optimizer.py 60.0 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
from collections import defaultdict

18 19
import numpy as np

20
import paddle
21
import paddle.autograd as imperative_base
22
from paddle import _C_ops
23
from paddle.fluid import core
24 25
from paddle.fluid.framework import (
    Variable,
26 27
    _current_expected_place,
    _in_eager_without_dygraph_check,
28 29
    default_main_program,
    device_guard,
30
    in_dygraph_mode,
31 32
    name_scope,
)
M
MRXLT 已提交
33

34
from ..fluid import framework, unique_name
35
from ..fluid.backward import _get_no_grad_set_name, append_backward
36
from ..fluid.framework import Parameter, program_guard
M
MRXLT 已提交
37
from ..fluid.layer_helper import LayerHelper
38
from .lr import LRScheduler
M
MRXLT 已提交
39

40 41
__all__ = []

M
MRXLT 已提交
42

43
@framework.static_only
44 45 46 47 48 49 50 51
def append_backward_new(
    loss_list,
    parameter_list=None,
    no_grad_set=None,
    callbacks=None,
    checkpoints=None,
    distop_context=None,
):
52
    from paddle.incubate.autograd.primx import Transform, orig2prim
53

54
    program = default_main_program()
55 56 57
    assert (
        program.num_blocks == 1
    ), "The append_backward_new interface is designed to process only one block."
58
    block = program.current_block()
59
    for el in loss_list:
60 61 62
        assert (
            el.block == block
        ), 'variable in loss_list should be in current block of main program'
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

    orig2prim(block)
    ad = Transform(block)
    if parameter_list is None:
        parameter_list = program.global_block().all_parameters()
    param_dot, loss_dot = ad.linearize(parameter_list, loss_list)
    loss_bar, param_bar = ad.transpose(loss_dot, param_dot)

    # remove param_dot and their constructor ops
    op_indexes = []
    for var in param_dot:
        if var is not None:
            op_index = block.ops.index(var.op)
            assert op_index >= 0
            op_indexes.append(op_index)

    ad.erase_ops(sorted(op_indexes))
    ad.erase_dots(param_dot)

    if len(parameter_list) == 1:
        params_and_grads = [(parameter_list, param_bar)]
    else:
        params_and_grads = []
        for i, param in enumerate(parameter_list):
            params_and_grads.append((param, param_bar[i]))
    return params_and_grads


91
class Optimizer:
92
    r"""Optimizer Base class.
M
MRXLT 已提交
93 94 95 96 97 98

    Define the common interface of an optimizer.
    User should not use this class directly,
    but need to use one of it's implementation.

    Args:
99 100
        learning_rate (float|LRScheduler): The learning rate used to update ``Parameter``.
            It can be a float value or any subclass of ``LRScheduler`` .
101
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``. \
102 103 104 105
            This parameter is required in dygraph mode. And you can specify different options for \
            different parameter groups such as the learning rate, weight decay, etc, \
            then the parameters are list of dict. Note that the learning_rate in paramter groups \
            represents the scale of base learning_rate. \
106
            The default value is None in static graph mode, at this time all parameters will be updated.
M
MRXLT 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
            It canbe a float value as coeff of L2 regularization or \
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
            the regularization setting here in optimizer will be ignored for this parameter. \
            Otherwise, the regularization setting here in optimizer will take effect. \
            Default None, meaning there is no regularization.
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of \
            some derived class of ``GradientClipBase`` . There are three cliping strategies \
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , \
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    Returns:
123 124
       Base class for optimizer.

M
MRXLT 已提交
125 126 127 128 129 130
    Examples:
        .. code-block:: python

            #Take the subclass adam as an example
            import paddle
            linear = paddle.nn.Linear(10, 10)
131
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
M
MRXLT 已提交
132 133 134 135
            out = linear(inp)
            loss = paddle.mean(out)
            adam = paddle.optimizer.Adam(learning_rate=0.1,
                    parameters=linear.parameters())
R
Roc 已提交
136
            loss.backward()
M
MRXLT 已提交
137 138 139
            adam.step()
            adam.clear_grad()

140
            #Take the subclass sgd as an example
141
            #optimize parameters in linear_1 and linear2 in different options.
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            sgd = paddle.optimizer.SGD(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1
                }],
158
                weight_decay=0.01)
R
Roc 已提交
159
            loss.backward()
160 161 162
            sgd.step()
            sgd.clear_grad()

M
MRXLT 已提交
163 164
    """

165
    @imperative_base.no_grad()
166 167 168 169 170 171 172 173
    def __init__(
        self,
        learning_rate,
        parameters=None,
        weight_decay=None,
        grad_clip=None,
        name=None,
    ):
174

175 176 177 178
        if parameters is not None:
            # paddle.Tensor is also iterable, so here we don't check whether
            # the input is iterable, if the input is paddle.Tensor, the
            # list(paddle.Tensor) will be a error value
179
            if isinstance(parameters, (paddle.Tensor, core.eager.Tensor)):
180 181
                raise TypeError(
                    "`parameters` argument given to the optimizer should be "
182 183 184 185
                    "an iterable of paddle Tensors, but got argument type is `{}`.".format(
                        type(parameters)
                    )
                )
186 187 188 189
            if isinstance(parameters, dict):
                raise TypeError(
                    "`parameters` argument should not get dict type, "
                    "if parameter groups is needed, please set `parameters`"
190 191
                    " as list of dict"
                )
192 193 194 195
            self._parameter_list = list(parameters)
        else:
            self._parameter_list = None

