            else paddle.utils.map_structure(
202 203 204 205
                lambda x, x_array: x_array.append(x), step_outputs, outputs
            )
        )

206
    final_outputs = paddle.utils.map_structure(
207 208 209 210
        lambda x: paddle.stack(x.array, axis=time_step_index), outputs
    )

    if is_reverse:
211
        final_outputs = paddle.utils.map_structure(
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
            lambda x: paddle.reverse(x, axis=time_step_index), final_outputs
        )

    final_states = new_states
    return final_outputs, final_states


def _rnn_static_graph(
    cell,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
    is_reverse=False,
    **kwargs
):
    check_type(inputs, 'inputs', (Variable, list, tuple), 'rnn')
    if isinstance(inputs, (list, tuple)):
        for i, input_x in enumerate(inputs):
            check_variable_and_dtype(
                input_x, 'inputs[' + str(i) + ']', ['float32', 'float64'], 'rnn'
            )
    check_type(
        initial_states,
        'initial_states',
        (Variable, list, tuple, type(None)),
        'rnn',
    )

    check_type(
        sequence_length, 'sequence_length', (Variable, type(None)), 'rnn'
    )

    def _switch_grad(x, stop=False):
        x.stop_gradient = stop
        return x

    if initial_states is None:
        initial_states = cell.get_initial_states(
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )
253
    initial_states = paddle.utils.map_structure(_switch_grad, initial_states)
254 255

    if not time_major:
256
        inputs = paddle.utils.map_structure(_transpose_batch_time, inputs)
257

258
    max_seq_len = paddle.shape(paddle.utils.flatten(inputs)[0])[0]
259
    if sequence_length:
260
        mask = paddle.static.nn.sequence_lod.sequence_mask(
261 262
            sequence_length,
            maxlen=max_seq_len,
263
            dtype=paddle.utils.flatten(initial_states)[0].dtype,
264 265 266
        )
        mask = paddle.transpose(mask, [1, 0])
    if is_reverse:
267 268 269
        inputs = paddle.utils.map_structure(
            lambda x: paddle.reverse(x, axis=[0]), inputs
        )
270 271
        mask = paddle.reverse(mask, axis=[0]) if sequence_length else None

H
hong 已提交
272 273 274 275 276 277 278 279
    with paddle.fluid.framework.device_guard("cpu"):
        start_i = paddle.zeros([1], dtype="int64")
        end = max_seq_len

        end = paddle.cast(end, "int64")
        cond = start_i < end
    while_op = control_flow.While(cond)

280 281 282
    out_array = paddle.tensor.create_array(
        dtype=paddle.utils.flatten(inputs)[0].dtype
    )
H
hong 已提交
283

284
    init_array = paddle.utils.map_structure(
H
hong 已提交
285 286 287
        lambda x: paddle.tensor.create_array(dtype=x.dtype), initial_states
    )

288
    paddle.utils.map_structure(
H
hong 已提交
289 290 291 292 293 294 295 296 297
        lambda x, y: paddle.tensor.array_write(x, start_i, y),
        initial_states,
        init_array,
    )

    with while_op.block():

        step_in = inputs[start_i]
        # step_in = paddle.fluid.layers.Print( step_in, message="step in")
298
        pre_state = paddle.utils.map_structure(
H
hong 已提交
299 300 301 302 303
            lambda x: paddle.tensor.array_read(x, start_i), init_array
        )
        # pre_state = paddle.fluid.layers.Print( pre_state, message="pre")
        outputs, new_states = cell(step_in, pre_state, **kwargs)
        assert isinstance(outputs, paddle.fluid.framework.Variable)
304
        paddle.utils.assert_same_structure(new_states, pre_state)
305
        if sequence_length:
H
hong 已提交
306 307 308 309 310 311
            step_mask = paddle.unsqueeze(mask[start_i], 1)
            # paddle.fluid.layers.Print( step_mask, message="mask")
            # new_states = map_structure(
            #     partial(_maybe_copy, step_mask=step_mask),
            #     pre_state, new_states
            # )
312
            new_states = paddle.utils.map_structure(
H
hong 已提交
313 314 315
                lambda x, y: (x * step_mask + y * (1.0 - step_mask)),
                new_states,
                pre_state,
316 317
            )

H
hong 已提交
318 319 320 321 322
        paddle.tensor.array_write(outputs, start_i, out_array)

        with paddle.fluid.framework.device_guard("cpu"):

            start_i = paddle.tensor.increment(x=start_i, value=1)
323
        paddle.utils.map_structure(
H
hong 已提交
324 325 326 327 328 329 330
            lambda x, y: paddle.tensor.array_write(x, start_i, y),
            new_states,
            init_array,
        )

        with paddle.fluid.framework.device_guard("cpu"):
            new_cond = paddle.tensor.less_than(start_i, end)
331
            paddle.assign(new_cond, cond)
H
hong 已提交
332

L
liu zhengxi 已提交
333
    out, _ = tensor_array_to_tensor(out_array, axis=0, use_stack=True)
334

335
    all_state = paddle.utils.map_structure(
L
liu zhengxi 已提交
336
        lambda x: tensor_array_to_tensor(x, axis=0, use_stack=True)[0],
H
hong 已提交
337 338 339
        init_array,
    )
    final_outputs = out
340
    final_states = paddle.utils.map_structure(lambda x: x[-1], all_state)
341 342

    if is_reverse:
343
        final_outputs = paddle.utils.map_structure(
344 345 346 347
            lambda x: paddle.reverse(x, axis=[0]), final_outputs
        )

    if not time_major:
348 349 350
        final_outputs = paddle.utils.map_structure(
            _transpose_batch_time, final_outputs
        )
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447

    return (final_outputs, final_states)


def birnn(
    cell_fw,
    cell_bw,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
    **kwargs
):
    r"""
    birnn creates a bidirectional recurrent neural network specified by
    RNNCell `cell_fw` and `cell_bw`, which performs :code:`cell.call()`
    (for dygraph mode :code:`cell.forward`) repeatedly until reaches to
    the maximum length of `inputs` and then concat the outputs for both RNNs
    along the last axis.

    Parameters:
        cell_fw(RNNCellBase): An instance of `RNNCellBase`.
        cell_bw(RNNCellBase): An instance of `RNNCellBase`.
        inputs(Tensor): the input sequences.
            If time_major is True, the shape is
            `[time_steps, batch_size, input_size]`
            else the shape is `[batch_size, time_steps, input_size]`.
        initial_states(tuple, optional): A tuple of initial states of
            `cell_fw` and `cell_bw`.
            If not provided, `cell.get_initial_states` would be called to
            produce initial state for each cell. Defaults to None.
        sequence_length (Tensor, optional): shape `[batch_size]`, dtype: int64
            or int32. The valid lengths of input sequences. Defaults to None.
            If `sequence_length` is not None, the inputs are treated as
            padded sequences. In each input sequence, elements whose time step
            index are not less than the valid length are treated as paddings.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.
        **kwargs: Additional keyword arguments to pass to `forward` of each cell.

    Returns:
        outputs (Tensor): the outputs of the bidirectional RNN. It is the
            concatenation of the outputs from the forward RNN and backward
            RNN along the last axis.
            If time major is True, the shape is `[time_steps, batch_size, size]`,
            else the shape is `[batch_size, time_steps, size]`, where size is
            `cell_fw.hidden_size + cell_bw.hidden_size`.
        final_states (tuple): A tuple of the final states of the forward
            cell and backward cell.

    Examples:

        .. code-block:: python

            import paddle
            paddle.disable_static()

            cell_fw = paddle.nn.LSTMCell(16, 32)
            cell_bw = paddle.nn.LSTMCell(16, 32)

            inputs = paddle.rand((4, 23, 16))
            hf, cf = paddle.rand((4, 32)), paddle.rand((4, 32))
            hb, cb = paddle.rand((4, 32)), paddle.rand((4, 32))
            initial_states = ((hf, cf), (hb, cb))
            outputs, final_states = paddle.nn.layer.birnn(
                cell_fw, cell_bw, inputs, initial_states)

    """

    if initial_states is None:
        states_fw = cell_fw.get_initial_states(
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )
        states_bw = cell_fw.get_initial_states(
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )
    else:
        states_fw, states_bw = initial_states
    outputs_fw, states_fw = rnn(
        cell_fw,
        inputs,
        states_fw,
        sequence_length,
        time_major=time_major,
        **kwargs
    )

    outputs_bw, states_bw = rnn(
        cell_bw,
        inputs,
        states_bw,
        sequence_length,
        time_major=time_major,
        is_reverse=True,
        **kwargs
    )

448
    outputs = paddle.utils.map_structure(
449 450 451 452 453 454 455
        lambda x, y: paddle.concat([x, y], -1), outputs_fw, outputs_bw
    )

    final_states = (states_fw, states_bw)
    return outputs, final_states


F
Feiyu Chan 已提交
456 457 458 459 460
def split_states(states, bidirectional=False, state_components=1):
    r"""
    Split states of RNN network into possibly nested list or tuple of
    states of each RNN cells of the RNN network.

