cxx_api_impl.cc 9.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/cxx_api.h"
16 17
#include <memory>
#include <mutex>  //NOLINT
18
#include <string>
Y
Yan Chunwei 已提交
19
#include "lite/api/paddle_api.h"
20
#include "lite/core/device_info.h"
21
#include "lite/core/version.h"
22 23 24 25

#ifndef LITE_ON_TINY_PUBLISH
#include "lite/api/paddle_use_passes.h"
#endif
J
jiweibo 已提交
26 27 28
#ifdef LITE_WITH_CUDA
#include "lite/backends/cuda/cuda_utils.h"
#endif
29
#if (defined LITE_WITH_X86) && (defined PADDLE_WITH_MKLML) && \
30
    !(defined LITE_ON_MODEL_OPTIMIZE_TOOL) && !defined(__APPLE__)
31 32 33
#include <omp.h>
#include "lite/backends/x86/mklml.h"
#endif
Y
Yan Chunwei 已提交
34 35 36 37
namespace paddle {
namespace lite {

void CxxPaddleApiImpl::Init(const lite_api::CxxConfig &config) {
38
  config_ = config;
J
update  
jiweibo 已提交
39
  config_.check_valid();
J
jiweibo 已提交
40 41
  auto places = config.valid_places();
  std::vector<std::string> passes = config.get_passes_internal();
42
#ifdef LITE_WITH_CUDA
J
jiweibo 已提交
43 44 45 46
  // if kCUDA is included in valid places, it should be initialized first,
  // otherwise skip this step.
  for (auto &p : places) {
    if (p.target == TARGET(kCUDA)) {
47
      InitCudaEnv(&passes);
J
jiweibo 已提交
48
      break;
49
    }
J
jiweibo 已提交
50
  }
51
#endif
J
jiweibo 已提交
52 53

  if (!status_is_cloned_) {
54
#ifdef LITE_WITH_MLU
55
    Env<TARGET(kMLU)>::Init();
56 57 58 59
    lite::TargetWrapperMlu::SetMLURunMode(config.mlu_core_version(),
                                          config.mlu_core_number(),
                                          config.mlu_input_layout(),
                                          config.mlu_firstconv_param());
60
#endif  // LITE_WITH_MLU
61 62 63 64 65 66 67 68 69 70 71 72
    auto use_layout_preprocess_pass =
        config.model_dir().find("OPENCL_PRE_PRECESS");
    VLOG(1) << "use_layout_preprocess_pass:" << use_layout_preprocess_pass;
    if (places[0].target == TARGET(kOpenCL) &&
        use_layout_preprocess_pass != std::string::npos) {
      passes = {"type_layout_cast_preprocess_pass"};
      VLOG(1) << "add pass:" << passes[0];
    }
    raw_predictor_->Build(config, places, passes);
  } else {
    raw_predictor_->PrepareFeedFetch();
    CHECK(raw_predictor_) << "The Predictor can not be nullptr in Clone mode.";
73
  }
J
jiweibo 已提交
74

T
TianXiaogang 已提交
75 76
  mode_ = config.power_mode();
  threads_ = config.threads();
77 78 79 80
#ifdef LITE_WITH_NPU
  Context<TargetType::kNPU>::SetSubgraphModelCacheDir(
      config.subgraph_model_cache_dir());
#endif
81
#if (defined LITE_WITH_X86) && (defined PADDLE_WITH_MKLML) && \
82
    !(defined LITE_ON_MODEL_OPTIMIZE_TOOL)
83
  int num_threads = config.x86_math_library_num_threads();
84 85 86
  int real_num_threads = num_threads > 1 ? num_threads : 1;
  paddle::lite::x86::MKL_Set_Num_Threads(real_num_threads);
  omp_set_num_threads(real_num_threads);
87
  VLOG(3) << "set_x86_math_library_math_threads() is set successfully and the "
88
             "number of threads is:"
89
          << real_num_threads;
90
#endif
Y
Yan Chunwei 已提交
91 92
}

J
jiweibo 已提交
93
#ifdef LITE_WITH_CUDA
94
void CxxPaddleApiImpl::InitCudaEnv(std::vector<std::string> *passes) {
J
jiweibo 已提交
95 96 97
  Env<TARGET(kCUDA)>::Init();

  // init two streams for each predictor.
J
update  
jiweibo 已提交
98 99 100
  if (config_.cuda_exec_stream()) {
    cuda_exec_stream_.reset(
        new lite::StreamWrapper(*config_.cuda_exec_stream()));
J
jiweibo 已提交
101
  } else {
J
update  
jiweibo 已提交
102
    cuda_exec_stream_.reset(new lite::StreamWrapper());
J
jiweibo 已提交
103
  }
J
update  
jiweibo 已提交
104 105
  if (config_.cuda_io_stream()) {
    cuda_io_stream_.reset(new lite::StreamWrapper(*config_.cuda_io_stream()));
J
jiweibo 已提交
106
  } else {
J
update  
jiweibo 已提交
107
    cuda_io_stream_.reset(new lite::StreamWrapper());
J
jiweibo 已提交
108 109
  }