M
MRXLT 已提交
196
        self._name = name
J
Jiabin Yang 已提交
197
        if framework._non_static_mode():
M
MRXLT 已提交
198 199 200 201 202
            if self._parameter_list is None:
                raise AttributeError(
                    "parameters argument given to the Optimizer should not be None in dygraph mode."
                )
            if weight_decay is not None:
203 204
                if not isinstance(self._parameter_list[0], dict):
                    for param in self._parameter_list:
205 206 207 208
                        if (
                            hasattr(param, 'regularizer')
                            and param.regularizer is not None
                        ):
209 210 211
                            logging.info(
                                "If regularizer of a Parameter has been set by 'paddle.ParamAttr' or 'static.WeightNormParamAttr' already. "
                                "The weight_decay[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
212 213
                                % weight_decay.__str__()
                            )
214 215
                            break

216
        if not isinstance(learning_rate, (float, LRScheduler)):
217
            raise TypeError(
218 219 220
                "learning rate should be float or LRScheduler, got %s here"
                % type(learning_rate)
            )
M
MRXLT 已提交
221
        if grad_clip is not None:
222
            if not isinstance(grad_clip, paddle.nn.clip.GradientClipBase):
M
MRXLT 已提交
223 224 225 226 227
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
        if isinstance(weight_decay, float):
            from ..fluid.regularizer import L2Decay
228

M
MRXLT 已提交
229 230 231 232 233
            self.regularization = L2Decay(weight_decay)
        else:
            self.regularization = weight_decay
        self._grad_clip = grad_clip
        self._learning_rate = learning_rate
L
Leo Chen 已提交
234

M
MRXLT 已提交
235
        self._dtype = None
L
Leo Chen 已提交
236 237
        # Infer the dtype form parameter
        if self._parameter_list:
238 239
            if isinstance(self._parameter_list[0], dict):
                for param_group in self._parameter_list:
240 241 242
                    assert (
                        'params' in param_group
                    ), 'params should be set in parameters if parameter groups are optimized in different options'
243 244 245
                self._dtype = self._parameter_list[0]['params'][0].dtype
            else:
                self._dtype = self._parameter_list[0].dtype
L
Leo Chen 已提交
246

M
MRXLT 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259
        # each program should have a independent learning rate
        # program -> tensor(learning_rate)
        self._learning_rate_map = dict()
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra tensors associated with the parameters
        # to train. These tensors are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
        self.helper = None
        self._opti_name_list = []
        self._accumulators_holder = {}
        self._param_device_map = dict()
        self.clear_gradients = self.clear_grad
260 261
        self._default_dict = {
            'weight_decay': self.regularization,
262
            'grad_clip': self._grad_clip,
263 264 265 266 267 268 269 270
        }

        self._param_groups = []
        if self._parameter_list and isinstance(self._parameter_list[0], dict):
            for param_group in self._parameter_list:
                self._add_param_group(param_group.copy())
        else:
            self._param_groups = self._parameter_list
M
MRXLT 已提交
271

272
        # NOTE: Multi Tensor: Pass in all parameters and gradients to the op kernel of the Optimizer at one time for updating for dygraph mode.
Z
zhangbo9674 已提交
273
        # Optimizer support list: [ paddle.optimizer.Momentum, paddle.optimizer.Adam].
274 275
        self._use_multi_tensor = None

276
        self._param_dict = self._create_multi_tensor_dict()
277
        self._auxiliary_vars = {}
278
        self._already_create_accumulater = set()
279 280 281 282

    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

283 284 285 286 287 288 289
    def _create_multi_tensor_dict(self):
        n = len(self._param_groups) if self._param_groups is not None else 1
        return {
            'FP32_LODTensor': [[] for _ in range(n)],
            'FP16_LODTensor': [[] for _ in range(n)],
        }

290 291 292
    def _get_auxiliary_var(self, key):
        return self._auxiliary_vars.get(key, None)

M
MRXLT 已提交
293 294 295
    @framework.dygraph_only
    def state_dict(self):
        '''
296
        Get state dict information from optimizer. It contain all the tensor used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be include in state dict.
M
MRXLT 已提交
297 298
        If the optimizer never be called(minimize function), the state_dict is empty.

299
        Args:
M
MRXLT 已提交
300 301 302 303
            None

        Returns:
            state_dict(dict) : dict contains all the Tensor used by optimizer
304

M
MRXLT 已提交
305 306 307 308
        Examples:
            .. code-block:: python

                import paddle
M
MRXLT 已提交
309
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
310 311 312 313 314 315 316 317 318

                adam = paddle.optimizer.Adam(0.001, parameters=emb.parameters())
                state_dict = adam.state_dict()

        '''
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
319 320 321 322
        # if has master weight and then save master weight
        if hasattr(self, "_master_weights"):
            if len(self._master_weights) != 0:
                state_dict["master_weights"] = self._master_weights
M
MRXLT 已提交
323
        # global step if use lr decay
324
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
325 326 327 328 329 330
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
        return state_dict

    @framework.dygraph_only
    def set_state_dict(self, state_dict):
        '''
331
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be changed.
M
MRXLT 已提交
332

333
        Args:
M
MRXLT 已提交
334 335 336
            state_dict(dict) : Dict contains all the Tensor needed by optimizer
        Return:
            None
337

M
MRXLT 已提交
338 339 340 341 342
        Examples:
            .. code-block:: python

                import paddle

343
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
344

345 346
                layer_state_dict = emb.state_dict()
                paddle.save(layer_state_dict, "emb.pdparams")
M
MRXLT 已提交
347

348
                scheduler = paddle.optimizer.lr.NoamDecay(
349 350 351 352 353 354
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
                opt_state_dict = adam.state_dict()
                paddle.save(opt_state_dict, "adam.pdopt")
M
MRXLT 已提交
355

356
                opti_state_dict = paddle.load("adam.pdopt")
M
MRXLT 已提交
357 358 359
                adam.set_state_dict(opti_state_dict)

        '''
360
        if isinstance(self._learning_rate, LRScheduler):
361
            self._learning_rate.set_state_dict(state_dict["LR_Scheduler"])
M
MRXLT 已提交
362

