conv_op.cc 33.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16

17
#include <memory>
Y
Update  
Yi Wang 已提交
18 19 20
#include <string>
#include <vector>

21
#ifdef PADDLE_WITH_CUDA
22
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
23 24 25 26 27
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
28
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
29 30 31 32

namespace paddle {
namespace operators {

C
chengduoZH 已提交
33
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
L
liym27 已提交
34 35 36 37 38 39
  PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true,
                    "Input(Input) of ConvOp should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasInput("Filter"), true,
                    "Input(Filter) of ConvOp should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Output"), true,
                    "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
40 41 42

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
43

C
chengduoZH 已提交
44 45
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
L
liym27 已提交
46 47
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
C
chengduoZH 已提交
48
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
49
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
L
liym27 已提交
50 51
  const std::string data_format = ctx->Attrs().Get<std::string>("data_format");
  const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");
C
chengduoZH 已提交
52

L
liym27 已提交
53
  PADDLE_ENFORCE_EQ(in_dims.size() == 4 || in_dims.size() == 5, true,
54 55 56 57
                    "ShapeError: Conv input should be 4-D or 5-D tensor. But "
                    "received: %u-D Tensor,"
                    "the shape of Conv input is [%s]",
                    in_dims.size(), in_dims);
58

C
chengduoZH 已提交
59 60
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
      "ShapeError: Conv input dimension and filter dimension should be the "
      "equal."
      "But received: the shape of Conv input is [%s], input dimension of Conv "
      "input is [%d],"
      "the shape of filter is [%s],  the filter dimension of Conv is [%d]",
      in_dims, in_dims.size(), filter_dims, filter_dims.size());

  int in_sub_stride_size = in_dims.size() - strides.size();
  PADDLE_ENFORCE_EQ(in_dims.size() - strides.size() == 2U, true,
                    "ShapeError: the dimension of input minus the dimension of "
                    "stride must be euqal to 2."
                    "But received: the dimension of input minus the dimension "
                    "of stride is [%d], the"
                    "input dimension of Conv is [%d], the shape of Conv input "
                    "is [%s], the stride"
                    "dimension of Conv is [%d]",
                    in_sub_stride_size, in_dims.size(), in_dims,
                    strides.size());
L
liym27 已提交
79 80 81

  const auto input_channels =
      channel_last ? in_dims[in_dims.size() - 1] : in_dims[1];
F
fengjiayi 已提交
82

83 84 85 86 87 88 89 90
  PADDLE_ENFORCE_EQ(
      input_channels, filter_dims[1] * groups,
      "ShapeError: The number of input channels should be equal to filter "
      "channels * groups. But received: the input channels is [%d], the shape"
      "of input is [%s], the filter channel is [%d], the shape of filter is "
      "[%s],"
      "the groups is [%d]",
      in_dims[1], in_dims, filter_dims[1], filter_dims, groups);
C
chengduoZH 已提交
91
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
92
      filter_dims[0] % groups, 0,
93 94 95 96
      "ShapeError: The number of output channels should be divided by groups."
      "But received: the output channels is [%d], the shape of filter is [%s]"
      "(the first dimension of filter is output channel), the groups is [%d]",
      filter_dims[0], filter_dims, groups);
C
chengduoZH 已提交
97

L
liym27 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
  framework::DDim in_data_dims;
  if (channel_last) {
    in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
  } else {
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
  }
  framework::DDim filter_data_dims =
      framework::slice_ddim(filter_dims, 2, filter_dims.size());
  std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                           in_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({in_dims[0]});
  if (!channel_last) {
    output_shape.push_back(filter_dims[0]);
  }
  for (size_t i = 0; i < in_data_dims.size(); ++i) {
T
tink2123 已提交
115
    if ((!ctx->IsRuntime()) &&
L
liym27 已提交
116
        (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
T
tink2123 已提交
117 118
      output_shape.push_back(-1);
    } else {
L
liym27 已提交
119 120 121
      output_shape.push_back(ConvOutputSize(in_data_dims[i], filter_dims[i + 2],
                                            dilations[i], paddings[2 * i],
                                            paddings[2 * i + 1], strides[i]));
T
tink2123 已提交
122
    }
C
chengduoZH 已提交
123
  }
L
liym27 已提交
124 125 126 127
  if (channel_last) {
    output_shape.push_back(filter_dims[0]);
  }