J
update  
jiweibo 已提交
110 111
  raw_predictor_->set_cuda_exec_stream(cuda_exec_stream_->stream());
  raw_predictor_->set_cuda_io_stream(cuda_io_stream_->stream());
J
jiweibo 已提交
112 113

  // init sync events.
J
update  
jiweibo 已提交
114 115 116
  if (config_.cuda_use_multi_stream()) {
    cuda_use_multi_stream_ = true;
    raw_predictor_->set_cuda_use_multi_stream(cuda_use_multi_stream_);
J
jiweibo 已提交
117 118 119 120 121
    passes->push_back("multi_stream_analysis_pass");
    VLOG(3) << "add pass: " << (*passes)[0];
    Env<TargetType::kCUDA>::Devs &devs = Env<TargetType::kCUDA>::Global();
    int dev_id = TargetWrapperCuda::GetCurDevice();
    for (size_t i = 0; i < lite::kMaxStream; ++i) {
J
update  
jiweibo 已提交
122
      cuda_exec_streams_.emplace_back(devs[dev_id].exec_streams()[i]);
J
jiweibo 已提交
123 124
      cudaEvent_t out_event;
      TargetWrapperCuda::CreateEventWithFlags(&out_event);
J
update  
jiweibo 已提交
125
      cuda_output_events_.push_back(out_event);
J
jiweibo 已提交
126 127 128 129
    }
  } else {
    cudaEvent_t out_event;
    TargetWrapperCuda::CreateEventWithFlags(&out_event);
J
update  
jiweibo 已提交
130
    cuda_output_events_.push_back(out_event);
J
jiweibo 已提交
131
  }
J
update  
jiweibo 已提交
132
  TargetWrapperCuda::CreateEventWithFlags(&cuda_input_event_);
J
jiweibo 已提交
133 134
}

J
update  
jiweibo 已提交
135 136 137
void CxxPaddleApiImpl::SyncCudaInputs() {
  TargetWrapperCuda::RecordEvent(cuda_input_event_, cuda_io_stream_->stream());
  if (cuda_use_multi_stream_) {
J
jiweibo 已提交
138
    for (int i = 0; i < lite::kMaxStream; ++i) {
J
update  
jiweibo 已提交
139 140
      TargetWrapperCuda::StreamSync(cuda_exec_streams_[i].stream(),
                                    cuda_input_event_);
J
jiweibo 已提交
141 142
    }
  } else {
J
update  
jiweibo 已提交
143 144
    TargetWrapperCuda::StreamSync(cuda_exec_stream_->stream(),
                                  cuda_input_event_);
J
jiweibo 已提交
145 146 147
  }
}

J
update  
jiweibo 已提交
148 149 150 151 152 153 154
void CxxPaddleApiImpl::SyncCudaOutputs() {
  if (cuda_use_multi_stream_) {
    for (size_t i = 0; i < cuda_output_events_.size(); ++i) {
      TargetWrapperCuda::RecordEvent(cuda_output_events_[i],
                                     cuda_exec_streams_[i].stream());
      TargetWrapperCuda::StreamSync(cuda_io_stream_->stream(),
                                    cuda_output_events_[i]);
J
jiweibo 已提交
155 156
    }
  } else {
J
update  
jiweibo 已提交
157 158 159 160
    TargetWrapperCuda::RecordEvent(cuda_output_events_[0],
                                   cuda_exec_stream_->stream());
    TargetWrapperCuda::StreamSync(cuda_io_stream_->stream(),
                                  cuda_output_events_[0]);
J
jiweibo 已提交
161 162 163 164
  }
}
#endif

Y
Yan Chunwei 已提交
165
std::unique_ptr<lite_api::Tensor> CxxPaddleApiImpl::GetInput(int i) {
166
  auto *x = raw_predictor_->GetInput(i);
167
#ifdef LITE_WITH_CUDA
J
jiweibo 已提交
168
  return std::unique_ptr<lite_api::Tensor>(
J
update  
jiweibo 已提交
169
      new lite_api::Tensor(x, cuda_io_stream_->stream()));
170 171 172
#else
  return std::unique_ptr<lite_api::Tensor>(new lite_api::Tensor(x));
#endif
Y
Yan Chunwei 已提交
173 174 175 176
}

std::unique_ptr<const lite_api::Tensor> CxxPaddleApiImpl::GetOutput(
    int i) const {
177
  const auto *x = raw_predictor_->GetOutput(i);
178
#ifdef LITE_WITH_CUDA
J
jiweibo 已提交
179
  return std::unique_ptr<lite_api::Tensor>(
J
update  
jiweibo 已提交
180
      new lite_api::Tensor(x, cuda_io_stream_->stream()));
181 182 183
#else
  return std::unique_ptr<lite_api::Tensor>(new lite_api::Tensor(x));
#endif
Y
Yan Chunwei 已提交
184 185
}