461
    Parameters:
F
Feiyu Chan 已提交
462 463
        states (Tensor|tuple|list): the concatenated states for RNN network.
            When `state_components` is 1, states in a Tensor with shape
464 465 466 467 468 469 470 471 472 473 474
            `(L*D, N, C)` where `L` is the number of layers of the RNN
            network, `D` is the number of directions of the RNN network(1
            for unidirectional RNNs and 2 for bidirectional RNNs), `N` is
            the batch size of the input to the RNN network, `C` is the
            hidden size of the RNN network.

            When `state_components` is larger than 1, `states` is a tuple of
            `state_components` Tensors that meet the requirements described
            above.

            For SimpleRNNs and GRUs, `state_components` is 1, and for LSTMs,
F
Feiyu Chan 已提交
475
            `state_components` is 2.
476
        bidirectional (bool): whether the state is of a bidirectional RNN
F
Feiyu Chan 已提交
477 478 479
            network. Defaults to False.
        state_components (int): the number of the components of the states. see
            `states` above. Defaults to 1.
480

F
Feiyu Chan 已提交
481
    Returns:
482 483 484
        A nested list or tuple of RNN cell states.
        If `bidirectional` is True, it can be indexed twice to get an RNN
        cell state. The first index indicates the layer, the second index
F
Feiyu Chan 已提交
485 486 487 488
        indicates the direction.
        If `bidirectional` is False, it can be indexed once to get an RNN
        cell state. The index indicates the layer.
        Note that if `state_components` is larger than 1, an RNN cell state
489
        can be indexed one more time to get a tensor of shape(N, C), where
F
Feiyu Chan 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
        `N` is the batch size of the input to the RNN cell, and `C` is the
        hidden size of the RNN cell.
    """
    if state_components == 1:
        states = paddle.unstack(states)
        if not bidirectional:
            return states
        else:
            return list(zip(states[::2], states[1::2]))
    else:
        assert len(states) == state_components
        states = tuple([paddle.unstack(item) for item in states])
        if not bidirectional:
            return list(zip(*states))
        else:
            states = list(zip(*states))
            return list(zip(states[::2], states[1::2]))


def concat_states(states, bidirectional=False, state_components=1):
    r"""
511
    Concatenate a possibly nested list or tuple of RNN cell states into a
F
Feiyu Chan 已提交
512 513
    compact form.

514
    Parameters:
515 516 517 518
        states (list|tuple): a possibly nested list or tuple of RNN cell
            states.
            If `bidirectional` is True, it can be indexed twice to get an
            RNN cell state. The first index indicates the layer, the second
F
Feiyu Chan 已提交
519 520 521
            index indicates the direction.
            If `bidirectional` is False, it can be indexed once to get an RNN
            cell state. The index indicates the layer.
522 523 524 525 526
            Note that if `state_components` is larger than 1, an RNN cell
            state can be indexed one more time to get a tensor of shape(N, C),
            where `N` is the batch size of the input to the RNN cell, and
            `C` is the hidden size of the RNN cell.
        bidirectional (bool): whether the state is of a bidirectional RNN
F
Feiyu Chan 已提交
527 528 529
            network. Defaults to False.
        state_components (int): the number of the components of the states. see
            `states` above. Defaults to 1.
530

F
Feiyu Chan 已提交
531 532 533
    Returns:
        Concatenated states for RNN network.
        When `state_components` is 1, states in a Tensor with shape
534 535 536 537
        `(L\*D, N, C)` where `L` is the number of layers of the RNN
        network, `D` is the number of directions of the RNN network(1 for
        unidirectional RNNs and 2 for bidirectional RNNs), `N` is the batch
        size of the input to the RNN network, `C` is the hidden size of the
F
Feiyu Chan 已提交
538
        RNN network.
539

F
Feiyu Chan 已提交
540 541
    """
    if state_components == 1:
542
        return paddle.stack(paddle.utils.flatten(states))
F
Feiyu Chan 已提交
543
    else:
544
        states = paddle.utils.flatten(states)
F
Feiyu Chan 已提交
545 546 547
        componnets = []
        for i in range(state_components):
            componnets.append(states[i::state_components])
548
        return tuple([paddle.stack(item) for item in componnets])
F
Feiyu Chan 已提交
549 550 551 552 553 554 555 556 557


class RNNCellBase(Layer):
    r"""
    RNNCellBase is the base class for abstraction representing the calculations
    mapping the input and state to the output and new state. It is suitable to
    and mostly used in RNN.
    """

558 559 560
    def get_initial_states(
        self, batch_ref, shape=None, dtype=None, init_value=0.0, batch_dim_idx=0
    ):
F
Feiyu Chan 已提交
561 562 563
        r"""
        Generate initialized states according to provided shape, data type and
        value.
564 565

        Parameters:
566 567 568
            batch_ref (Tensor): A tensor, which shape would be used to
                determine the batch size, which is used to generate initial
                states. For `batch_ref`'s shape d, `d[batch_dim_idx]` is
F
Feiyu Chan 已提交
569
                treated as batch size.
570 571 572 573
            shape (list|tuple, optional): A (possibly nested structure of) shape[s],
                where a shape is a list/tuple of integer. `-1` (for batch size)
                will be automatically prepended if a shape does not starts with
                it. If None, property `state_shape` will be used. Defaults to
F
Feiyu Chan 已提交
574
                None.
575 576 577 578 579
            dtype (str|list|tuple, optional): A (possibly nested structure of)
                data type[s]. The structure must be same as that of `shape`,
                except when all tensors' in states has the same data type, a
                single data type can be used. If None and property `cell.state_shape`
                is not available, current default floating type of paddle is
F
Feiyu Chan 已提交
580
                used. Defaults to None.
581
            init_value (float, optional): A float value used to initialize states.
F
Feiyu Chan 已提交
582
                Defaults to 0.
583
            batch_dim_idx (int, optional): An integer indicating which
F
Feiyu Chan 已提交
584
                dimension of the of `batch_ref` represents batch. Defaults to 0.
585

F
Feiyu Chan 已提交
586
        Returns:
587
            init_states (Tensor|tuple|list): tensor of the provided shape and
F
Feiyu Chan 已提交
588 589 590 591
                dtype, or list of tensors that each satisfies the requirements,
                packed in the same structure as `shape` and `type` does.
        """
        # TODO: use inputs and batch_size
592
        batch_ref = paddle.utils.flatten(batch_ref)[0]
F
Feiyu Chan 已提交
593 594 595

        def _is_shape_sequence(seq):
            """For shape, list/tuple of integer is the finest-grained objection"""
596 597 598 599
            if isinstance(seq, list) or isinstance(seq, tuple):
                if reduce(
                    lambda flag, x: isinstance(x, int) and flag, seq, True
                ):
F
Feiyu Chan 已提交
600 601 602 603
                    return False
            # TODO: Add check for the illegal
            if isinstance(seq, dict):
                return True
604
            return isinstance(seq, Sequence) and not isinstance(seq, str)
F
Feiyu Chan 已提交
605

606
        class Shape:
F
Feiyu Chan 已提交
607 608 609 610 611
            def __init__(self, shape):
                self.shape = shape if shape[0] == -1 else ([-1] + list(shape))

        # nested structure of shapes
        states_shapes = self.state_shape if shape is None else shape
612 613 614 615 616 617
        is_sequence_ori = paddle.utils.layers_utils.is_sequence
        paddle.utils.layers_utils.is_sequence = _is_shape_sequence
        states_shapes = paddle.utils.map_structure(
            lambda shape: Shape(shape), states_shapes
        )
        paddle.utils.layers_utils.is_sequence = is_sequence_ori
F
Feiyu Chan 已提交
618 619 620 621 622 623