128
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
129
  ctx->ShareLoD("Input", "Output");
C
chengduoZH 已提交
130 131
}

132 133
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
134 135
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
136
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
137
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
138
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
L
liym27 已提交
139 140
  std::string data_format =
      "AnyLayout";  // todo enable data layout when it's ready
M
mozga-intel 已提交
141 142
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
143
#ifdef PADDLE_WITH_CUDA
144
  if (platform::CanCUDNNBeUsed(ctx)) {
145
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
146 147
  }
#endif
148
#ifdef PADDLE_WITH_MKLDNN
149
  if (library == framework::LibraryType::kPlain &&
150
      platform::CanMKLDNNBeUsed(ctx)) {
151 152 153 154 155 156 157 158 159
    // TODO(jczaja): Add support for NHWC
    const std::string data_format = ctx.Attr<std::string>("data_format");
    PADDLE_ENFORCE_NE(data_format, "NHWC",
                      platform::errors::Unimplemented(
                          "Conv MKLDNN does not support NHWC data format yet"));
    PADDLE_ENFORCE_NE(
        data_format, "NDHWC",
        platform::errors::Unimplemented(
            "Conv MKLDNN does not support NDHWC data format yet"));
160
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
161
    layout = framework::DataLayout::kMKLDNN;
162
    customized_type_value =
163 164
        (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
         input_data_type == framework::DataTypeTrait<uint8_t>::DataType())
165 166
            ? kConvMKLDNNINT8
            : kConvMKLDNNFP32;
167
  }
168
#endif
169

170 171 172 173 174 175
  if (input_data_type != framework::proto::VarType::INT8 &&
      input_data_type != framework::proto::VarType::UINT8) {
    auto filter_data_type = ctx.Input<Tensor>("Filter")->type();
    PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
                      "input and filter data type should be consistent");
  }
K
Kexin Zhao 已提交
176
  if (input_data_type == framework::proto::VarType::FP16) {
177
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
K
Kexin Zhao 已提交
178 179 180
                      "float16 can only be used when CUDNN is used");
  }

181 182 183 184 185 186 187 188 189 190 191 192 193 194
  auto type = framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                      library, customized_type_value);
#ifdef PADDLE_WITH_CUDA
  std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
  // TODO(dangqingqing): Currently conv_fusion_op use cudnn but sets use_cudnn
  // to false. It should be fixed and then here should only create if library
  // is kCUDNN.
  if (configs.empty()) {
    std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>> p(
        new framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>());
    configs.push_back(p);
  }
#endif
  return type;
195 196
}