S
sangoly 已提交
186
std::vector<std::string> CxxPaddleApiImpl::GetInputNames() {
187
  return raw_predictor_->GetInputNames();
188 189
}

190
std::vector<std::string> CxxPaddleApiImpl::GetParamNames() {
191
  return raw_predictor_->GetParamNames();
192 193
}

S
sangoly 已提交
194
std::vector<std::string> CxxPaddleApiImpl::GetOutputNames() {
195
  return raw_predictor_->GetOutputNames();
196 197
}

T
TianXiaogang 已提交
198 199 200 201
void CxxPaddleApiImpl::Run() {
#ifdef LITE_WITH_ARM
  lite::DeviceInfo::Global().SetRunMode(mode_, threads_);
#endif
J
jiweibo 已提交
202
#ifdef LITE_WITH_CUDA
J
update  
jiweibo 已提交
203
  SyncCudaInputs();
J
jiweibo 已提交
204 205
#endif

206
  raw_predictor_->Run();
J
jiweibo 已提交
207 208

#ifdef LITE_WITH_CUDA
J
update  
jiweibo 已提交
209
  SyncCudaOutputs();
J
jiweibo 已提交
210
#endif
T
TianXiaogang 已提交
211
}
Y
Yan Chunwei 已提交
212

213 214
std::shared_ptr<lite_api::PaddlePredictor> CxxPaddleApiImpl::Clone() {
  std::lock_guard<std::mutex> lock(mutex_);
215 216 217 218 219 220 221 222 223 224 225
  auto predictor =
      std::make_shared<lite::CxxPaddleApiImpl>(raw_predictor_->Clone());
  predictor->Init(config_);
  return predictor;
}

std::shared_ptr<lite_api::PaddlePredictor> CxxPaddleApiImpl::Clone(
    const std::vector<std::string> &var_names) {
  std::lock_guard<std::mutex> lock(mutex_);
  auto predictor = std::make_shared<lite::CxxPaddleApiImpl>(
      raw_predictor_->Clone(var_names));
226 227 228 229
  predictor->Init(config_);
  return predictor;
}

230 231
std::string CxxPaddleApiImpl::GetVersion() const { return version(); }

Y
Yan Chunwei 已提交
232 233
std::unique_ptr<const lite_api::Tensor> CxxPaddleApiImpl::GetTensor(
    const std::string &name) const {
234
  auto *x = raw_predictor_->GetTensor(name);
Y
Yan Chunwei 已提交
235 236 237
  return std::unique_ptr<const lite_api::Tensor>(new lite_api::Tensor(x));
}

238 239 240
std::unique_ptr<lite_api::Tensor> CxxPaddleApiImpl::GetMutableTensor(
    const std::string &name) {
  return std::unique_ptr<lite_api::Tensor>(
241
      new lite_api::Tensor(raw_predictor_->GetMutableTensor(name)));
242 243
}

244 245 246
std::unique_ptr<lite_api::Tensor> CxxPaddleApiImpl::GetInputByName(
    const std::string &name) {
  return std::unique_ptr<lite_api::Tensor>(
247
      new lite_api::Tensor(raw_predictor_->GetInputByName(name)));
248 249
}

Y
Yan Chunwei 已提交
250
void CxxPaddleApiImpl::SaveOptimizedModel(const std::string &model_dir,
251 252
                                          lite_api::LiteModelType model_type,
                                          bool record_info) {
253
  raw_predictor_->SaveModel(model_dir, model_type, record_info);
Y
Yan Chunwei 已提交
254 255
}

J
jiweibo 已提交
256
CxxPaddleApiImpl::~CxxPaddleApiImpl() {
J
jiweibo 已提交
257
#ifdef LITE_WITH_CUDA
J
update  
jiweibo 已提交
258 259 260
  TargetWrapperCuda::DestroyEvent(cuda_input_event_);
  for (size_t i = 0; i < cuda_output_events_.size(); ++i) {
    TargetWrapperCuda::DestroyEvent(cuda_output_events_[i]);
J
jiweibo 已提交
261
  }
J
jiweibo 已提交
262
#endif
J
jiweibo 已提交
263 264
}

Y
Yan Chunwei 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278
}  // namespace lite

namespace lite_api {

template <>
std::shared_ptr<PaddlePredictor> CreatePaddlePredictor(
    const CxxConfig &config) {
  auto x = std::make_shared<lite::CxxPaddleApiImpl>();
  x->Init(config);
  return x;
}

}  // namespace lite_api
}  // namespace paddle