        # nested structure of dtypes
        try:
            states_dtypes = self.state_dtype if dtype is None else dtype
        except NotImplementedError:
            states_dtypes = framework.get_default_dtype()
624 625 626 627 628
        if len(paddle.utils.flatten(states_dtypes)) == 1:
            dtype = paddle.utils.flatten(states_dtypes)[0]
            states_dtypes = paddle.utils.map_structure(
                lambda shape: dtype, states_shapes
            )
F
Feiyu Chan 已提交
629

630
        init_states = paddle.utils.map_structure(
631 632 633 634 635 636 637 638 639 640
            lambda shape, dtype: paddle.fluid.layers.fill_constant_batch_size_like(
                input=batch_ref,
                shape=shape.shape,
                dtype=dtype,
                value=init_value,
                input_dim_idx=batch_dim_idx,
            ),
            states_shapes,
            states_dtypes,
        )
F
Feiyu Chan 已提交
641 642 643 644 645 646 647
        return init_states

    @property
    def state_shape(self):
        r"""
        Abstract method (property).
        Used to initialize states.
648
        A (possiblely nested structure of) shape[s], where a shape is a
F
Feiyu Chan 已提交
649 650 651 652 653 654 655
        list/tuple of integers (-1 for batch size would be automatically
        inserted into a shape if shape is not started with it).
        Not necessary to be implemented if states are not initialized by
        `get_initial_states` or the `shape` argument is provided when using
        `get_initial_states`.
        """
        raise NotImplementedError(
656 657
            "Please add implementaion for `state_shape` in the used cell."
        )
F
Feiyu Chan 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671

    @property
    def state_dtype(self):
        r"""
        Abstract method (property).
        Used to initialize states.
        A (possiblely nested structure of) data types[s]. The structure must be
        same as that of `shape`, except when all tensors' in states has the same
        data type, a signle data type can be used.
        Not necessary to be implemented if states are not initialized
        by `get_initial_states` or the `dtype` argument is provided when using
        `get_initial_states`.
        """
        raise NotImplementedError(
672 673
            "Please add implementaion for `state_dtype` in the used cell."
        )
F
Feiyu Chan 已提交
674 675 676 677


class SimpleRNNCell(RNNCellBase):
    r"""
678
    Elman RNN (SimpleRNN) cell. Given the inputs and previous states, it
F
Feiyu Chan 已提交
679 680 681 682 683
    computes the outputs and updates states.

    The formula used is as follows:

    .. math::
684
        h_{t} & = act(W_{ih}x_{t} + b_{ih} + W_{hh}h_{t-1} + b_{hh})
685

F
Feiyu Chan 已提交
686
        y_{t} & = h_{t}
687

688
    where :math:`act` is for :attr:`activation`.
F
Feiyu Chan 已提交
689

690
    Please refer to `Finding Structure in Time
F
Feiyu Chan 已提交
691
    <https://crl.ucsd.edu/~elman/Papers/fsit.pdf>`_ for more details.
692

693
    Parameters:
F
Feiyu Chan 已提交
694 695
        input_size (int): The input size.
        hidden_size (int): The hidden size.
696
        activation (str, optional): The activation in the SimpleRNN cell.
F
Feiyu Chan 已提交
697
            It can be `tanh` or `relu`. Defaults to `tanh`.
698
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
699
            :math:`weight_ih`. Default: None.
700
        weight_hh_attr(ParamAttr, optional): The parameter attribute for
701
            :math:`weight_hh`. Default: None.
702
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
703
            :math:`bias_ih`. Default: None.
704
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
705
            :math:`bias_hh`. Default: None.
706
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
707 708
            None). For more information, please refer to :ref:`api_guide_Name`.

709 710 711 712 713
    Variables:
        - **weight_ih** (Parameter): shape (hidden_size, input_size), input to hidden weight, corresponding to :math:`W_{ih}` in the formula.
        - **weight_hh** (Parameter): shape (hidden_size, hidden_size), hidden to hidden weight, corresponding to :math:`W_{hh}` in the formula.
        - **bias_ih** (Parameter): shape (hidden_size, ), input to hidden bias, corresponding to :math:`b_{ih}` in the formula.
        - **bias_hh** (Parameter): shape (hidden_size, ), hidden to hidden bias, corresponding to :math:`b_{hh}` in the formula.
714

F
Feiyu Chan 已提交
715
    Inputs:
716 717
        - **inputs** (Tensor): shape `[batch_size, input_size]`, the input, corresponding to :math:`x_{t}` in the formula.
        - **states** (Tensor, optional): shape `[batch_size, hidden_size]`, the previous hidden state, corresponding to :math:`h_{t-1}` in the formula. When states is None, zero state is used. Defaults to None.
F
Feiyu Chan 已提交
718 719

    Returns:
720 721
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (Tensor): shape `[batch_size, hidden_size]`, the new hidden state, corresponding to :math:`h_{t}` in the formula.
722

F
Feiyu Chan 已提交
723
    Notes:
724
        All the weights and bias are initialized with `Uniform(-std, std)` by default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more information about parameter initialization, please refer to :ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
725 726 727 728 729 730 731 732 733 734 735 736

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.SimpleRNNCell(16, 32)
            y, h = cell(x, prev_h)
737 738 739
            print(y.shape)

            #[4,32]
F
Feiyu Chan 已提交
740 741 742

    """

743 744 745 746 747 748 749 750 751 752 753
    def __init__(
        self,
        input_size,
        hidden_size,
        activation="tanh",
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
754
        super().__init__()
755 756
        if hidden_size <= 0:
            raise ValueError(
757 758 759 760
                "hidden_size of {} must be greater than 0, but now equals to {}".format(
                    self.__class__.__name__, hidden_size
                )
            )
F
Feiyu Chan 已提交
761 762 763 764
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (hidden_size, input_size),
            weight_ih_attr,
765 766
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
767 768 769
        self.weight_hh = self.create_parameter(
            (hidden_size, hidden_size),
            weight_hh_attr,
770 771
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
772
        self.bias_ih = self.create_parameter(
773
            (hidden_size,),
F
Feiyu Chan 已提交
774 775
            bias_ih_attr,
            is_bias=True,
776 777
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
778
        self.bias_hh = self.create_parameter(
779
            (hidden_size,),
F
Feiyu Chan 已提交
780 781
            bias_hh_attr,
            is_bias=True,
782 783
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
784 785 786 787 788 789

        self.input_size = input_size
        self.hidden_size = hidden_size
        if activation not in ["tanh", "relu"]:
            raise ValueError(
                "activation for SimpleRNNCell should be tanh or relu, "
790 791
                "but get {}".format(activation)
            )
F
Feiyu Chan 已提交
792
        self.activation = activation
793
        self._activation_fn = paddle.tanh if activation == "tanh" else F.relu
F
Feiyu Chan 已提交
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)
        pre_h = states
        i2h = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            i2h += self.bias_ih
        h2h = paddle.matmul(pre_h, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            h2h += self.bias_hh
        h = self._activation_fn(i2h + h2h)
        return h, h

    @property
    def state_shape(self):
810
        return (self.hidden_size,)
F
Feiyu Chan 已提交
811

812 813
    def extra_repr(self):
        s = '{input_size}, {hidden_size}'
814
        if self.activation != "tanh":
815 816 817
            s += ', activation={activation}'
        return s.format(**self.__dict__)

F
Feiyu Chan 已提交
818 819 820

class LSTMCell(RNNCellBase):
    r"""
821
    Long-Short Term Memory(LSTM) RNN cell. Given the inputs and previous states,
F
Feiyu Chan 已提交
822 823 824 825 826 827
    it computes the outputs and updates states.

    The formula used is as follows:

    .. math::
        i_{t} & = \sigma(W_{ii}x_{t} + b_{ii} + W_{hi}h_{t-1} + b_{hi})
828

F
Feiyu Chan 已提交
829
        f_{t} & = \sigma(W_{if}x_{t} + b_{if} + W_{hf}h_{t-1} + b_{hf})
830

F
Feiyu Chan 已提交
831
        o_{t} & = \sigma(W_{io}x_{t} + b_{io} + W_{ho}h_{t-1} + b_{ho})
832 833 834 835 836 837 838

        \widetilde{c}_{t} & = \tanh (W_{ig}x_{t} + b_{ig} + W_{hg}h_{t-1} + b_{hg})

        c_{t} & = f_{t} * c_{t-1} + i_{t} * \widetilde{c}_{t}

        h_{t} & = o_{t} * \tanh(c_{t})

F
Feiyu Chan 已提交
839 840
        y_{t} & = h_{t}

841
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
842 843 844 845 846
    multiplication operator.

