cxx_api_impl.cc 3.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/cxx_api.h"
16 17
#include <memory>
#include <mutex>  //NOLINT
18
#include <string>
Y
Yan Chunwei 已提交
19
#include "lite/api/paddle_api.h"
20
#include "lite/core/device_info.h"
21
#include "lite/core/version.h"
Y
Yan Chunwei 已提交
22 23 24 25 26

namespace paddle {
namespace lite {

void CxxPaddleApiImpl::Init(const lite_api::CxxConfig &config) {
27
  config_ = config;
28 29 30
#ifdef LITE_WITH_CUDA
  Env<TARGET(kCUDA)>::Init();
#endif
Y
Yan Chunwei 已提交
31
  auto places = config.valid_places();
32
  raw_predictor_.Build(config, places);
T
TianXiaogang 已提交
33 34 35

  mode_ = config.power_mode();
  threads_ = config.threads();
Y
Yan Chunwei 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48
}

std::unique_ptr<lite_api::Tensor> CxxPaddleApiImpl::GetInput(int i) {
  auto *x = raw_predictor_.GetInput(i);
  return std::unique_ptr<lite_api::Tensor>(new lite_api::Tensor(x));
}

std::unique_ptr<const lite_api::Tensor> CxxPaddleApiImpl::GetOutput(
    int i) const {
  const auto *x = raw_predictor_.GetOutput(i);
  return std::unique_ptr<lite_api::Tensor>(new lite_api::Tensor(x));
}

S
sangoly 已提交
49
std::vector<std::string> CxxPaddleApiImpl::GetInputNames() {
50 51 52
  return raw_predictor_.GetInputNames();
}

S
sangoly 已提交
53
std::vector<std::string> CxxPaddleApiImpl::GetOutputNames() {
54 55 56
  return raw_predictor_.GetOutputNames();
}

T
TianXiaogang 已提交
57 58 59 60 61 62
void CxxPaddleApiImpl::Run() {
#ifdef LITE_WITH_ARM
  lite::DeviceInfo::Global().SetRunMode(mode_, threads_);
#endif
  raw_predictor_.Run();
}
Y
Yan Chunwei 已提交
63

64 65 66 67 68 69 70
std::shared_ptr<lite_api::PaddlePredictor> CxxPaddleApiImpl::Clone() {
  std::lock_guard<std::mutex> lock(mutex_);
  auto predictor = std::make_shared<lite::CxxPaddleApiImpl>();
  predictor->Init(config_);
  return predictor;
}

71 72
std::string CxxPaddleApiImpl::GetVersion() const { return version(); }

Y
Yan Chunwei 已提交
73 74 75 76 77 78
std::unique_ptr<const lite_api::Tensor> CxxPaddleApiImpl::GetTensor(
    const std::string &name) const {
  auto *x = raw_predictor_.GetTensor(name);
  return std::unique_ptr<const lite_api::Tensor>(new lite_api::Tensor(x));
}

79 80 81 82 83 84
std::unique_ptr<lite_api::Tensor> CxxPaddleApiImpl::GetInputByName(
    const std::string &name) {
  return std::unique_ptr<lite_api::Tensor>(
      new lite_api::Tensor(raw_predictor_.GetInputByName(name)));
}

Y
Yan Chunwei 已提交
85
void CxxPaddleApiImpl::SaveOptimizedModel(const std::string &model_dir,
86 87 88
                                          lite_api::LiteModelType model_type,
                                          bool record_info) {
  raw_predictor_.SaveModel(model_dir, model_type, record_info);
Y
Yan Chunwei 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
}

}  // namespace lite

namespace lite_api {

template <>
std::shared_ptr<PaddlePredictor> CreatePaddlePredictor(
    const CxxConfig &config) {
  auto x = std::make_shared<lite::CxxPaddleApiImpl>();
  x->Init(config);
  return x;
}

}  // namespace lite_api
}  // namespace paddle