Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
84bdddb2
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
338
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
84bdddb2
编写于
6月 17, 2020
作者:
J
jiweibo
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
reorganize stream. test=develop
上级
07ae2599
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
388 addition
and
47 deletion
+388
-47
lite/api/cxx_api.cc
lite/api/cxx_api.cc
+5
-0
lite/api/cxx_api.h
lite/api/cxx_api.h
+52
-9
lite/api/cxx_api_impl.cc
lite/api/cxx_api_impl.cc
+104
-17
lite/api/cxx_api_test.cc
lite/api/cxx_api_test.cc
+1
-1
lite/api/paddle_api.cc
lite/api/paddle_api.cc
+14
-4
lite/api/paddle_api.h
lite/api/paddle_api.h
+20
-0
lite/api/test_resnet50_lite_cuda.cc
lite/api/test_resnet50_lite_cuda.cc
+140
-0
lite/backends/cuda/target_wrapper.h
lite/backends/cuda/target_wrapper.h
+18
-11
lite/core/device_info.h
lite/core/device_info.h
+6
-1
lite/core/optimizer.h
lite/core/optimizer.h
+4
-2
lite/core/program.cc
lite/core/program.cc
+12
-2
lite/core/program.h
lite/core/program.h
+12
-0
未找到文件。
lite/api/cxx_api.cc
浏览文件 @
84bdddb2
...
...
@@ -349,6 +349,11 @@ void Predictor::GenRuntimeProgram() {
program_
=
optimizer_
.
GenRuntimeProgram
();
CHECK_EQ
(
exec_scope_
,
program_
->
exec_scope
());
program_generated_
=
true
;
#ifdef LITE_WITH_CUDA
if
(
!
multi_stream_
)
{
program_
->
UpdateContext
(
exec_stream_
,
io_stream_
);
}
#endif
}
const
lite
::
Tensor
*
Predictor
::
GetTensor
(
const
std
::
string
&
name
)
const
{
...
...
lite/api/cxx_api.h
浏览文件 @
84bdddb2
...
...
@@ -20,12 +20,17 @@
#include <utility>
#include <vector>
#include "lite/api/paddle_api.h"
#include "lite/core/device_info.h"
#include "lite/core/op_lite.h"
#include "lite/core/optimizer.h"
#include "lite/core/program.h"
#include "lite/core/types.h"
#include "lite/model_parser/model_parser.h"
#ifdef LITE_WITH_CUDA
#include "lite/backends/cuda/cuda_utils.h"
#endif
namespace
paddle
{
namespace
lite
{
...
...
@@ -56,7 +61,9 @@ class LITE_API Predictor {
const
std
::
vector
<
std
::
string
>&
var_names
=
{})
:
program_desc_
(
desc
),
scope_
(
root
)
{
Program
program
(
*
desc
.
get
(),
scope_
,
valid_places
,
var_names
);
optimizer_
=
Optimizer
(
std
::
move
(
program
),
valid_places
);
std
::
vector
<
std
::
string
>
passes
{};
// TODO(wilber): rethink a new way to associate config and passes.
optimizer_
=
Optimizer
(
std
::
move
(
program
),
valid_places
,
passes
);
exec_scope_
=
optimizer_
.
exec_scope
();
valid_places_
=
valid_places
;
}
...
...
@@ -146,14 +153,23 @@ class LITE_API Predictor {
bool
record_info
=
false
);
void
SaveOpKernelInfo
(
const
std
::
string
&
model_dir
);
// #ifdef LITE_WITH_TRAIN
// void Run(const std::vector<framework::Tensor>& tensors) {
// FeedVars(tensors);
// program_->Run();
// }
// void FeedVars(const std::vector<framework::Tensor>& tensors);
// #endif
// #ifdef LITE_WITH_TRAIN
// void Run(const std::vector<framework::Tensor>& tensors) {
// FeedVars(tensors);
// program_->Run();
// }
// void FeedVars(const std::vector<framework::Tensor>& tensors);
// #endif
#ifdef LITE_WITH_CUDA
void
SetMultiStream
(
bool
multi_stream
)
{
multi_stream_
=
multi_stream
;
}
bool
multi_stream
()
{
return
multi_stream_
;
}
void
SetExecStream
(
cudaStream_t
*
stream
)
{
exec_stream_
=
stream
;
}
void
SetIoStream
(
cudaStream_t
*
stream
)
{
io_stream_
=
stream
;
}
const
cudaStream_t
&
exec_stream
()
{
return
*
exec_stream_
;
}
const
cudaStream_t
&
io_stream
()
{
return
*
io_stream_
;
}
#endif
private:
Optimizer
optimizer_
;
...
...