    Please refer to `An Empirical Exploration of Recurrent Network Architectures
    <http://proceedings.mlr.press/v37/jozefowicz15.pdf>`_ for more details.

847
    Parameters:
F
Feiyu Chan 已提交
848 849
        input_size (int): The input size.
        hidden_size (int): The hidden size.
850
        weight_ih_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
851
            `weight_ih`. Default: None.
852
        weight_hh_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
853
            `weight_hh`. Default: None.
854
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
855
            `bias_ih`. Default: None.
856
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
857
            `bias_hh`. Default: None.
858
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
859 860
            None). For more information, please refer to :ref:`api_guide_Name`.

861 862 863 864 865
    Variables:
        - **weight_ih** (Parameter): shape (4 * hidden_size, input_size), input to hidden weight, which corresponds to the concatenation of :math:`W_{ii}, W_{if}, W_{ig}, W_{io}` in the formula.
        - **weight_hh** (Parameter): shape (4 * hidden_size, hidden_size), hidden to hidden weight, which corresponds to the concatenation of :math:`W_{hi}, W_{hf}, W_{hg}, W_{ho}` in the formula.
        - **bias_ih** (Parameter): shape (4 * hidden_size, ), input to hidden bias, which corresponds to the concatenation of :math:`b_{ii}, b_{if}, b_{ig}, b_{io}` in the formula.
        - **bias_hh** (Parameter): shape (4 * hidden_size, ), hidden to hidden bias, swhich corresponds to the concatenation of :math:`b_{hi}, b_{hf}, b_{hg}, b_{ho}` in the formula.
F
Feiyu Chan 已提交
866 867

    Inputs:
868
        - **inputs** (Tensor): shape `[batch_size, input_size]`, the input, corresponding to :math:`x_t` in the formula.
869
        - **states** (list|tuple, optional): a list/tuple of two tensors, each of shape `[batch_size, hidden_size]`, the previous hidden state, corresponding to :math:`h_{t-1}, c_{t-1}` in the formula. When states is None, zero state is used. Defaults to None.
F
Feiyu Chan 已提交
870 871

    Returns:
872 873
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (tuple): a tuple of two tensors, each of shape `[batch_size, hidden_size]`, the new hidden states, corresponding to :math:`h_{t}, c_{t}` in the formula.
F
Feiyu Chan 已提交
874 875

    Notes:
876 877
        All the weights and bias are initialized with `Uniform(-std, std)` by
        default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more
878
        information about parameter initialization, please refer to :ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
879 880 881 882 883 884 885 886 887 888 889 890 891 892

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))
            prev_c = paddle.randn((4, 32))

            cell = paddle.nn.LSTMCell(16, 32)
            y, (h, c) = cell(x, (prev_h, prev_c))

893 894 895 896 897 898 899 900
            print(y.shape)
            print(h.shape)
            print(c.shape)

            #[4,32]
            #[4,32]
            #[4,32]

F
Feiyu Chan 已提交
901 902
    """

903 904 905 906 907 908 909 910 911 912
    def __init__(
        self,
        input_size,
        hidden_size,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
913
        super().__init__()
914 915
        if hidden_size <= 0:
            raise ValueError(
916 917 918 919
                "hidden_size of {} must be greater than 0, but now equals to {}".format(
                    self.__class__.__name__, hidden_size
                )
            )
F
Feiyu Chan 已提交
920 921 922 923
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (4 * hidden_size, input_size),
            weight_ih_attr,
924 925
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
926 927 928
        self.weight_hh = self.create_parameter(
            (4 * hidden_size, hidden_size),
            weight_hh_attr,
929 930
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
931
        self.bias_ih = self.create_parameter(
932
            (4 * hidden_size,),
F
Feiyu Chan 已提交
933 934
            bias_ih_attr,
            is_bias=True,
935 936
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
937
        self.bias_hh = self.create_parameter(
938
            (4 * hidden_size,),
F
Feiyu Chan 已提交
939 940
            bias_hh_attr,
            is_bias=True,
941 942
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972

        self.hidden_size = hidden_size
        self.input_size = input_size
        self._gate_activation = F.sigmoid
        self._activation = paddle.tanh

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)
        pre_hidden, pre_cell = states
        gates = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            gates = gates + self.bias_ih
        gates += paddle.matmul(pre_hidden, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            gates = gates + self.bias_hh

        chunked_gates = paddle.split(gates, num_or_sections=4, axis=-1)

        i = self._gate_activation(chunked_gates[0])
        f = self._gate_activation(chunked_gates[1])
        o = self._gate_activation(chunked_gates[3])
        c = f * pre_cell + i * self._activation(chunked_gates[2])
        h = o * self._activation(c)

        return h, (h, c)

    @property
    def state_shape(self):
        r"""
973 974 975
        The `state_shape` of LSTMCell is a tuple with two shapes:
        `((hidden_size, ), (hidden_size,))`. (-1 for batch size would be
        automatically inserted into shape). These two shapes correspond
F
Feiyu Chan 已提交
976 977
        to :math:`h_{t-1}` and :math:`c_{t-1}` separately.
        """
978
        return ((self.hidden_size,), (self.hidden_size,))
F
Feiyu Chan 已提交
979

980 981 982
    def extra_repr(self):
        return '{input_size}, {hidden_size}'.format(**self.__dict__)

F
Feiyu Chan 已提交
983 984 985

class GRUCell(RNNCellBase):
    r"""
986
    Gated Recurrent Unit (GRU) RNN cell. Given the inputs and previous states,
F
Feiyu Chan 已提交
987 988 989 990
    it computes the outputs and updates states.

    The formula for GRU used is as follows:

991
    ..  math::
F
Feiyu Chan 已提交
992

993
        r_{t} & = \sigma(W_{ir}x_{t} + b_{ir} + W_{hr}h_{t-1} + b_{hr})
994

995
        z_{t} & = \sigma(W_{iz}x_{t} + b_{iz} + W_{hz}h_{t-1} + b_{hz})
996

997
        \widetilde{h}_{t} & = \tanh(W_{ic}x_{t} + b_{ic} + r_{t} * (W_{hc}h_{t-1} + b_{hc}))
998 999 1000

        h_{t} & = z_{t} * h_{t-1} + (1 - z_{t}) * \widetilde{h}_{t}

F
Feiyu Chan 已提交
1001
        y_{t} & = h_{t}
1002 1003

    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
1004 1005 1006 1007 1008 1009
    multiplication operator.

    Please refer to `An Empirical Exploration of Recurrent Network Architectures
    <http://proceedings.mlr.press/v37/jozefowicz15.pdf>`_ for more details.

    Parameters:
1010
        input_size (int): The input size.
F
Feiyu Chan 已提交
1011
        hidden_size (int): The hidden size.
1012
        weight_ih_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1013
            `weight_ih`. Default: None.
1014
        weight_hh_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1015
            `weight_hh`. Default: None.
1016
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1017
            `bias_ih`. Default: None.
1018
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1019
            `bias_hh`. Default: None.
1020
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1021 1022
            None). For more information, please refer to :ref:`api_guide_Name`.

1023 1024 1025 1026 1027
    Variables:
        - **weight_ih** (Parameter): shape (3 * hidden_size, input_size), input to hidden weight, which corresponds to the concatenation of :math:`W_{ir}, W_{iz}, W_{ic}` in the formula.
        - **weight_hh** (Parameter): shape (3 * hidden_size, hidden_size), hidden to hidden weight, which corresponds to the concatenation of :math:`W_{hr}, W_{hz}, W_{hc}` in the formula.
        - **bias_ih** (Parameter): shape (3 * hidden_size, ), input to hidden bias, which corresponds to the concatenation of :math:`b_{ir}, b_{iz}, b_{ic}` in the formula.
        - **bias_hh** (Parameter): shape (3 * hidden_size, ), hidden to hidden bias, swhich corresponds to the concatenation of :math:`b_{hr}, b_{hz}, b_{hc}` in the formula.
F
Feiyu Chan 已提交
1028 1029

    Inputs:
1030 1031
        - **inputs** (Tensor): A tensor with shape `[batch_size, input_size]`, corresponding to :math:`x_t` in the formula.
        - **states** (Tensor): A tensor with shape `[batch_size, hidden_size]`, corresponding to :math:`h_{t-1}` in the formula.
F
Feiyu Chan 已提交
1032 1033