Y
Yu Yang 已提交
197
void Conv2DOpMaker::Make() {
198 199 200 201
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
L
liym27 已提交
202 203 204 205 206 207
  AddInput("Input",
           "(Tensor) The input tensor of convolution operator. "
           "The format of input tensor is NCHW or NHWC, where N is batch size, "
           "C is the "
           "number of channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
208
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
209
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
210 211
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
212 213
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
214
           "input image channels divided by the groups.");
215 216 217 218 219
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
220 221 222
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
223
           "Used with fuse_residual_connection fusion.")
224
      .AsDispensable();
Y
Yihua Xu 已提交
225 226
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
L
liym27 已提交
227
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
228 229 230 231
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
232
      .SetDefault({1, 1});
C
chengduoZH 已提交
233 234
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
L
liym27 已提交
235 236
                            "paddings(pad_height_top, pad_height_bottom, "
                            "pad_width_left, pad_wifth_right)  of "
C
chengduoZH 已提交
237
                            "convolution operator.")
C
chengduoZH 已提交
238
      .SetDefault({0, 0});
L
liym27 已提交
239 240 241 242 243 244
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
245 246
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
247
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
248 249 250 251
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
252
      .SetDefault(1);
C
chengduoZH 已提交
253
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
254 255
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
256
                            "convolution operator.")
C
chengduoZH 已提交
257
      .SetDefault({1, 1});
258 259 260 261
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
262 263 264
  AddAttr<bool>("fuse_relu_before_depthwise_conv",
                "(bool, default false) Only used in cuda depthwise kernel")
      .SetDefault(false);
265 266 267
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
268 269 270 271 272 273
  AddAttr<bool>("use_quantizer",
                "(bool, default false) "
                "Set to true for operators that should be quantized and use "
                "int8 kernel. "
                "Only used on CPU.")
      .SetDefault(false);
M
Michal Gallus 已提交
274 275
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
276 277 278 279 280 281
  AddAttr<bool>("fuse_brelu",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<float>("fuse_brelu_threshold",
                 "(float, default false 6.0) Only used in mkldnn kernel")
      .SetDefault(6.0f);
282 283 284 285 286 287 288 289
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
290
  AddAttr<bool>("fuse_residual_connection",
291
                "(bool, default false) Only used in mkldnn kernel. Used "
292 293
                "whenever convolution output is as an input to residual "
                "connection.")
294
      .SetDefault(false);
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
  AddAttr<float>("Scale_in",
                 "Scale_in to be used for int8 input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_out",
                 "Scale_out to be used for int8 output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_in_eltwise",
                 "Scale_in_eltwise to be used for int8 eltwise input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
315 316 317 318 319 320
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
L
liym27 已提交
321
      .SetDefault("NCHW");
322 323 324 325 326 327 328 329
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
330
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
331 332
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
333
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
334
                "for cuDNN convolution or not, default is False.")
335
      .SetDefault(false);
L
liym27 已提交
336

C
chengduoZH 已提交
337
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
338 339
Convolution Operator.

C
chengduoZH 已提交
340
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
341
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
342
parameters is checked in the infer-shape.
L
liym27 已提交
343
Input(Input) and Output(Output) are in NCHW or NHWC format. Where N is batch
C
fix doc  
chengduoZH 已提交
344
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
345 346 347 348 349 350
the width of the feature.
Filters(Input) is MCHW format. Where M is the number of output image channels, C is
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
351 352 353 354
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
355 356
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
357
  Output:
C
chengduoZH 已提交
358 359 360
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
L
liym27 已提交
361 362
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
C
chengduoZH 已提交
363
$$
C
chengduoZH 已提交
364
)DOC");
Q
qingqing01 已提交
365
  Apply();
C
chengduoZH 已提交
366 367
}

Y
Yu Yang 已提交
368
void Conv3DOpMaker::Make() {
369 370 371 372
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
373 374
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
375
      "(Tensor) The input tensor of convolution operator. "
L
liym27 已提交
376 377
      "The format of input tensor is NCDHW or NDHWC. Where N is batch size, C "
      "is the "
C
fix doc  
chengduoZH 已提交
378 379 380
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
381
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
382
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
383 384
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
385 386 387
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
388
           "input image channels divided by the groups.");
389 390 391 392 393
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
      .AsDispensable();
Y
Yihua Xu 已提交
394 395
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
L
liym27 已提交
396
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
397 398 399 400
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
401
      .SetDefault({1, 1, 1});
L
liym27 已提交
402 403 404 405 406 407
  AddAttr<std::vector<int>>(
      "paddings",
      "(vector<int>, default:{0, 0, 0}), the "
      "paddings(pad_depth_front, pad_depth_back, pad_height_top, "
      "pad_height_bottom, pad_width_left, pad_width_right) of convolution "
      "operator.")
C
chengduoZH 已提交
408
      .SetDefault({0, 0, 0});
L
liym27 已提交
409 410 411 412 413 414
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
415 416
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
417
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
418 419 420 421
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
422
      .SetDefault(1);
C
chengduoZH 已提交
423
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
424 425
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
426
                            "convolution operator.")
C
chengduoZH 已提交
427
      .SetDefault({1, 1, 1});
428 429 430 431
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
432 433 434
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
435 436
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
437 438 439 440 441 442 443 444
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
445 446 447 448 449
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
      .SetDefault(false);
450 451
  AddAttr<std::string>(
      "data_format",
L
liym27 已提交
452 453 454
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
455
      "the input will be transformed automatically. ")
L
liym27 已提交
456
      .SetDefault("NCDHW");
457 458 459
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
      .SetDefault(false);
460 461 462 463 464 465 466
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
467
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
468 469
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
470
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
471
                "for cuDNN convolution or not, default is False.")
472
      .SetDefault(false);
C
chengduoZH 已提交
473
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
474 475
Convolution3D Operator.

