cxx_api_impl.cc 8.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/cxx_api.h"
16 17
#include <memory>
#include <mutex>  //NOLINT
18
#include <string>
Y
Yan Chunwei 已提交
19
#include "lite/api/paddle_api.h"
20
#include "lite/core/device_info.h"
21
#include "lite/core/version.h"
22 23 24 25

#ifndef LITE_ON_TINY_PUBLISH
#include "lite/api/paddle_use_passes.h"
#endif
J
jiweibo 已提交
26 27 28
#ifdef LITE_WITH_CUDA
#include "lite/backends/cuda/cuda_utils.h"
#endif
29
#if (defined LITE_WITH_X86) && (defined PADDLE_WITH_MKLML) && \
30
    !(defined LITE_ON_MODEL_OPTIMIZE_TOOL) && !defined(__APPLE__)
31 32 33
#include <omp.h>
#include "lite/backends/x86/mklml.h"
#endif
Y
Yan Chunwei 已提交
34 35 36 37
namespace paddle {
namespace lite {

void CxxPaddleApiImpl::Init(const lite_api::CxxConfig &config) {
38
  config_ = config;
J
jiweibo 已提交
39 40
  auto places = config.valid_places();
  std::vector<std::string> passes = config.get_passes_internal();
41
#ifdef LITE_WITH_CUDA
J
jiweibo 已提交
42 43 44 45 46 47
  // if kCUDA is included in valid places, it should be initialized first,
  // otherwise skip this step.
  for (auto &p : places) {
    if (p.target == TARGET(kCUDA)) {
      CudaEnvInit(&passes);
      break;
48
    }
J
jiweibo 已提交
49
  }
50
#endif
J
jiweibo 已提交
51 52

  if (!status_is_cloned_) {
53
#ifdef LITE_WITH_MLU
54 55 56 57 58 59 60
    Env<TARGET(kMLU)>::Init();
    lite::DeviceInfo::Global().SetMLURunMode(config.mlu_core_version(),
                                             config.mlu_core_number(),
                                             config.mlu_use_first_conv(),
                                             config.mlu_first_conv_mean(),
                                             config.mlu_first_conv_std(),
                                             config.mlu_input_layout());
61
#endif  // LITE_WITH_MLU
62 63 64 65 66 67 68 69 70 71 72 73
    auto use_layout_preprocess_pass =
        config.model_dir().find("OPENCL_PRE_PRECESS");
    VLOG(1) << "use_layout_preprocess_pass:" << use_layout_preprocess_pass;
    if (places[0].target == TARGET(kOpenCL) &&
        use_layout_preprocess_pass != std::string::npos) {
      passes = {"type_layout_cast_preprocess_pass"};
      VLOG(1) << "add pass:" << passes[0];
    }
    raw_predictor_->Build(config, places, passes);
  } else {
    raw_predictor_->PrepareFeedFetch();
    CHECK(raw_predictor_) << "The Predictor can not be nullptr in Clone mode.";
74
  }
J
jiweibo 已提交
75

T
TianXiaogang 已提交
76 77
  mode_ = config.power_mode();
  threads_ = config.threads();
78
#if (defined LITE_WITH_X86) && (defined PADDLE_WITH_MKLML) && \
79
    !(defined LITE_ON_MODEL_OPTIMIZE_TOOL)
80
  int num_threads = config.x86_math_library_num_threads();
81 82 83
  int real_num_threads = num_threads > 1 ? num_threads : 1;
  paddle::lite::x86::MKL_Set_Num_Threads(real_num_threads);
  omp_set_num_threads(real_num_threads);
84
  VLOG(3) << "set_x86_math_library_math_threads() is set successfully and the "
85
             "number of threads is:"
86
          << real_num_threads;
87
#endif
Y
Yan Chunwei 已提交
88 89
}

J
jiweibo 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
#ifdef LITE_WITH_CUDA
void CxxPaddleApiImpl::CudaEnvInit(std::vector<std::string> *passes) {
  Env<TARGET(kCUDA)>::Init();