    Returns:
1034 1035
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (Tensor): shape `[batch_size, hidden_size]`, the new hidden state, corresponding to :math:`h_{t}` in the formula.
1036

F
Feiyu Chan 已提交
1037
    Notes:
1038 1039
        All the weights and bias are initialized with `Uniform(-std, std)` by
        default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more
1040
        information about parameter initialization, please refer to s:ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.GRUCell(16, 32)
            y, h = cell(x, prev_h)

1054 1055 1056 1057 1058 1059
            print(y.shape)
            print(h.shape)

            #[4,32]
            #[4,32]

F
Feiyu Chan 已提交
1060 1061
    """

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
    def __init__(
        self,
        input_size,
        hidden_size,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
1072
        super().__init__()
1073 1074
        if hidden_size <= 0:
            raise ValueError(
1075 1076 1077 1078
                "hidden_size of {} must be greater than 0, but now equals to {}".format(
                    self.__class__.__name__, hidden_size
                )
            )
F
Feiyu Chan 已提交
1079 1080 1081 1082
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (3 * hidden_size, input_size),
            weight_ih_attr,
1083 1084
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
1085 1086 1087
        self.weight_hh = self.create_parameter(
            (3 * hidden_size, hidden_size),
            weight_hh_attr,
1088 1089
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
1090
        self.bias_ih = self.create_parameter(
1091
            (3 * hidden_size,),
F
Feiyu Chan 已提交
1092 1093
            bias_ih_attr,
            is_bias=True,
1094 1095
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
1096
        self.bias_hh = self.create_parameter(
1097
            (3 * hidden_size,),
F
Feiyu Chan 已提交
1098 1099
            bias_hh_attr,
            is_bias=True,
1100 1101
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

        self.hidden_size = hidden_size
        self.input_size = input_size
        self._gate_activation = F.sigmoid
        self._activation = paddle.tanh

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)

        pre_hidden = states
        x_gates = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            x_gates = x_gates + self.bias_ih
        h_gates = paddle.matmul(pre_hidden, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            h_gates = h_gates + self.bias_hh

        x_r, x_z, x_c = paddle.split(x_gates, num_or_sections=3, axis=1)
        h_r, h_z, h_c = paddle.split(h_gates, num_or_sections=3, axis=1)

        r = self._gate_activation(x_r + h_r)
        z = self._gate_activation(x_z + h_z)
        c = self._activation(x_c + r * h_c)  # apply reset gate after mm
        h = (pre_hidden - c) * z + c

        return h, h

    @property
    def state_shape(self):
        r"""
        The `state_shape` of GRUCell is a shape `[hidden_size]` (-1 for batch
        size would be automatically inserted into shape). The shape corresponds
        to the shape of :math:`h_{t-1}`.
        """
1137
        return (self.hidden_size,)
F
Feiyu Chan 已提交
1138

1139 1140 1141
    def extra_repr(self):
        return '{input_size}, {hidden_size}'.format(**self.__dict__)

F
Feiyu Chan 已提交
1142 1143 1144

class RNN(Layer):
    r"""
1145 1146
    Wrapper for RNN, which creates a recurrent neural network with an RNN cell.
    It performs :code:`cell.forward()` repeatedly until reaches to the maximum
F
Feiyu Chan 已提交
1147 1148
    length of `inputs`.

1149
    Parameters:
F
Feiyu Chan 已提交
1150 1151 1152 1153 1154 1155 1156
        cell(RNNCellBase): An instance of `RNNCellBase`.
        is_reverse (bool, optional): Indicate whether to calculate in the reverse
            order of input sequences. Defaults to False.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.

    Inputs:
1157 1158 1159
        - **inputs** (Tensor): A (possibly nested structure of) tensor[s]. The input sequences. If time major is False, the shape is `[batch_size, time_steps, input_size]`. If time major is True, the shape is `[time_steps, batch_size, input_size]` where `input_size` is the input size of the cell.
        - **initial_states** (Tensor|list|tuple, optional): Tensor of a possibly nested structure of tensors, representing the initial state for the rnn cell. If not provided, `cell.get_initial_states` would be called to produce the initial states. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None.If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
1160
        - **kwargs**: Additional keyword arguments to pass to `forward` of the cell.
F
Feiyu Chan 已提交
1161 1162

    Returns:
1163 1164
        - **outputs** (Tensor|list|tuple): the output sequences. If `time_major` is True, the shape is `[time_steps, batch_size, hidden_size]`, else `[batch_size, time_steps, hidden_size]`.
        - **final_states** (Tensor|list|tuple): final states of the cell. Tensor or a possibly nested structure of tensors which has the same structure with intial state. Each tensor in final states has the same shape and dtype as the corresponding tensor in initial states.
1165

F
Feiyu Chan 已提交
1166
    Notes:
V
Vegetable dog 已提交
1167
        This class is a low-level API for wrapping rnn cell into a RNN network.
1168 1169
        Users should take care of the state of the cell. If `initial_states` is
        passed to the `forward` method, make sure that it satisfies the
F
Feiyu Chan 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
        requirements of the cell.

    Examples:

        .. code-block:: python

            import paddle

            inputs = paddle.rand((4, 23, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.SimpleRNNCell(16, 32)
            rnn = paddle.nn.RNN(cell)
            outputs, final_states = rnn(inputs, prev_h)

1185 1186 1187 1188 1189 1190
            print(outputs.shape)
            print(final_states.shape)

            #[4,23,32]
            #[4,32]

F
Feiyu Chan 已提交
1191 1192 1193
    """

    def __init__(self, cell, is_reverse=False, time_major=False):
1194
        super().__init__()
F
Feiyu Chan 已提交
1195 1196 1197 1198 1199 1200 1201
        self.cell = cell
        if not hasattr(self.cell, "call"):
            # for non-dygraph mode, `rnn` api uses cell.call
            self.cell.call = self.cell.forward
        self.is_reverse = is_reverse
        self.time_major = time_major

1202 1203 1204
    def forward(
        self, inputs, initial_states=None, sequence_length=None, **kwargs
    ):
1205
        final_outputs, final_states = rnn(
1206 1207 1208 1209 1210 1211
            self.cell,
            inputs,
            initial_states=initial_states,
            sequence_length=sequence_length,
            time_major=self.time_major,
            is_reverse=self.is_reverse,
1212 1213
            **kwargs
        )
F
Feiyu Chan 已提交
1214 1215 1216 1217 1218
        return final_outputs, final_states


class BiRNN(Layer):
    r"""
1219 1220 1221
    Wrapper for bidirectional RNN, which builds a bidiretional RNN given the
    forward rnn cell and backward rnn cell. A BiRNN applies forward RNN and
    backward RNN with coresponding cells separately and concats the outputs
F
Feiyu Chan 已提交
1222 1223
    along the last axis.

1224
    Parameters:
F
Feiyu Chan 已提交
1225 1226
        cell_fw (RNNCellBase): A RNNCellBase instance used for forward RNN.
        cell_bw (RNNCellBase): A RNNCellBase instance used for backward RNN.
1227
        time_major (bool, optional): Whether the first dimension of the input means the
F
Feiyu Chan 已提交
1228 1229 1230
            time steps. Defaults to False.

    Inputs:
1231 1232 1233 1234
        - **inputs** (Tensor): the input sequences of both RNN. If time_major is True, the shape of is `[time_steps, batch_size, input_size]`, else the shape is `[batch_size, time_steps, input_size]`, where input_size is the input size of both cells.
        - **initial_states** (list|tuple, optional): A tuple/list of the initial states of the forward cell and backward cell. Defaults to None. If not provided, `cell.get_initial_states` would be called to produce the initial states for each cell. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
        - **kwargs**: Additional keyword arguments. Arguments passed to `forward` for each cell.
F
Feiyu Chan 已提交
1235 1236

    Outputs:
1237
        - **outputs** (Tensor): the outputs of the bidirectional RNN. It is the concatenation of the outputs from the forward RNN and backward RNN along the last axis. If time major is True, the shape is `[time_steps, batch_size, size]`, else the shape is `[batch_size, time_steps, size]`, where size is `cell_fw.hidden_size + cell_bw.hidden_size`.
1238
        - **final_states** (tuple): A tuple of the final states of the forward cell and backward cell.
F
Feiyu Chan 已提交
1239 1240

    Notes:
1241 1242 1243
        This class is a low level API for wrapping rnn cells into a BiRNN
        network. Users should take care of the states of the cells.
        If `initial_states` is passed to the `forward` method, make sure that
F
Feiyu Chan 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
        it satisfies the requirements of the cells.