363
        # NOTE: exclude learning rate scheduler's state from
364 365 366 367
        # _accumulators_holder.
        state_dict = state_dict.copy()
        if "LR_Scheduler" in state_dict:
            state_dict.pop("LR_Scheduler")
368 369 370 371
        if "master_weights" in state_dict:
            if hasattr(self, "_master_weights"):
                self._master_weights = state_dict["master_weights"]
            state_dict.pop("master_weights")
M
MRXLT 已提交
372 373 374
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
375 376 377
                assert (
                    var_tmp.name in state_dict
                ), "optimizer Tensor {} not found".format(var_tmp.name)
M
MRXLT 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390
                var = var_tmp.value()
                tensor = var.get_tensor()
                model_np = np.array(tensor)

                load_para = state_dict[var_tmp.name]

                if isinstance(load_para, Variable):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, core.VarBase):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, np.ndarray):
                    load_para_np = load_para
                else:
391 392 393 394 395 396 397 398 399 400 401
                    raise RuntimeError(
                        "State dict type {} not supprt".format(
                            str(type(load_para))
                        )
                    )

                assert (
                    model_np.shape == load_para_np.shape
                ), "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                    model_np.name, model_np.shape, load_para_np.shape
                )
M
MRXLT 已提交
402

403 404 405 406 407
                assert (
                    model_np.dtype == load_para_np.dtype
                ), "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                    model_np.name, model_np.dtype, load_para_np.dtype
                )
M
MRXLT 已提交
408 409 410 411 412 413 414

                tensor.set(load_para_np, framework._current_expected_place())

    def get_opti_var_name_list(self):
        return self._opti_name_list

    def _create_global_learning_rate(self):
415
        # lr var can't be float16 or bfloat16, for pure fp16 or bf16 training, should extra handle the dtype for lr
416 417 418 419 420 421
        _lr_dtype = (
            paddle.get_default_dtype() if self._dtype is None else self._dtype
        )
        _lr_dtype = (
            paddle.float32
            if (
422 423 424 425 426 427 428 429
                (
                    paddle.get_default_dtype() != "float16"
                    and _lr_dtype == paddle.float16
                )
                or (
                    paddle.get_default_dtype() != "bfloat16"
                    and _lr_dtype == paddle.bfloat16
                )
430 431 432
            )
            else _lr_dtype
        )
433
        if isinstance(self._learning_rate, LRScheduler):
434 435 436 437 438
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
439 440 441 442 443 444 445
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
                    dtype=_lr_dtype,
                )
446 447 448
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
M
MRXLT 已提交
449

450
                self._learning_rate_map[
451 452
                    framework.default_main_program()
                ] = lr_var
M
MRXLT 已提交
453

454 455
            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
456 457
                lr_var,
                initializer=paddle.nn.initializer.Constant(value=lr_value),
458
            )
459 460 461
        elif isinstance(self._learning_rate, float):
            # only create global lr_var once
            lr = self._global_learning_rate()
M
MRXLT 已提交
462 463 464
            if isinstance(lr, framework.Variable):
                return
            else:
465 466
                self._learning_rate_map[
                    framework.default_main_program()
467
                ] = paddle.static.create_global_var(
468 469 470
                    name=unique_name.generate("learning_rate"),
                    shape=[1],
                    value=float(self._learning_rate),
471
                    dtype=_lr_dtype,
472 473
                    persistable=True,
                )
M
MRXLT 已提交
474 475 476 477 478

    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
479

480
        Set the value of the learning rate manually in the optimizer. If the optimizer use LRScheduler,
M
MRXLT 已提交
481 482 483
        this API cannot be invoked, because it will lead to conflict.

        Args:
M
MRXLT 已提交
484
            value (float): the value of learning rate
M
MRXLT 已提交
485 486 487

        Returns:
            None
488

M
MRXLT 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(10, 10)

                adam = paddle.optimizer.Adam(0.1, parameters=linear.parameters())

                # set learning rate manually by python float value
                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6

        """
511
        if not isinstance(value, (int, float)):
M
MRXLT 已提交
512
            raise TypeError(
513
                "The type of 'value' in optimizer.set_lr must be float, but received %s."
514 515
                % (type(value))
            )
516
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
517
            raise RuntimeError(
518
                "optimizer's learning rate can't be LRScheduler when invoke this API, because this will lead to conflict."
M
MRXLT 已提交
519
            )
520 521 522
        self._learning_rate = float(value)
        current_lr = self._global_learning_rate()
        if current_lr is not None:
523 524
            if in_dygraph_mode():
                place = _current_expected_place()
525 526 527 528 529 530 531
                _C_ops.full_(
                    current_lr,
                    list(current_lr.shape),
                    float(value),
                    current_lr.dtype,
                    place,
                )
532 533
            else:
                global_block = framework.default_main_program().global_block()
534 535 536 537 538 539 540 541 542 543
                global_block.append_op(
                    type='fill_constant',
                    outputs={'Out': [current_lr]},
                    attrs={
                        'dtype': current_lr.dtype,
                        'shape': list(current_lr.shape),
                        'value': float(value),
                    },
                    stop_gradient=True,
                )
M
MRXLT 已提交
544 545 546

    def get_lr(self):
        """
547
        Get current learning rate of optimizer.
548 549
        If 'LRScheduler' is not used, the return value is all the same.
        If 'LRScheduler' is used, the return value is the current scheduled learing rete.
M
MRXLT 已提交
550

M
MRXLT 已提交
551
        Returns:
552
            float: The current learning rate of optimizer.
M
MRXLT 已提交
553 554 555 556

        Examples:
            .. code-block:: python

557
                # train on default dynamic graph mode
M
MRXLT 已提交
558
                import paddle
559 560 561 562 563 564 565 566 567 568 569
                import numpy as np
                emb = paddle.nn.Embedding(10, 3)