C
chengduoZH 已提交
476
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
477
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
478
parameters is checked in the infer-shape.
L
liym27 已提交
479
Input(Input) and output(Output) are in NCDHW or NDHWC format, where N is batch
C
fix doc  
chengduoZH 已提交
480
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
481 482 483 484 485 486
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
487 488 489 490
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
491 492
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
493
  Output:
C
chengduoZH 已提交
494 495 496
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
L
liym27 已提交
497 498 499
       D_{out}= \frac{(D_{in} + pad_depth_front + pad_depth_back - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
C
chengduoZH 已提交
500
  $$
C
chengduoZH 已提交
501
)DOC");
Q
qingqing01 已提交
502
  Apply();
C
chengduoZH 已提交
503 504
}

C
chengduoZH 已提交
505 506 507 508 509 510 511 512 513 514 515
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

516 517
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
518 519
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
520
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
521
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
L
liym27 已提交
522
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
523 524
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
525
#ifdef PADDLE_WITH_CUDA
526 527
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
528 529
  }
#endif
530 531 532
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
533 534 535 536 537 538 539 540 541 542
    // TODO(jczaja): Add support for NHWC
    const std::string data_format = ctx.Attr<std::string>("data_format");
    PADDLE_ENFORCE_NE(
        data_format, "NHWC",
        platform::errors::Unimplemented(
            "Conv MKLDNN grad does not support NHWC data format yet"));
    PADDLE_ENFORCE_NE(
        data_format, "NDHWC",
        platform::errors::Unimplemented(
            "Conv MKLDNN Grad does not support NDHWC data format yet"));
543
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
544
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
545
    customized_type_value = kConvMKLDNNFP32;
546
  }
547
#endif
548

549 550 551
  auto type = framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_, customized_type_value);
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
#ifdef PADDLE_WITH_CUDA
  if (library_ == framework::LibraryType::kCUDNN) {
    std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
    if (configs.empty()) {
      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>
          p(new framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>());
      configs.push_back(p);

      std::shared_ptr<
          framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>
          p2(new framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>());
      configs.push_back(p2);
    }
  }
#endif
  return type;
568 569
}

S
sneaxiy 已提交
570
class Conv2DGradMaker : public framework::SingleGradOpDescMaker {
571 572 573 574 575
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
S
sneaxiy 已提交
576
    op->SetType(this->ForwardOpType() + "_grad");
577 578 579 580 581 582 583 584 585 586 587 588
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput("Bias", Input("Bias"));
    op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));

    op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter"));
    op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));
    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
  }
S
sneaxiy 已提交
589 590 591 592 593
};

class Conv3DGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
594

S
sneaxiy 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));

    op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter"));

    if (ForwardOp().Inputs().count("ResidualData") != 0) {
      op->SetInput("ResidualData", Input("ResidualData"));
    }

    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
612 613 614
  }
};

Q
qingqing01 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
class Conv2DDoubleGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput("DOutput", Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter", OutputGrad(framework::GradVarName("Filter")));

    // ddO, dI, dW
    // Unlike grad op, double grad op does not use name@GRAD@GRAD
    // as key of ops' inputs and outputs.
636 637 638 639
    auto ddx = OutputGrad(framework::GradVarName("Input"));
    auto ddw = OutputGrad(framework::GradVarName("Filter"));
    std::vector<std::string> empty_str = {};

L
lvmengsi 已提交
640 641 642 643
    op->SetOutput("DDOutput",
                  (ddx.empty() && ddw.empty())
                      ? empty_str
                      : InputGrad(framework::GradVarName("Output")));
644 645 646
    op->SetOutput("DFilter", ddx.empty() ? empty_str : InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? empty_str : InputGrad("Input"));

Q
qingqing01 已提交
647 648 649 650 651 652
    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
  }
};