@@ -165,6 +181,11 @@ class LITE_API Predictor {
std
::
vector
<
std
::
string
>
input_names_
;
std
::
vector
<
std
::
string
>
output_names_
;
std
::
vector
<
Place
>
valid_places_
;
#ifdef LITE_WITH_CUDA
bool
multi_stream_
{
false
};
cudaStream_t
*
io_stream_
;
cudaStream_t
*
exec_stream_
;
#endif
};
class
CxxPaddleApiImpl
:
public
lite_api
::
PaddlePredictor
{
...
...
@@ -178,6 +199,8 @@ class CxxPaddleApiImpl : public lite_api::PaddlePredictor {
status_is_cloned_
=
true
;
}
~
CxxPaddleApiImpl
();
/// Create a new predictor from a config.
void
Init
(
const
lite_api
::
CxxConfig
&
config
);
...
...
@@ -216,11 +239,31 @@ class CxxPaddleApiImpl : public lite_api::PaddlePredictor {
lite_api
::
LiteModelType
model_type
=
lite_api
::
LiteModelType
::
kProtobuf
,
bool
record_info
=
false
)
override
;
private:
#ifdef LITE_WITH_CUDA
// Cuda related environment initialization, including setting stream pointers,
// initializing synchronization events, setting predictor_id, etc.
void
CudaEnvInit
(
std
::
vector
<
std
::
string
>*
passes
);
// Due to the asynchronous nature of cuda kernel execution, synchronization is
// required before setting input and getting output.
void
InputSync
();
void
OutputSync
();
#endif
private:
std
::
shared_ptr
<
Predictor
>
raw_predictor_
;
lite_api
::
CxxConfig
config_
;
std
::
mutex
mutex_
;
bool
status_is_cloned_
;
#ifdef LITE_WITH_CUDA
bool
multi_stream_
{
false
};
cudaStream_t
*
io_stream_
;
cudaStream_t
*
exec_stream_
;
cudaEvent_t
input_event_
;
std
::
vector
<
cudaEvent_t
>
output_events_
;
// only for multi exec stream mode.
std
::
vector
<
cudaStream_t
*>
exec_streams_
;
#endif
};
/*
...
...
lite/api/cxx_api_impl.cc
浏览文件 @
84bdddb2
...
...
@@ -23,7 +23,9 @@
#ifndef LITE_ON_TINY_PUBLISH
#include "lite/api/paddle_use_passes.h"
#endif
#ifdef LITE_WITH_CUDA
#include "lite/backends/cuda/cuda_utils.h"
#endif
#if (defined LITE_WITH_X86) && (defined PADDLE_WITH_MKLML) && \
!(defined LITE_ON_MODEL_OPTIMIZE_TOOL) && !defined(__APPLE__)
#include <omp.h>
...
...
@@ -34,23 +36,20 @@ namespace lite {
void
CxxPaddleApiImpl
::
Init
(
const
lite_api
::
CxxConfig
&
config
)
{
config_
=
config
;
if
(
!
status_is_cloned_
)
{
auto
places
=
config
.
valid_places
();
std
::
vector
<
std
::
string
>
passes
=
config
.
get_passes_internal
();
auto
places
=
config
.
valid_places
();
std
::
vector
<
std
::
string
>
passes
=
config
.
get_passes_internal
();
#ifdef LITE_WITH_CUDA
// if kCUDA is included in valid places, it should be initialized first,
// otherwise skip this step.
for
(
auto
&
p
:
places
)
{
if
(
p
.
target
==
TARGET
(
kCUDA
))
{
Env
<
TARGET
(
kCUDA
)
>::
Init
();
if
(
config_
.
multi_stream
())
{
passes
=
{
"multi_stream_analysis_pass"
};
VLOG
(
3
)
<<
"add pass: "
<<
passes
[
0
];
}
break
;
}
// if kCUDA is included in valid places, it should be initialized first,
// otherwise skip this step.
for
(
auto
&
p
:
places
)
{
if
(
p
.
target
==
TARGET
(
kCUDA
))
{
CudaEnvInit
(
&
passes
);
break
;
}
}
#endif
if
(
!
status_is_cloned_
)
{
#ifdef LITE_WITH_MLU
Env
<
TARGET
(
kMLU
)
>::
Init
();
lite
::
DeviceInfo
::
Global
().
SetMLURunMode
(
config
.
mlu_core_version
(),
...
...
@@ -73,6 +72,7 @@ void CxxPaddleApiImpl::Init(const lite_api::CxxConfig &config) {
raw_predictor_
->
PrepareFeedFetch
();
CHECK
(
raw_predictor_
)
<<
"The Predictor can not be nullptr in Clone mode."