                ## example1: LRScheduler is not used, return the same value is all the same
                adam = paddle.optimizer.Adam(0.01, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.01
                    adam.step()
M
MRXLT 已提交
570

571 572 573 574 575 576 577 578
                ## example2: StepDecay is used, return the scheduled learning rate
                scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                adam = paddle.optimizer.Adam(scheduler, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.5->0.05...
M
MRXLT 已提交
579
                    adam.step()
580
                    scheduler.step()
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599

                # train on static graph mode
                paddle.enable_static()
                main_prog = paddle.static.Program()
                start_prog = paddle.static.Program()
                with paddle.static.program_guard(main_prog, start_prog):
                    x = paddle.static.data(name='x', shape=[None, 10])
                    z = paddle.static.nn.fc(x, 100)
                    loss = paddle.mean(z)
                    scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                    adam = paddle.optimizer.Adam(learning_rate=scheduler)
                    adam.minimize(loss)

                exe = paddle.static.Executor()
                exe.run(start_prog)
                for batch in range(10):
                    print("Learning rate of step{}: {}", adam.get_lr())     # 0.5->0.05->0.005...
                    out = exe.run(main_prog, feed={'x': np.random.randn(3, 10).astype('float32')})
                    scheduler.step()
M
MRXLT 已提交
600 601 602 603 604

        """
        if isinstance(self._learning_rate, float):
            return self._learning_rate
        else:
605
            return self._learning_rate()
M
MRXLT 已提交
606 607 608 609 610 611 612 613 614 615 616

    def _global_learning_rate(self, program=None):
        """
        get global decayed learning rate
        :return:
        """
        if program is None:
            program = framework.default_main_program()
        return self._learning_rate_map.get(program, None)

    def _append_optimize_op(self, block, param_and_grad):
617
        """append optimize operator to block and return all the added optimize_op"""
M
MRXLT 已提交
618 619 620 621 622 623 624
        raise NotImplementedError(
            "Class \"Optimizer\" connot be used directly as an optimizer, please use its subclasses such as \"Adam\""
        )

    def _create_param_lr(self, param_and_grad):
        # create learning rate tensor for every parameter
        param = param_and_grad[0]
625 626 627 628
        if hasattr(param, 'optimize_attr'):
            param_lr = param.optimize_attr['learning_rate']
            if type(param_lr) == Variable:
                return param_lr
M
MRXLT 已提交
629
            else:
630 631 632 633
                if param_lr == 1.0:
                    return self._global_learning_rate()
                else:
                    with default_main_program()._lr_schedule_guard(
634 635
                        is_with_opt=True
                    ), framework.name_scope('scale_with_param_lr'):
636 637 638
                        return self._global_learning_rate() * param_lr
        else:
            return self._global_learning_rate()
M
MRXLT 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        pass

    def _finish_update(self, block, parameters_and_grads):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer

        Returns:
            None
        """
        pass

662 663 664 665 666 667 668 669 670 671
    def _add_accumulator(
        self,
        name,
        param,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
M
MRXLT 已提交
672 673 674 675 676 677 678 679 680 681 682
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss tensor is present
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be added
            dtype: data type of the accumulator tensor
            fill_value: value to initialize the accumulator tensor
        """
        if self._name is not None:
            name = self._name + "_" + name
683 684 685 686
        if (
            name in self._accumulators
            and param.name in self._accumulators[name]
        ):
J
Jiabin Yang 已提交
687
            if framework._non_static_mode():
M
MRXLT 已提交
688
                return self._accumulators[name][param.name]
689 690
            raise Exception(
                "Accumulator {} already exists for parameter {}".format(
691 692 693
                    name, param.name
                )
            )
694
        if shape is None:
M
MRXLT 已提交
695 696 697 698 699 700 701 702 703 704 705
            shape = param.shape
        assert isinstance(self.helper, LayerHelper)

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype or param.dtype,
706
            type=core.VarDesc.VarType.LOD_TENSOR
707 708
            if framework._in_eager_without_dygraph_check()
            else (param.type if type is None else type),
M
MRXLT 已提交
709
            shape=shape,
710 711
            belong_to_optimizer=True,
        )
M
MRXLT 已提交
712 713
        if device is None:
            device = self._get_device_for_param(param.name)
714

W
wanghuancoder 已提交
715 716 717 718
        if (
            in_dygraph_mode()
            and (device == 'cpu' or isinstance(device, core.CPUPlace))
            and (not core.is_compiled_with_xpu())
719 720 721 722 723 724 725
        ):
            _C_ops.full_(
                var,
                var.shape,
                str(float(fill_value)),
                var.dtype,
                core.CPUPlace(),
726
            )
727 728 729
        else:
            with device_guard(device):
                self.helper.set_variable_initializer(
730 731 732 733
                    var,
                    initializer=paddle.nn.initializer.Constant(
                        value=float(fill_value)
                    ),
734
                )
M
MRXLT 已提交
735

J
Jiabin Yang 已提交
736
        if framework._non_static_mode():
M
MRXLT 已提交
737
            if len(self._accumulators_holder) > 0:
738 739 740 741 742
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
M
MRXLT 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
                var.set_value(self._accumulators_holder[var_name])

        self._accumulators[name][param.name] = var
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be fetched

        Returns:
            accumulator tensor for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
760 761 762 763
        if (
            name not in self._accumulators
            or param.name not in self._accumulators[name]
        ):
764 765
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
766 767 768
                    name, param.name
                )
            )
M
MRXLT 已提交
769 770 771 772
        return self._accumulators[name][param.name]

    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
773
            if param_and_grad[0].stop_gradient is False:
M
MRXLT 已提交
774 775
                param_name = param_and_grad[0].name
                ops = target_block.ops
776 777
                device_attr_name = (
                    core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
MRXLT 已提交
778 779 780 781 782
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
783 784
                            device_attr_name
                        )
M
MRXLT 已提交
785 786 787 788 789 790 791 792
                        break

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

793 794 795
    def _create_optimization_pass(
        self, parameters_and_grads, param_group_idx=0
    ):
M
MRXLT 已提交
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
        """Add optimization operators to update gradients to tensors.