L
lvmengsi 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
class Conv3DDoubleGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput("DOutput", Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter", OutputGrad(framework::GradVarName("Filter")));

    auto ddx = OutputGrad(framework::GradVarName("Input"));
    auto ddw = OutputGrad(framework::GradVarName("Filter"));
    std::vector<std::string> empty_str = {};

L
lvmengsi 已提交
675 676 677 678
    op->SetOutput("DDOutput",
                  (ddx.empty() && ddw.empty())
                      ? empty_str
                      : InputGrad(framework::GradVarName("Output")));
L
lvmengsi 已提交
679 680 681 682 683 684 685 686 687
    op->SetOutput("DFilter", ddx.empty() ? empty_str : InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? empty_str : InputGrad("Input"));

    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
  }
};

Q
qingqing01 已提交
688 689 690 691 692
void ConvOpDoubleGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto x_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("Filter");
  auto do_dims = ctx->GetInputDim("DOutput");

L
lvmengsi 已提交
693 694
  if (ctx->HasOutput("DDOutput") &&
      (ctx->HasInput("DDInput") || (ctx->HasInput("DDFilter")))) {
Q
qingqing01 已提交
695 696
    ctx->SetOutputDim("DDOutput", do_dims);
  }
697
  if (ctx->HasOutput("DFilter") && ctx->HasInput("DDInput")) {
Q
qingqing01 已提交
698 699
    ctx->SetOutputDim("DFilter", w_dims);
  }
700
  if (ctx->HasOutput("DInput") && ctx->HasInput("DDFilter")) {
Q
qingqing01 已提交
701 702 703 704 705 706 707 708 709
    ctx->SetOutputDim("DInput", x_dims);
  }
}

framework::OpKernelType ConvOpDoubleGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
  framework::LibraryType library_{framework::LibraryType::kPlain};
L
liym27 已提交
710
  std::string data_format = "AnyLayout";
Q
qingqing01 已提交
711 712 713 714 715
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

#ifdef PADDLE_WITH_CUDA
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
L
lvmengsi 已提交
716
  }
Q
qingqing01 已提交
717
#endif
718 719 720
  auto type = framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_, customized_type_value);
Q
qingqing01 已提交
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
#ifdef PADDLE_WITH_CUDA
  if (library_ == framework::LibraryType::kCUDNN) {
    std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
    if (configs.empty()) {
      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>> p0(
          new framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>());
      configs.push_back(p0);

      std::shared_ptr<
          framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>
          p1(new framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>());
      configs.push_back(p1);

      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>
          p2(new framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>());
      configs.push_back(p2);
    }
  }
#endif
  return type;
}

C
chengduoZH 已提交
743 744 745 746
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
747
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
S
sneaxiy 已提交
748
                  ops::ConvOpInferVarType, ops::Conv2DGradMaker);
Q
qingqing01 已提交
749 750
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad, ops::Conv2DDoubleGradMaker);
REGISTER_OPERATOR(conv2d_grad_grad, ops::ConvOpDoubleGrad);
751 752

// depthwise convolution op
Y
Yang Yang 已提交
753
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
S
sneaxiy 已提交
754
                  ops::ConvOpInferVarType, ops::Conv2DGradMaker);
755
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
C
chengduo 已提交
756

Y
Yang Yang 已提交
757
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
S
sneaxiy 已提交
758
                  ops::ConvOpInferVarType, ops::Conv3DGradMaker);
L
lvmengsi 已提交
759 760
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad, ops::Conv3DDoubleGradMaker);
REGISTER_OPERATOR(conv3d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduoZH 已提交
761

762 763
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
764
REGISTER_OP_CPU_KERNEL(
765
    depthwise_conv2d,
X
xzl 已提交
766 767 768 769
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
770
    depthwise_conv2d_grad,
X
xzl 已提交
771 772
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
773

C
chengduoZH 已提交
774
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
775 776 777 778 779 780
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
781 782 783 784
REGISTER_OP_CPU_KERNEL(
    conv2d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
785 786

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
787 788 789 790 791 792
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
793 794 795 796
REGISTER_OP_CPU_KERNEL(
    conv3d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);