  // init two streams for each predictor.
  if (config_.exec_stream()) {
    exec_stream_ = config_.exec_stream();
  } else {
    exec_stream_ = new cudaStream_t();
    TargetWrapperCuda::CreateStream(exec_stream_);
  }
  if (config_.io_stream()) {
    io_stream_ = config_.io_stream();
  } else {
    io_stream_ = new cudaStream_t();
    TargetWrapperCuda::CreateStream(io_stream_);
  }

  raw_predictor_->SetExecStream(exec_stream_);
  raw_predictor_->SetIoStream(io_stream_);

  // init sync events.
  if (config_.multi_stream()) {
    multi_stream_ = true;
    raw_predictor_->SetMultiStream(multi_stream_);
    passes->push_back("multi_stream_analysis_pass");
    VLOG(3) << "add pass: " << (*passes)[0];
    Env<TargetType::kCUDA>::Devs &devs = Env<TargetType::kCUDA>::Global();
    int dev_id = TargetWrapperCuda::GetCurDevice();
    for (size_t i = 0; i < lite::kMaxStream; ++i) {
      exec_streams_.push_back(
          const_cast<cudaStream_t *>(&devs[dev_id].exec_streams()[i]));
      cudaEvent_t out_event;
      TargetWrapperCuda::CreateEventWithFlags(&out_event);
      output_events_.push_back(out_event);
    }
  } else {
    cudaEvent_t out_event;
    TargetWrapperCuda::CreateEventWithFlags(&out_event);
    output_events_.push_back(out_event);
  }
  TargetWrapperCuda::CreateEventWithFlags(&input_event_);
}

void CxxPaddleApiImpl::InputSync() {
  TargetWrapperCuda::RecordEvent(input_event_, *io_stream_);
  if (multi_stream_) {
    for (int i = 0; i < lite::kMaxStream; ++i) {
      TargetWrapperCuda::StreamSync(*exec_streams_[i], input_event_);
    }
  } else {
    TargetWrapperCuda::StreamSync(*exec_stream_, input_event_);
  }
}

void CxxPaddleApiImpl::OutputSync() {
  if (multi_stream_) {
    for (size_t i = 0; i < output_events_.size(); ++i) {
      TargetWrapperCuda::RecordEvent(output_events_[i], *exec_streams_[i]);
      TargetWrapperCuda::StreamSync(*io_stream_, output_events_[i]);
    }
  } else {
    TargetWrapperCuda::RecordEvent(output_events_[0], *exec_stream_);
    TargetWrapperCuda::StreamSync(*io_stream_, output_events_[0]);
  }
}
#endif

Y
Yan Chunwei 已提交
158
std::unique_ptr<lite_api::Tensor> CxxPaddleApiImpl::GetInput(int i) {
159
  auto *x = raw_predictor_->GetInput(i);
J
jiweibo 已提交
160
  return std::unique_ptr<lite_api::Tensor>(new lite_api::Tensor(x, io_stream_));
Y
Yan Chunwei 已提交
161 162 163 164
}

std::unique_ptr<const lite_api::Tensor> CxxPaddleApiImpl::GetOutput(
    int i) const {
165
  const auto *x = raw_predictor_->GetOutput(i);
J
jiweibo 已提交
166
  return std::unique_ptr<lite_api::Tensor>(new lite_api::Tensor(x, io_stream_));
Y
Yan Chunwei 已提交
167 168
}

S
sangoly 已提交
169
std::vector<std::string> CxxPaddleApiImpl::GetInputNames() {
170
  return raw_predictor_->GetInputNames();
171 172
}

173
std::vector<std::string> CxxPaddleApiImpl::GetParamNames() {
174
  return raw_predictor_->GetParamNames();
175 176
}

S
sangoly 已提交
177
std::vector<std::string> CxxPaddleApiImpl::GetOutputNames() {
178
  return raw_predictor_->GetOutputNames();
179 180
}