    Examples:

        .. code-block:: python

            import paddle

            cell_fw = paddle.nn.LSTMCell(16, 32)
            cell_bw = paddle.nn.LSTMCell(16, 32)
            rnn = paddle.nn.BiRNN(cell_fw, cell_bw)

            inputs = paddle.rand((2, 23, 16))
            outputs, final_states = rnn(inputs)

1259 1260 1261 1262 1263 1264
            print(outputs.shape)
            print(final_states[0][0].shape,len(final_states),len(final_states[0]))

            #[4,23,64]
            #[2,32] 2 2

F
Feiyu Chan 已提交
1265 1266 1267
    """

    def __init__(self, cell_fw, cell_bw, time_major=False):
1268
        super().__init__()
F
Feiyu Chan 已提交
1269 1270 1271
        self.cell_fw = cell_fw
        self.cell_bw = cell_bw
        if cell_fw.input_size != cell_bw.input_size:
1272 1273 1274 1275 1276 1277
            raise ValueError(
                "input size of forward cell({}) does not equals"
                "that of backward cell({})".format(
                    cell_fw.input_size, cell_bw.input_size
                )
            )
F
Feiyu Chan 已提交
1278 1279 1280 1281 1282 1283
        for cell in [self.cell_fw, self.cell_bw]:
            if not hasattr(cell, "call"):
                # for non-dygraph mode, `rnn` api uses cell.call
                cell.call = cell.forward
        self.time_major = time_major

1284 1285 1286
    def forward(
        self, inputs, initial_states=None, sequence_length=None, **kwargs
    ):
F
Feiyu Chan 已提交
1287
        if isinstance(initial_states, (list, tuple)):
1288 1289 1290
            assert (
                len(initial_states) == 2
            ), "length of initial_states should be 2 when it is a list/tuple"
F
Feiyu Chan 已提交
1291

1292
        outputs, final_states = birnn(
1293 1294 1295 1296 1297 1298 1299 1300
            self.cell_fw,
            self.cell_bw,
            inputs,
            initial_states,
            sequence_length,
            self.time_major,
            **kwargs
        )
F
Feiyu Chan 已提交
1301 1302 1303
        return outputs, final_states


1304
class RNNBase(LayerList):
F
Feiyu Chan 已提交
1305
    r"""
1306 1307
    RNNBase class for RNN networks. It provides `forward`, `flatten_parameters`
    and other common methods for SimpleRNN, LSTM and GRU.
F
Feiyu Chan 已提交
1308 1309
    """

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
    def __init__(
        self,
        mode,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
    ):
1324
        super().__init__()
1325
        bidirectional_list = ["bidirectional", "bidirect"]
1326 1327 1328 1329
        self.mode = mode
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.dropout = dropout
1330
        self.num_directions = 2 if direction in bidirectional_list else 1
1331 1332 1333 1334 1335 1336 1337 1338
        self.time_major = time_major
        self.num_layers = num_layers
        self.state_components = 2 if mode == "LSTM" else 1

        kwargs = {
            "weight_ih_attr": weight_ih_attr,
            "weight_hh_attr": weight_hh_attr,
            "bias_ih_attr": bias_ih_attr,
1339
            "bias_hh_attr": bias_hh_attr,
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
        }

        if mode == "LSTM":
            rnn_cls = LSTMCell
        elif mode == "GRU":
            rnn_cls = GRUCell
        else:
            rnn_cls = SimpleRNNCell
            kwargs["activation"] = self.activation

1350 1351
        if direction in ["forward"]:
            is_reverse = False
1352 1353 1354 1355 1356
            cell = rnn_cls(input_size, hidden_size, **kwargs)
            self.append(RNN(cell, is_reverse, time_major))
            for i in range(1, num_layers):
                cell = rnn_cls(hidden_size, hidden_size, **kwargs)
                self.append(RNN(cell, is_reverse, time_major))
1357
        elif direction in bidirectional_list:
1358 1359 1360 1361 1362 1363 1364 1365 1366
            cell_fw = rnn_cls(input_size, hidden_size, **kwargs)
            cell_bw = rnn_cls(input_size, hidden_size, **kwargs)
            self.append(BiRNN(cell_fw, cell_bw, time_major))
            for i in range(1, num_layers):
                cell_fw = rnn_cls(2 * hidden_size, hidden_size, **kwargs)
                cell_bw = rnn_cls(2 * hidden_size, hidden_size, **kwargs)
                self.append(BiRNN(cell_fw, cell_bw, time_major))
        else:
            raise ValueError(
1367
                "direction should be forward or bidirect (or bidirectional), "
1368 1369
                "received direction = {}".format(direction)
            )
1370

1371
        self.could_use_cudnn = True
1372
        self.could_use_cudnn &= len(self.parameters()) == num_layers * 4 * (
1373 1374
            2 if direction in bidirectional_list else 1
        )
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385

        # Expose params as RNN's attribute, which can make it compatible when
        # replacing small ops composed rnn with cpp rnn kernel.
        # Moreover, `jit.to_static` assumes params are added by current layer
        # and wouldn't include sublayer's params in current layer, which also
        # requires these params are added to current layer for `jit.save`.
        param_names = []
        for layer in range(self.num_layers):
            for direction in range(self.num_directions):
                suffix = '_reverse' if direction == 1 else ''
                param_names.extend(['weight_ih_l{}{}', 'weight_hh_l{}{}'])
1386
                if bias_ih_attr is not False:
1387
                    param_names.append('bias_ih_l{}{}')
1388
                if bias_hh_attr is not False:
1389
                    param_names.append('bias_hh_l{}{}')
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
                param_names = [x.format(layer, suffix) for x in param_names]
        for name, param in zip(param_names, self.parameters()):
            setattr(self, name, param)

        self.flatten_parameters()

    def flatten_parameters(self):
        """
        Resets parameter data pointer to address in continuous memory block for
        cudnn usage.
        """
        if self.could_use_cudnn:
            # layer.parameters() is depth first and ordered
            # for i in layer: for j in direct: w_ih, w_hh, b_ih, b_hh
            # need to reorganize to cudnn param layout:
            # all bias following all weights
            params = self.parameters(include_sublayers=False)
            shape = [np.prod(param.shape) for param in params]
            self._all_weights = [None] * len(params)
            for i, param in enumerate(params):
1410 1411 1412 1413 1414
                offset = (
                    0
                    if i % 4 < 2
                    else (2 * self.num_layers * self.num_directions)
                )
1415 1416 1417 1418 1419 1420 1421
                layer_idx = i // 4
                self._all_weights[offset + layer_idx * 2 + i % 2] = param
            # Wrap using a list to avoid registed into params and saving, maybe
            # need a better way to handle this later. Use `create_parameter` to
            # add both to main_program and startup_program for static-graph.
            # Use Constant initializer to avoid make effect on random generator.
            self._flat_weight = [
1422 1423 1424 1425 1426
                self.create_parameter(
                    shape=[np.sum(shape)],
                    dtype=params[0].dtype,
                    default_initializer=I.Constant(0.0),
                )
1427 1428 1429 1430
            ]
            # dropout state may also can be hided and avoid saving
            # should dropout state be persistable for static-graph
            self._dropout_state = self.create_variable(
1431 1432
                dtype=core.VarDesc.VarType.UINT8
            )
Z
zhiboniu 已提交
1433
            if in_dynamic_mode():
1434
                with paddle.no_grad():
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
                    _legacy_C_ops.coalesce_tensor(
                        self._all_weights,
                        self._all_weights,
                        self._flat_weight[0],
                        "copy_data",
                        True,
                        "use_align",
                        False,
                        "dtype",
                        params[0].dtype,
                    )
1446
                    return
1447
            # for static-graph, append coalesce_tensor into startup program
1448 1449 1450
            with program_guard(
                default_startup_program(), default_startup_program()
            ):
Z
zhiboniu 已提交
1451
                with paddle.no_grad():
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
                    self._helper.append_op(
                        type="coalesce_tensor",
                        inputs={"Input": self._all_weights},
                        outputs={
                            "Output": self._all_weights,
                            "FusedOutput": self._flat_weight,
                        },
                        attrs={
                            "copy_data": True,
                            "use_align": False,
                            "dtype": params[0].dtype,
                        },
                    )
1465 1466 1467 1468 1469

    def _cudnn_impl(self, inputs, initial_states, sequence_length):
        if not self.time_major:
            inputs = paddle.tensor.transpose(inputs, [1, 0, 2])