        Args:
          parameters_and_grads(list(tuple(Tensor, Tensor))):
            a list of (tensor, gradient) pair to update.

        Returns:
          return_op_list: a list of operators that will complete one step of
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
        """
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
        # for parameters and extend _finish_update method to add custom ops.

        # Allways called under program_guard use global block as loss block
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

        global_block = framework.default_main_program().global_block()
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
823 824 825
            assert (
                current_block.backward_block_idx != -1
            ), "current block is not global_block, but it doesn't have backward block."
M
MRXLT 已提交
826
            target_block = framework.default_main_program().blocks[
827 828
                current_block.backward_block_idx
            ]
M
MRXLT 已提交
829 830 831

        start = len(target_block.ops)
        self.helper = LayerHelper(self.__class__.__name__)
832

M
MRXLT 已提交
833 834
        self._create_global_learning_rate()

Z
zhangbo9674 已提交
835 836
        # NOTE: Multi Tensor support [ Momentum, Adam ] for dygraph mode
        if self._use_multi_tensor and self.__class__.__name__ in [
837 838
            'Momentum',
            'Adam',
Z
zhangbo9674 已提交
839
        ]:
840
            if (
841 842 843
                len(self._param_dict['FP32_LODTensor'][param_group_idx]) == 0
                and len(self._param_dict['FP16_LODTensor'][param_group_idx])
                == 0
844
            ):
845
                if isinstance(parameters_and_grads, list):
846
                    assert param_group_idx == 0
847 848 849 850 851 852 853
                    self._multi_tensor_init(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads
                            if not p[0].stop_gradient
                        ],
854
                        param_group_idx,
855
                    )
856 857
                else:
                    self._update_param_group(parameters_and_grads)
858 859 860 861 862 863 864
                    self._multi_tensor_init(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads['params']
                            if not p[0].stop_gradient
                        ],
865
                        param_group_idx,
866
                    )
J
Jiabin Yang 已提交
867
            if framework._non_static_mode():
868
                self._append_optimize_multi_tensor_op(
869 870 871
                    target_block,
                    parameters_and_grads,
                    param_group_idx=param_group_idx,
872
                )
873
            else:
874 875 876
                self._update_param_device_map(
                    parameters_and_grads, target_block
                )
877 878 879
                # NOTE: Multi Tensor requires all parameters to be in the same device and program.
                # param_grad_list = [p_0,g_0,p_1,g_1,....]
                param_grad_list = []
880
                for param_and_grad in parameters_and_grads:
881 882 883 884
                    if (
                        not param_and_grad[0].stop_gradient
                        and param_and_grad[1] is not None
                    ):
885 886 887
                        param_grad_list.append(param_and_grad[0])
                        param_grad_list.append(param_and_grad[1])
                with param_grad_list[0].block.program._optimized_guard(
888 889
                    param_grad_list
                ), name_scope("optimizer"):
890 891 892
                    device = self._get_device_for_param(param_grad_list[0].name)
                    with device_guard(device):
                        self._append_optimize_multi_tensor_op(
893 894 895
                            target_block,
                            parameters_and_grads,
                            param_group_idx=param_group_idx,
896
                        )
897
        else:
J
Jiabin Yang 已提交
898
            if not framework._non_static_mode():
899 900 901 902 903 904 905 906
                params_grads_device_map = (
                    parameters_and_grads['params']
                    if isinstance(parameters_and_grads, dict)
                    else parameters_and_grads
                )
                self._update_param_device_map(
                    params_grads_device_map, target_block
                )
907

908
            if isinstance(parameters_and_grads, list):
909 910 911 912 913 914 915 916
                self._create_accumulators(
                    target_block,
                    [
                        p[0]
                        for p in parameters_and_grads
                        if not p[0].stop_gradient
                    ],
                )
917
            else:
918 919
                params_acc_dict = parameters_and_grads.copy()
                params_acc_dict['params'] = [
920 921
                    p[0]
                    for p in params_acc_dict['params']
922 923 924 925
                    if not p[0].stop_gradient
                ]
                self._create_accumulators(target_block, params_acc_dict)

J
Jiabin Yang 已提交
926
            if framework._non_static_mode():
927 928 929 930
                found_inf = self._get_auxiliary_var('found_inf')
                if found_inf:
                    if isinstance(found_inf, core.eager.Tensor):
                        self._set_auxiliary_var('found_inf', True)
931
                else:
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
                    if isinstance(found_inf, core.eager.Tensor):
                        self._set_auxiliary_var('found_inf', False)
                    if isinstance(parameters_and_grads, list):
                        for param_and_grad in parameters_and_grads:
                            if param_and_grad[1] is None:
                                continue
                            if param_and_grad[0].stop_gradient is False:
                                self._append_optimize_op(
                                    target_block, param_and_grad
                                )
                    else:
                        for param_and_grad in parameters_and_grads['params']:
                            if param_and_grad[1] is None:
                                continue
                            if param_and_grad[0].stop_gradient is False:
                                param_grad_dict = dict()
                                param_grad_dict['params'] = param_and_grad
                                param_grad_dict.update(
                                    {
                                        k: v
                                        for k, v in parameters_and_grads.items()
                                        if k != 'params'
                                    }
                                )
                                self._append_optimize_op(
                                    target_block, param_grad_dict
                                )
959 960
            else:
                for param_and_grad in parameters_and_grads:
961 962
                    if param_and_grad[1] is None:
                        continue
963
                    with param_and_grad[0].block.program._optimized_guard(
964 965
                        param_and_grad
                    ), name_scope("optimizer"):
966
                        if param_and_grad[0].stop_gradient is False:
967
                            device = self._get_device_for_param(
968 969
                                param_and_grad[0].name
                            )
970 971
                            with device_guard(device):
                                optimize_op = self._append_optimize_op(
972 973
                                    target_block, param_and_grad
                                )
M
MRXLT 已提交
974 975 976 977 978 979 980 981 982 983 984