;
}
mode_
=
config
.
power_mode
();
threads_
=
config
.
threads
();
#if (defined LITE_WITH_X86) && (defined PADDLE_WITH_MKLML) && \
...
...
@@ -87,15 +87,83 @@ void CxxPaddleApiImpl::Init(const lite_api::CxxConfig &config) {
#endif
}
#ifdef LITE_WITH_CUDA
void
CxxPaddleApiImpl
::
CudaEnvInit
(
std
::
vector
<
std
::
string
>
*
passes
)
{
Env
<
TARGET
(
kCUDA
)
>::
Init
();
// init two streams for each predictor.
if
(
config_
.
exec_stream
())
{
exec_stream_
=
config_
.
exec_stream
();
}
else
{
exec_stream_
=
new
cudaStream_t
();
TargetWrapperCuda
::
CreateStream
(
exec_stream_
);
}
if
(
config_
.
io_stream
())
{
io_stream_
=
config_
.
io_stream
();
}
else
{
io_stream_
=
new
cudaStream_t
();
TargetWrapperCuda
::
CreateStream
(
io_stream_
);
}
raw_predictor_
->
SetExecStream
(
exec_stream_
);
raw_predictor_
->
SetIoStream
(
io_stream_
);
// init sync events.
if
(
config_
.
multi_stream
())
{
multi_stream_
=
true
;
raw_predictor_
->
SetMultiStream
(
multi_stream_
);
passes
->
push_back
(
"multi_stream_analysis_pass"
);
VLOG
(
3
)
<<
"add pass: "
<<
(
*
passes
)[
0
];
Env
<
TargetType
::
kCUDA
>::
Devs
&
devs
=
Env
<
TargetType
::
kCUDA
>::
Global
();
int
dev_id
=
TargetWrapperCuda
::
GetCurDevice
();
for
(
size_t
i
=
0
;
i
<
lite
::
kMaxStream
;
++
i
)
{
exec_streams_
.
push_back
(
const_cast
<
cudaStream_t
*>
(
&
devs
[
dev_id
].
exec_streams
()[
i
]));
cudaEvent_t
out_event
;
TargetWrapperCuda
::
CreateEventWithFlags
(
&
out_event
);
output_events_
.
push_back
(
out_event
);
}
}
else
{
cudaEvent_t
out_event
;
TargetWrapperCuda
::
CreateEventWithFlags
(
&
out_event
);
output_events_
.
push_back
(
out_event
);
}
TargetWrapperCuda
::
CreateEventWithFlags
(
&
input_event_
);
}
void
CxxPaddleApiImpl
::
InputSync
()
{
TargetWrapperCuda
::
RecordEvent
(
input_event_
,
*
io_stream_
);
if
(
multi_stream_
)
{
for
(
int
i
=
0
;
i
<
lite
::
kMaxStream
;
++
i
)
{
TargetWrapperCuda
::
StreamSync
(
*
exec_streams_
[
i
],
input_event_
);
}
}
else
{
TargetWrapperCuda
::
StreamSync
(
*
exec_stream_
,
input_event_
);
}
}
void
CxxPaddleApiImpl
::
OutputSync
()
{
if
(
multi_stream_
)
{
for
(
size_t
i
=
0
;
i
<
output_events_
.
size
();
++
i
)
{
TargetWrapperCuda
::
RecordEvent
(
output_events_
[
i
],
*
exec_streams_
[
i
]);
TargetWrapperCuda
::
StreamSync
(
*
io_stream_
,
output_events_
[
i
]);
}
}
else
{
TargetWrapperCuda
::
RecordEvent
(
output_events_
[
0
],
*
exec_stream_
);
TargetWrapperCuda
::
StreamSync
(
*
io_stream_
,
output_events_
[
0
]);
}
}
#endif
std
::
unique_ptr
<
lite_api
::
Tensor
>
CxxPaddleApiImpl
::
GetInput
(
int
i
)
{
auto
*
x
=
raw_predictor_
->
GetInput
(
i
);
return
std
::
unique_ptr
<
lite_api
::
Tensor
>
(
new
lite_api
::
Tensor
(
x
));
return
std
::
unique_ptr
<
lite_api
::
Tensor
>
(
new
lite_api
::
Tensor
(
x
,
io_stream_
));
}
std
::
unique_ptr
<
const
lite_api
::
Tensor
>
CxxPaddleApiImpl
::
GetOutput
(
int
i
)
const
{
const
auto
*
x
=
raw_predictor_
->
GetOutput
(
i
);
return
std
::
unique_ptr
<
lite_api
::
Tensor
>
(
new
lite_api
::
Tensor
(
x
));
return
std
::
unique_ptr
<
lite_api
::
Tensor
>
(
new
lite_api
::
Tensor
(
x
,
io_stream_
));
}
std
::
vector
<
std
::
string
>
CxxPaddleApiImpl
::
GetInputNames
()
{
...