Y
YuanRisheng 已提交
1470 1471
        if in_dygraph_mode():
            out, _, state = _C_ops.rnn(
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
                inputs,
                initial_states,
                self._all_weights,
                sequence_length,
                self._dropout_state,
                self.dropout,
                self.num_directions == 2,
                self.input_size,
                self.hidden_size,
                self.num_layers,
                self.mode,
                0,
                not self.training,
            )
Y
YuanRisheng 已提交
1486
        elif in_dynamic_mode():
1487
            _, _, out, state = _legacy_C_ops.rnn(
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
                inputs,
                initial_states,
                self._all_weights,
                sequence_length,
                self._dropout_state,
                self.state_components,
                'dropout_prob',
                self.dropout,
                'is_bidirec',
                self.num_directions == 2,
                'input_size',
                self.input_size,
                'hidden_size',
                self.hidden_size,
                'num_layers',
                self.num_layers,
                'mode',
                self.mode,
                'is_test',
                not self.training,
            )
1509 1510 1511 1512 1513 1514 1515
        else:
            out = self._helper.create_variable_for_type_inference(inputs.dtype)
            state = [
                self._helper.create_variable_for_type_inference(inputs.dtype)
                for i in range(self.state_components)
            ]
            reserve = self._helper.create_variable_for_type_inference(
1516 1517
                dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
            )
1518 1519 1520 1521 1522

            inputs = {
                'Input': inputs,
                'WeightList': self._all_weights,
                'PreState': initial_states,
1523
                'SequenceLength': sequence_length,
1524 1525 1526 1527 1528 1529 1530 1531
            }
            attrs = {
                'dropout_prob': self.dropout,
                'is_bidirec': self.num_directions == 2,
                'input_size': self.input_size,
                'hidden_size': self.hidden_size,
                'num_layers': self.num_layers,
                'mode': self.mode,
1532
                'is_test': not self.training,
1533 1534 1535 1536 1537 1538 1539 1540 1541
            }

            outputs = {
                'Out': out,
                'State': state,
                'Reserve': reserve,
                'DropoutState': self._dropout_state,
            }

1542 1543 1544
            self._helper.append_op(
                type="rnn", inputs=inputs, outputs=outputs, attrs=attrs
            )
1545

1546 1547 1548 1549 1550
        out = (
            paddle.tensor.transpose(out, [1, 0, 2])
            if not self.time_major
            else out
        )
G
Guo Sheng 已提交
1551
        return out, tuple(state) if len(state) > 1 else state[0]
1552

F
Feiyu Chan 已提交
1553 1554 1555 1556
    def forward(self, inputs, initial_states=None, sequence_length=None):
        batch_index = 1 if self.time_major else 0
        dtype = inputs.dtype
        if initial_states is None:
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
            state_shape = (
                self.num_layers * self.num_directions,
                -1,
                self.hidden_size,
            )
            initial_states = tuple(
                [
                    paddle.fluid.layers.fill_constant_batch_size_like(
                        inputs, state_shape, dtype, 0, batch_index, 1
                    )
                    for _ in range(self.state_components)
                ]
            )
1570
        else:
1571 1572 1573 1574 1575 1576 1577 1578 1579
            initial_states = (
                [initial_states]
                if isinstance(initial_states, paddle.static.Variable)
                else initial_states
            )

        if self.could_use_cudnn and (
            not paddle.device.is_compiled_with_rocm() or sequence_length is None
        ):
1580 1581 1582
            # Add CPU kernel and dispatch in backend later
            return self._cudnn_impl(inputs, initial_states, sequence_length)

1583 1584 1585
        states = split_states(
            initial_states, self.num_directions == 2, self.state_components
        )
F
Feiyu Chan 已提交
1586 1587 1588 1589
        final_states = []

        for i, rnn_layer in enumerate(self):
            if i > 0:
1590 1591 1592 1593 1594 1595
                inputs = F.dropout(
                    inputs,
                    self.dropout,
                    training=self.training,
                    mode="upscale_in_train",
                )
F
Feiyu Chan 已提交
1596 1597 1598 1599
            outputs, final_state = rnn_layer(inputs, states[i], sequence_length)
            final_states.append(final_state)
            inputs = outputs

1600 1601 1602
        final_states = concat_states(
            final_states, self.num_directions == 2, self.state_components
        )
F
Feiyu Chan 已提交
1603 1604
        return outputs, final_states

1605 1606 1607 1608
    def extra_repr(self):
        main_str = '{input_size}, {hidden_size}'
        if self.num_layers != 1:
            main_str += ', num_layers={num_layers}'
1609
        if self.time_major is not False:
1610 1611 1612 1613 1614
            main_str += ', time_major={time_major}'
        if self.dropout != 0:
            main_str += ', dropout={dropout}'
        return main_str.format(**self.__dict__)

F
Feiyu Chan 已提交
1615

1616
class SimpleRNN(RNNBase):
F
Feiyu Chan 已提交
1617
    r"""
1618
    Multilayer Elman network(SimpleRNN). It takes input sequences and initial
F
Feiyu Chan 已提交
1619 1620
    states as inputs, and returns the output sequences and the final states.

1621 1622 1623
    Each layer inside the SimpleRNN maps the input sequences and initial states
    to the output sequences and final states in the following manner: at each
    step, it takes step inputs(:math:`x_{t}`) and previous
F
Feiyu Chan 已提交
1624 1625 1626 1627 1628
    states(:math:`h_{t-1}`) as inputs, and returns step outputs(:math:`y_{t}`)
    and new states(:math:`h_{t}`).

    .. math::

1629
        h_{t} & = act(W_{ih}x_{t} + b_{ih} + W_{hh}h_{t-1} + b_{hh})
1630

F
Feiyu Chan 已提交
1631
        y_{t} & = h_{t}
1632

1633
    where :math:`act` is for :attr:`activation`.
1634 1635

    Using key word arguments to construct is recommended.
F
Feiyu Chan 已提交
1636

1637
    Parameters:
1638 1639 1640
        input_size (int): The input size of :math:`x` for the first layer's cell.
        hidden_size (int): The hidden size of :math:`h` for each layer's cell.
        num_layers (int, optional): Number of recurrent layers. Defaults to 1.
1641 1642
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1643
            outputs of forward and backward is concatenating. Defaults to "forward".
1644 1645
        time_major (bool, optional): Whether the first dimension of the input
            means the time steps. If time_major is True, the shape of Tensor is
1646 1647
            [time_steps,batch_size,input_size], otherwise [batch_size, time_steps,input_size].
            Defaults to False. `time_steps` means the length of input sequence.
1648 1649
        dropout (float, optional): The droput probability. Dropout is applied
            to the input of each layer except for the first layer. The range of
1650
            dropout from 0 to 1. Defaults to 0.
1651
        activation (str, optional): The activation in each SimpleRNN cell. It can be
1652
            `tanh` or `relu`. Defaults to `tanh`.
1653
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1654
            `weight_ih` of each cell. Defaults to None.
1655
        weight_hh_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1656
            `weight_hh` of each cell. Defaults to None.
1657
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1658
            `bias_ih` of each cells. Defaults to None.
1659
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1660
            `bias_hh` of each cells. Defaults to None.
1661
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1662 1663
            None). For more information, please refer to :ref:`api_guide_Name`.

1664
    Inputs:
1665
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, input_size]`. `time_steps` means the length of the input sequence.
1666 1667
        - **initial_states** (Tensor, optional): the initial state. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1668 1669

    Returns:
1670

1671
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, else, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1. `time_steps` means the length of the output sequence.
1672

1673
        - **final_states** (Tensor): final states. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1674 1675 1676 1677 1678 1679

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, with shape `[hidden_size]`.
1680

F
Feiyu Chan 已提交
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
    Examples:

        .. code-block:: python

            import paddle

            rnn = paddle.nn.SimpleRNN(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            y, h = rnn(x, prev_h)

1693 1694 1695 1696 1697 1698
            print(y.shape)
            print(h.shape)

            #[4,23,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1699 1700
    """

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
    def __init__(
        self,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        activation="tanh",
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
1716 1717 1718 1719
        if activation == "tanh":
            mode = "RNN_TANH"
        elif activation == "relu":
            mode = "RNN_RELU"
F
Feiyu Chan 已提交
1720
        else:
1721 1722
            raise ValueError("Unknown activation '{}'".format(activation))
        self.activation = activation
1723
        super().__init__(
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
            mode,
            input_size,
            hidden_size,
            num_layers,
            direction,
            time_major,
            dropout,
            weight_ih_attr,
            weight_hh_attr,
            bias_ih_attr,
            bias_hh_attr,
        )
F
Feiyu Chan 已提交
1736 1737


1738
class LSTM(RNNBase):
F
Feiyu Chan 已提交
1739
    r"""
1740
    Multilayer LSTM. It takes a sequence and an initial state as inputs, and
F
Feiyu Chan 已提交
1741 1742
    returns the output sequences and the final states.