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        self._finish_update(target_block, parameters_and_grads)

        end = len(target_block.ops)
        return target_block._slice_ops(start, end)

    def _append_dgc_ops(self, param_and_grad):
        pass

985 986 987 988 989 990 991 992
    def backward(
        self,
        loss,
        startup_program=None,
        parameters=None,
        no_grad_set=None,
        callbacks=None,
    ):
M
MRXLT 已提交
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
        """
        The first part of ``minimize``, do auto-diff to append backward operations for
        the current program.

        Args:
            loss (Tensor): ``loss`` tensor to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.

        Return:
            list: list of (param, grad) tensor pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.

        Examples:
            .. code-block:: python

                import paddle
1018 1019
                x = paddle.arange(26, dtype="float32").reshape([2, 13])

M
MRXLT 已提交
1020
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1021
                # This can be any optimizer supported by dygraph.
1022
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
M
MRXLT 已提交
1023
                                            parameters = linear.parameters())
1024
                out = linear(x)
M
MRXLT 已提交
1025 1026 1027 1028 1029
                out.backward()
                adam.step()
                adam.clear_grad()
        """
        act_no_grad_set = None
J
Jiabin Yang 已提交
1030
        if framework._non_static_mode():
M
MRXLT 已提交
1031 1032 1033 1034
            pass
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)

L
Leo Chen 已提交
1035 1036 1037 1038
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

1039
        if framework.in_dygraph_mode():
1040
            parameter_list = parameters if parameters else self._parameter_list
1041

1042 1043 1044 1045 1046 1047 1048
            # It is very time-consuming to call c++ functions in a loop on the python side.
            # We put this part of the code on the c++ side to improve the speed in eager mode.
            params_grads = []
            grads = core.eager.get_all_grads(parameter_list)
            for index, grad in enumerate(grads):
                if grad is not None:
                    params_grads.append((parameter_list[index], grad))
M
MRXLT 已提交
1049 1050
        else:
            if callbacks is None:
1051
                callbacks = [paddle.nn.clip.error_clip_callback]
M
MRXLT 已提交
1052
            else:
1053
                assert isinstance(callbacks, list)
M
MRXLT 已提交
1054
            program = loss.block.program
1055 1056
            assert len(loss.shape) == 1 and loss.shape[0] == 1, (
                "The loss.shape should be (1L,), but the current loss.shape is {}. "
M
MRXLT 已提交
1057
                "Maybe that you should call paddle.mean to process the current loss.".format(
1058 1059 1060 1061
                    loss.shape
                )
            )
            parameter_list = parameters if parameters else self._parameter_list
M
MRXLT 已提交
1062
            with program_guard(program, startup_program):
1063
                from paddle.incubate.autograd.utils import prim_enabled
1064

1065
                if prim_enabled():
1066 1067 1068
                    params_grads = append_backward_new(
                        [loss], parameter_list, act_no_grad_set, callbacks
                    )
1069
                else:
1070 1071 1072
                    params_grads = append_backward(
                        loss, parameter_list, act_no_grad_set, callbacks
                    )
M
MRXLT 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
                # Note: since we can't use all_reduce_op now,
                #  dgc_op should be the last op of one grad.
                self._append_dgc_ops(params_grads)
        return params_grads

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle

1094
                inp = paddle.uniform([10, 10], dtype="float32", min=-0.1, max=0.1)
M
MRXLT 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
                linear = paddle.nn.Linear(10, 10)
                out = linear(inp)
                loss = paddle.mean(out)
                optimizer = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters())
                params_grads = optimizer.backward(loss)
                optimizer.apply_gradients(params_grads)

        """

        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        # 'optimizer(grad_clip)' or 'set_gradient_clip'
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:

1112
            params_grads = paddle.nn.clip.append_gradient_clip_ops(params_grads)
M
MRXLT 已提交
1113 1114

        # Add regularization if any
1115 1116 1117
        params_grads = self.append_regularization_ops(
            params_grads, self.regularization
        )
M
MRXLT 已提交
1118 1119 1120 1121

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

1122 1123 1124
    def _apply_optimize(
        self, loss, startup_program, params_grads, param_group_idx=0
    ):
M
MRXLT 已提交
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Tensor): loss tensor to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameters`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
J
Jiabin Yang 已提交
1136
        if framework._non_static_mode():
1137 1138 1139 1140
            with program_guard(
                framework.default_main_program(),
                framework.default_startup_program(),
            ):
1141 1142 1143
                if isinstance(params_grads, list):
                    if self._grad_clip is not None:
                        params_grads = self._grad_clip(params_grads)
1144
                    params_grads = self.append_regularization_ops(
1145 1146
                        params_grads, self.regularization
                    )
1147 1148 1149
                else:
                    grad_clip = params_grads['grad_clip']
                    if grad_clip is not None:
1150
                        params_grads['params'] = grad_clip(
1151 1152
                            params_grads['params']
                        )
1153

1154
                    params_grads['params'] = self.append_regularization_ops(
1155 1156
                        params_grads['params'], self.regularization
                    )
1157 1158 1159
                optimize_ops = self._create_optimization_pass(
                    params_grads, param_group_idx=param_group_idx
                )
M
MRXLT 已提交
1160
        else:
1161
            assert param_group_idx == 0
M
MRXLT 已提交
1162 1163 1164 1165 1166
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