T
TianXiaogang 已提交
181 182 183 184
void CxxPaddleApiImpl::Run() {
#ifdef LITE_WITH_ARM
  lite::DeviceInfo::Global().SetRunMode(mode_, threads_);
#endif
J
jiweibo 已提交
185 186 187 188
#ifdef LITE_WITH_CUDA
  InputSync();
#endif

189
  raw_predictor_->Run();
J
jiweibo 已提交
190 191 192 193

#ifdef LITE_WITH_CUDA
  OutputSync();
#endif
T
TianXiaogang 已提交
194
}
Y
Yan Chunwei 已提交
195

196 197
std::shared_ptr<lite_api::PaddlePredictor> CxxPaddleApiImpl::Clone() {
  std::lock_guard<std::mutex> lock(mutex_);
198 199 200 201 202 203 204 205 206 207 208
  auto predictor =
      std::make_shared<lite::CxxPaddleApiImpl>(raw_predictor_->Clone());
  predictor->Init(config_);
  return predictor;
}

std::shared_ptr<lite_api::PaddlePredictor> CxxPaddleApiImpl::Clone(
    const std::vector<std::string> &var_names) {
  std::lock_guard<std::mutex> lock(mutex_);
  auto predictor = std::make_shared<lite::CxxPaddleApiImpl>(
      raw_predictor_->Clone(var_names));
209 210 211 212
  predictor->Init(config_);
  return predictor;
}

213 214
std::string CxxPaddleApiImpl::GetVersion() const { return version(); }

Y
Yan Chunwei 已提交
215 216
std::unique_ptr<const lite_api::Tensor> CxxPaddleApiImpl::GetTensor(
    const std::string &name) const {
217
  auto *x = raw_predictor_->GetTensor(name);
Y
Yan Chunwei 已提交
218 219 220
  return std::unique_ptr<const lite_api::Tensor>(new lite_api::Tensor(x));
}

221 222 223
std::unique_ptr<lite_api::Tensor> CxxPaddleApiImpl::GetMutableTensor(
    const std::string &name) {
  return std::unique_ptr<lite_api::Tensor>(
224
      new lite_api::Tensor(raw_predictor_->GetMutableTensor(name)));
225 226
}

227 228 229
std::unique_ptr<lite_api::Tensor> CxxPaddleApiImpl::GetInputByName(
    const std::string &name) {
  return std::unique_ptr<lite_api::Tensor>(
230
      new lite_api::Tensor(raw_predictor_->GetInputByName(name)));
231 232
}

Y
Yan Chunwei 已提交
233
void CxxPaddleApiImpl::SaveOptimizedModel(const std::string &model_dir,
234 235
                                          lite_api::LiteModelType model_type,
                                          bool record_info) {
236
  raw_predictor_->SaveModel(model_dir, model_type, record_info);
Y
Yan Chunwei 已提交
237 238
}

J
jiweibo 已提交
239
CxxPaddleApiImpl::~CxxPaddleApiImpl() {
J
jiweibo 已提交
240
#ifdef LITE_WITH_CUDA
J
jiweibo 已提交
241 242 243 244 245 246 247 248
  TargetWrapperCuda::DestroyEvent(input_event_);
  for (size_t i = 0; i < output_events_.size(); ++i) {
    TargetWrapperCuda::DestroyEvent(output_events_[i]);
  }
  if (multi_stream_) {
    TargetWrapperCuda::DestroyStream(*io_stream_);
    TargetWrapperCuda::DestroyStream(*exec_stream_);
  }
J
jiweibo 已提交
249
#endif
J
jiweibo 已提交
250 251
}

Y
Yan Chunwei 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265
}  // namespace lite

namespace lite_api {

template <>
std::shared_ptr<PaddlePredictor> CreatePaddlePredictor(
    const CxxConfig &config) {
  auto x = std::make_shared<lite::CxxPaddleApiImpl>();
  x->Init(config);
  return x;
}

}  // namespace lite_api
}  // namespace paddle