1743 1744 1745 1746
    Each layer inside the LSTM maps the input sequences and initial states
    to the output sequences and final states in the following manner: at each
    step, it takes step inputs(:math:`x_{t}`) and previous
    states(:math:`h_{t-1}, c_{t-1}`) as inputs, and returns step
F
Feiyu Chan 已提交
1747 1748 1749 1750 1751
    outputs(:math:`y_{t}`) and new states(:math:`h_{t}, c_{t}`).

    .. math::

        i_{t} & = \sigma(W_{ii}x_{t} + b_{ii} + W_{hi}h_{t-1} + b_{hi})
1752

F
Feiyu Chan 已提交
1753
        f_{t} & = \sigma(W_{if}x_{t} + b_{if} + W_{hf}h_{t-1} + b_{hf})
1754

F
Feiyu Chan 已提交
1755
        o_{t} & = \sigma(W_{io}x_{t} + b_{io} + W_{ho}h_{t-1} + b_{ho})
1756 1757 1758 1759 1760 1761 1762

        \widetilde{c}_{t} & = \tanh (W_{ig}x_{t} + b_{ig} + W_{hg}h_{t-1} + b_{hg})

        c_{t} & = f_{t} * c_{t-1} + i_{t} * \widetilde{c}_{t}

        h_{t} & = o_{t} * \tanh(c_{t})

F
Feiyu Chan 已提交
1763 1764
        y_{t} & = h_{t}

1765
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
1766 1767
    multiplication operator.

1768 1769
    Using key word arguments to construct is recommended.

1770
    Parameters:
1771 1772 1773
        input_size (int): The input size of :math:`x` for the first layer's cell.
        hidden_size (int): The hidden size of :math:`h` for each layer's cell.
        num_layers (int, optional): Number of recurrent layers. Defaults to 1.
1774 1775
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1776
            outputs of forward and backward is concatenating. Defaults to "forward".
1777 1778
        time_major (bool, optional): Whether the first dimension of the input
            means the time steps. If time_major is True, the shape of Tensor is
1779 1780
            [time_steps,batch_size,input_size], otherwise [batch_size, time_steps,input_size].
            Defaults to False. `time_steps` means the length of input sequence.
1781 1782
        dropout (float, optional): The droput probability. Dropout is applied
            to the input of each layer except for the first layer. The range of
1783
            dropout from 0 to 1. Defaults to 0.
1784
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1785
            `weight_ih` of each cell. Default: None.
1786
        weight_hh_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1787
            `weight_hh` of each cell. Default: None.
1788
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1789
            `bias_ih` of each cells. Default: None.
1790
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1791
            `bias_hh` of each cells. Default: None.
1792
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1793 1794 1795
            None). For more information, please refer to :ref:`api_guide_Name`.

    Inputs:
1796
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, input_size]`. `time_steps` means the length of the input sequence.
1797
        - **initial_states** (list|tuple, optional): the initial state, a list/tuple of (h, c), the shape of each is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used.
1798
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whos time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1799 1800

    Returns:
1801

1802
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, If `time_major` is False, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1. `time_steps` means the length of the output sequence.
1803

1804
        - **final_states** (tuple): the final state, a tuple of two tensors, h and c. The shape of each is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1805 1806 1807 1808 1809 1810

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, swith shape `[hidden_size]`.
1811

F
Feiyu Chan 已提交
1812
    Examples:
1813

F
Feiyu Chan 已提交
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
        .. code-block:: python

            import paddle

            rnn = paddle.nn.LSTM(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            prev_c = paddle.randn((2, 4, 32))
            y, (h, c) = rnn(x, (prev_h, prev_c))

1825 1826 1827 1828 1829 1830 1831 1832
            print(y.shape)
            print(h.shape)
            print(c.shape)

            #[4,23,32]
            #[2,4,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1833 1834
    """

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
    def __init__(
        self,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
1849
        super().__init__(
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
            "LSTM",
            input_size,
            hidden_size,
            num_layers,
            direction,
            time_major,
            dropout,
            weight_ih_attr,
            weight_hh_attr,
            bias_ih_attr,
            bias_hh_attr,
        )
F
Feiyu Chan 已提交
1862 1863


1864
class GRU(RNNBase):
F
Feiyu Chan 已提交
1865
    r"""
1866
    Multilayer GRU. It takes input sequencse and initial states as inputs, and
F
Feiyu Chan 已提交
1867 1868
    returns the output sequences and the final states.

1869 1870 1871 1872
    Each layer inside the GRU maps the input sequences and initial states
    to the output sequences and final states in the following manner: at each
    step, it takes step inputs(:math:`x_{t}`) and previous
    states(:math:`h_{t-1}`) as inputs, and returns step outputs(:math:`y_{t}`)
F
Feiyu Chan 已提交
1873 1874 1875 1876
    and new states(:math:`h_{t}`).

    .. math::

1877
        r_{t} & = \sigma(W_{ir}x_{t} + b_{ir} + W_{hr}h_{t-1} + b_{hr})
1878

1879
        z_{t} & = \sigma(W_{iz}x_{t} + b_{iz} + W_{hz}h_{t-1} + b_{hz})
1880

1881
        \widetilde{h}_{t} & = \tanh(W_{ic}x_{t} + b_{ic} + r_{t} * (W_{hc}h_{t-1} + b_{hc}))
1882 1883 1884

        h_{t} & = z_{t} * h_{t-1} + (1 - z_{t}) * \widetilde{h}_{t}

F
Feiyu Chan 已提交
1885 1886
        y_{t} & = h_{t}

1887
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
1888 1889
    multiplication operator.

1890 1891
    Using key word arguments to construct is recommended.

1892
    Parameters:
1893 1894 1895
        input_size (int): The input size of :math:`x` for the first layer's cell.
        hidden_size (int): The hidden size of :math:`h` for each layer's cell.
        num_layers (int, optional): Number of recurrent layers. Defaults to 1.
1896 1897
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1898
            outputs of forward and backward is concatenating. Defaults to "forward".
1899 1900
        time_major (bool, optional): Whether the first dimension of the input
            means the time steps. If time_major is True, the shape of Tensor is
1901 1902
            [time_steps,batch_size,input_size], otherwise [batch_size, time_steps,input_size].
            Defaults to False. `time_steps` means the length of input sequence.
1903 1904
        dropout (float, optional): The droput probability. Dropout is applied
            to the input of each layer except for the first layer. The range of
1905
            dropout from 0 to 1. Defaults to 0.
1906
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1907
            `weight_ih` of each cell. Default: None.
1908
        weight_hh_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1909
            `weight_hh` of each cell. Default: None.
1910
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1911
            `bias_ih` of each cells. Default: None.
1912
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1913
            `bias_hh` of each cells. Default: None.
1914
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1915 1916 1917
            None). For more information, please refer to :ref:`api_guide_Name`.

    Inputs:
1918
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, input_size]`. `time_steps` means the length of the input sequence.
1919 1920
        - **initial_states** (Tensor, optional): the initial state. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whos time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1921 1922

    Returns:
1923

1924
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, else, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1. `time_steps` means the length of the output sequence.
1925

1926
        - **final_states** (Tensor): final states. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1927 1928 1929 1930 1931 1932

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, with shape `[hidden_size]`.
1933

F
Feiyu Chan 已提交
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
    Examples:

        .. code-block:: python

            import paddle

            rnn = paddle.nn.GRU(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            y, h = rnn(x, prev_h)

1946 1947 1948 1949 1950 1951
            print(y.shape)
            print(h.shape)

            #[4,23,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1952 1953
    """

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
    def __init__(
        self,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
1968
        super().__init__(
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
            "GRU",
            input_size,
            hidden_size,
            num_layers,
            direction,
            time_major,
            dropout,
            weight_ih_attr,
            weight_hh_attr,
            bias_ih_attr,
            bias_hh_attr,
        )