1167
    def _create_regularization_of_grad(self, param, grad, regularization=None):
1168
        """Create and add backward regularization Operators
1169

1170 1171 1172
        Function helper of append_regularization_ops.
        """
        # If no gradient or no regularization is specified,  then we don't need to do anything
1173
        if grad is None or (
1174 1175 1176 1177 1178 1179
            (
                not hasattr(param, 'regularizer')
                or (hasattr(param, 'regularizer') and param.regularizer is None)
            )
            and regularization is None
        ):
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
            return grad
        regularization_term = None
        if hasattr(param, 'regularizer') and param.regularizer is not None:
            # Add variable for regularization term in grad block
            regularization_term = param.regularizer(param, grad, grad.block)
        elif regularization is not None:
            regularization_term = regularization(param, grad, grad.block)

        assert regularization_term is not None

1190
        if framework.in_dygraph_mode():
Y
YuanRisheng 已提交
1191
            return _C_ops.add_n([grad, regularization_term])
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
        else:
            new_grad = grad
            if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
                # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
                # the grad's type and name will be changed. But the gradient's name
                # is used in ParallelExecutor Reduce mode, so I add a flag for
                # the new_grad here.
                new_grad = grad.block.create_var(
                    name=grad.name + core.kNewGradSuffix(),
                    dtype=param.dtype,
                    shape=param.shape,
                    lod_level=param.lod_level,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                )
1206

1207 1208 1209
            inputs = {"X": [grad, regularization_term]}
            outputs = {"Out": [new_grad]}
            grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
1210

1211
            return new_grad
1212

1213 1214 1215
    def append_regularization_ops(
        self, parameters_and_grads, regularization=None
    ):
1216
        r"""Create and add backward regularization Operators
1217

1218 1219 1220 1221
        Creates and adds backward regularization operators in the BlockDesc.
        This will add gradients of the regularizer function to the gradients
        of the parameters and return these modified gradients. This is the
        same as implementing weight decay in optimizers for regularization.
1222

1223 1224 1225 1226 1227
        Args:
            parameters_and_grads: A list of (parameters, gradients) pairs
                                  that need to be regularized.
            regularization: A global regularizer. If the parameter is not
                            set. It will be applied with regularizer.
1228

1229 1230 1231
        Returns:
            list[(Variable, Variable)]: list of (parameters, gradients) \
            pair with the regularized gradient
1232

1233 1234 1235 1236
        Raises:
            Exception: Unknown regularization type
        """
        params_and_grads = []
J
Jiabin Yang 已提交
1237
        if framework._non_static_mode():
1238
            for param, grad in parameters_and_grads:
1239
                new_grad = self._create_regularization_of_grad(
1240 1241
                    param, grad, regularization
                )
1242 1243 1244 1245 1246
                params_and_grads.append((param, new_grad))
        else:
            repeate_regularizer = False
            with framework.name_scope('regularization'):
                for param, grad in parameters_and_grads:
1247 1248 1249 1250 1251
                    if (
                        not repeate_regularizer
                        and param.regularizer is not None
                        and regularization is not None
                    ):
1252 1253 1254 1255
                        repeate_regularizer = True
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
1256 1257
                            % regularization.__str__()
                        )
1258 1259
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = self._create_regularization_of_grad(
1260 1261
                            param, grad, regularization
                        )
1262 1263 1264
                        params_and_grads.append((param, new_grad))
        return params_and_grads

M
MRXLT 已提交
1265 1266 1267
    def _get_no_grad_set(self, loss, no_grad_set=None):
        no_grad_set = _get_no_grad_set_name(no_grad_set)
        parameters = loss.block.program.global_block().all_parameters()
1268
        param_no_trainable = set(
1269 1270
            [param.name for param in parameters if param.stop_gradient is True]
        )
M
MRXLT 已提交
1271 1272 1273 1274 1275 1276
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

    @framework.dygraph_only
1277
    def clear_grad(self, set_to_zero=True):
M
MRXLT 已提交
1278 1279
        """
        Clear the gradients of all optimized parameters for model.
1280 1281

        If not, new gradient will accumulat on previous gradient.
1282 1283

        There are two method to clear grad: set_to_zero or delete grad.
1284

1285 1286
        Args:
            set_to_zero (bool, optional): If set grads to zero or not, default is True.
1287

M
MRXLT 已提交
1288 1289
        Returns:
            None
1290

M
MRXLT 已提交
1291 1292 1293 1294
        Examples:
            .. code-block:: python

                import paddle
1295

1296
                a = paddle.arange(26, dtype="float32").reshape([2, 13])
M
MRXLT 已提交
1297
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1298
                # This can be any optimizer supported by dygraph.
1299
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
M
MRXLT 已提交
1300 1301 1302 1303 1304 1305 1306
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()

        """
1307
        param_list = []
1308
        if self._parameter_list is None or not isinstance(
1309 1310
            self._parameter_list[0], dict
        ):
1311 1312
            for p in self._parameter_list:
                if not p.stop_gradient:
1313
                    param_list.append(p)
1314 1315 1316 1317
        else:
            for param_group in self._param_groups:
                for p in param_group['params']:
                    if not p.stop_gradient:
1318
                        param_list.append(p)
1319

J
Jiabin Yang 已提交
1320
        if _in_eager_without_dygraph_check():
1321
            for p in param_list:
1322
                p.clear_gradient(set_to_zero)
1323 1324
        else:
            core.clear_gradients(param_list, set_to_zero)
M
MRXLT 已提交
1325

1326
    @imperative_base.no_grad()
1327 1328 1329
    def minimize(
        self, loss, startup_program=None, parameters=None, no_grad_set=None
    ):
M
MRXLT 已提交
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
        """
        Add operations to minimize ``loss`` by updating ``parameters``.

        Args:
            loss (Tensor): A ``Tensor`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) tensor pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1348 1349
            In static graph mode, the returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
M
MRXLT 已提交
1350 1351 1352 1353
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
            .. code-block:: python
1354

M
MRXLT 已提交
1355
                import paddle
M
MRXLT 已提交
1356
                linear = paddle.nn.Linear(10, 10)
1357 1358
                input = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
                out = linear(input)
M
MRXLT 已提交
1359 1360 1361 1362 1363 1364 1365 1366
                loss = paddle.mean(out)

                beta1 = paddle.to_tensor([0.9], dtype="float32")
                beta2 = paddle.to_tensor([0.99], dtype="float32")

                adam = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters(),
                        weight_decay=0.01)
R
Roc 已提交
1367
                loss.backward()
M
MRXLT 已提交
1368 1369 1370
                adam.minimize(loss)
                adam.clear_grad()

M
MRXLT 已提交
1371 1372 1373
        """
        assert isinstance(loss, Variable), "The loss should be an Tensor."

1374
        parameter_list = parameters if parameters else self._parameter_list
1375

1376 1377 1378 1379 1380 1381
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameters=parameter_list,
            no_grad_set=no_grad_set,
        )
M
MRXLT 已提交
1382

1383 1384 1385
        optimize_ops = self._apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
MRXLT 已提交
1386 1387 1388

        return optimize_ops, params_grads

1389
    @imperative_base.no_grad()
M
MRXLT 已提交
1390 1391 1392
    @framework.dygraph_only
    def step(self):
        """
M
MRXLT 已提交
1393
        Execute the optimizer and update parameters once.
1394

M
MRXLT 已提交
1395 1396 1397 1398 1399 1400 1401
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
1402

1403
                a = paddle.arange(26, dtype="float32").reshape([2, 13])
M
MRXLT 已提交
1404
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1405
                # This can be any optimizer supported by dygraph.
1406
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
1407
                                        parameters = linear.parameters())
M
MRXLT 已提交
1408 1409 1410 1411 1412
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()
        """
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422

        if not isinstance(self._param_groups[0], dict):
            params_grads = []
            for param in self._param_groups:
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    grad_var = param._grad_ivar()
                    params_grads.append((param, grad_var))

1423
            self._apply_optimize(
1424 1425 1426 1427
                loss=None,
                startup_program=None,
                params_grads=params_grads,
                param_group_idx=0,
1428
            )
1429 1430 1431

        else:
            # optimize parameters in groups
1432
            for idx, param_group in enumerate(self._param_groups):
1433 1434 1435 1436 1437 1438 1439 1440
                params_grads = defaultdict(lambda: list())
                for param in param_group['params']:
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        grad_var = param._grad_ivar()
                        params_grads['params'].append((param, grad_var))
                params_grads.update(
1441 1442 1443
                    {k: v for k, v in param_group.items() if k != 'params'}
                )
                self._apply_optimize(
1444 1445 1446 1447
                    loss=None,
                    startup_program=None,
                    params_grads=params_grads,
                    param_group_idx=idx,
1448
                )
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463

    def _add_param_group(self, param_group):
        """
        Add a param group to parameter_list.

        Args:
            param_group (dict): The group of Tensors to be optimzed with
            different optimization options.
        """
        params = param_group['params']
        if isinstance(params, Parameter):
            param_group['params'] = [params]
        elif isinstance(params, set):
            raise TypeError(
                "optimizer parameters should be in ordered collections,"
1464 1465
                "but received set, please use list instead."
            )
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
        else:
            param_group['params'] = list(params)

        # Update optimization options for each groups
        for k, v in self._default_dict.items():
            param_group.setdefault(k, v)

        param_set = set()
        for group in self._param_groups:
            param_set.update(set(group['params']))

        if not param_set.isdisjoint(set(param_group['params'])):
            raise ValueError(
1479 1480
                "some parameters appear in more than one parameter group"
            )
1481 1482 1483 1484 1485

        for param in param_group['params']:
            weight_decay = param_group['weight_decay']
            if isinstance(weight_decay, float):
                from ..fluid.regularizer import L2Decay
1486

1487 1488 1489 1490
                regularization = L2Decay(weight_decay)
            else:
                regularization = weight_decay
            param.regularizer = regularization
W
wangguanzhong 已提交
1491
            param.optimize_attr['learning_rate'] = param_group.get(
1492 1493
                'learning_rate', 1.0
            )
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504

        self._param_groups.append(param_group)

    def _update_param_group(self, parameters):
        """
        Update the param group with new entry
        Args:
            parameters (dict): The extra group of Tensors to be optimzed with
            different optimization options. Only used in child class.
        """
        pass
1505 1506

    @framework.dygraph_only
1507
    def _multi_tensor_init(self, target_block, parameters, param_group_idx):
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
        """
        All parameters used for optimizer (such as: parameters, master_weight, velocity_acc for momentum) calculations are grouped into a python list by data type (float16, float32).
        This function will be overridden in the corresponding optimizer file.

        Args:
            target_block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        pass

    @framework.dygraph_only
1519
    def _append_optimize_multi_tensor_op(
1520
        self, target_block, parameters_and_grads, param_group_idx
1521
    ):
1522
        """
1523 1524 1525
        For Multi Tensor, append optimize merged_operator to block.
        """
        pass
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539

    def _is_dtype_fp16_or_bf16(self, dtype):
        """
        check the dtype is fp16 or the dtype is bf16
        :param dtype: instance of core.VarDesc.VarType
        :return: True if dtype is one of fp16 or bf16, False otherwise
        """
        assert isinstance(
            dtype, core.VarDesc.VarType
        ), "The dtype should be an instance of core.VarDesc.VarType."
        return (
            dtype == core.VarDesc.VarType.FP16
            or dtype == core.VarDesc.VarType.BF16
        )