...
@@ -114,7 +182,15 @@ void CxxPaddleApiImpl::Run() {
#ifdef LITE_WITH_ARM
lite
::
DeviceInfo
::
Global
().
SetRunMode
(
mode_
,
threads_
);
#endif
#ifdef LITE_WITH_CUDA
InputSync
();
#endif
raw_predictor_
->
Run
();
#ifdef LITE_WITH_CUDA
OutputSync
();
#endif
}
std
::
shared_ptr
<
lite_api
::
PaddlePredictor
>
CxxPaddleApiImpl
::
Clone
()
{
...
...
@@ -160,6 +236,17 @@ void CxxPaddleApiImpl::SaveOptimizedModel(const std::string &model_dir,
raw_predictor_
->
SaveModel
(
model_dir
,
model_type
,
record_info
);
}
CxxPaddleApiImpl
::~
CxxPaddleApiImpl
()
{
TargetWrapperCuda
::
DestroyEvent
(
input_event_
);
for
(
size_t
i
=
0
;
i
<
output_events_
.
size
();
++
i
)
{
TargetWrapperCuda
::
DestroyEvent
(
output_events_
[
i
]);
}
if
(
multi_stream_
)
{
TargetWrapperCuda
::
DestroyStream
(
*
io_stream_
);
TargetWrapperCuda
::
DestroyStream
(
*
exec_stream_
);
}
}
}
// namespace lite
namespace
lite_api
{
...
...
lite/api/cxx_api_test.cc
浏览文件 @
84bdddb2
...
...
@@ -84,7 +84,7 @@ TEST(CXXApi, clone_predictor) {
auto
*
cloned_output_tensor
=
cloned_predictor
->
GetOutput
(
0
);
int
step
=
50
;
for
(
in
t
i
=
0
;
i
<
output_tensor
->
data_size
();
i
+=
step
)
{
for
(
size_
t
i
=
0
;
i
<
output_tensor
->
data_size
();
i
+=
step
)
{
EXPECT_NEAR
(
output_tensor
->
data
<
float
>
()[
i
],
cloned_output_tensor
->
data
<
float
>
()[
i
],
1e-6
);
...
...
lite/api/paddle_api.cc
浏览文件 @
84bdddb2
...
...
@@ -30,6 +30,15 @@ Tensor::Tensor(void *raw) : raw_tensor_(raw) {}
// TODO(Superjomn) refine this by using another `const void* const_raw`;
Tensor
::
Tensor
(
const
void
*
raw
)
{
raw_tensor_
=
const_cast
<
void
*>
(
raw
);
}
#ifdef LITE_WITH_CUDA
Tensor
::
Tensor
(
void
*
raw
,
cudaStream_t
*
stream
)
:
raw_tensor_
(
raw
),
io_stream_
(
stream
)
{}
Tensor
::
Tensor
(
const
void
*
raw
,
cudaStream_t
*
stream
)
:
io_stream_
(
stream
)
{
raw_tensor_
=
const_cast
<
void
*>
(
raw
);
}
#endif
lite
::
Tensor
*
tensor
(
void
*
x
)
{
return
static_cast
<
lite
::
Tensor
*>
(
x
);
}
const
lite
::
Tensor
*
ctensor
(
void
*
x
)
{
return
static_cast
<
const
lite
::
Tensor
*>
(
x
);
...
...
@@ -93,8 +102,8 @@ void Tensor::CopyFromCpu(const T *src_data) {
data
,
src_data
,
num
*
sizeof
(
T
),
lite
::
IoDirection
::
HtoH
);
}
else
if
(
type
==
TargetType
::
kCUDA
)
{
#ifdef LITE_WITH_CUDA
lite
::
TargetWrapperCuda
::
Memcpy
S
ync
(
data
,
src_data
,
num
*
sizeof
(
T
),
lite
::
IoDirection
::
HtoD
);
lite
::
TargetWrapperCuda
::
Memcpy
As
ync
(
data
,
src_data
,
num
*
sizeof
(
T
),
lite
::
IoDirection
::
HtoD
,
*
io_stream_
);
#else
LOG
(
FATAL
)
<<
"Please compile the lib with CUDA."
;
#endif
...
...
@@ -113,8 +122,9 @@ void Tensor::CopyToCpu(T *data) const {
data
,
src_data
,
num
*
sizeof
(
T
),
lite
::
IoDirection
::
HtoH
);
}
else
if
(
type
==
TargetType
::
kCUDA
)
{
#ifdef LITE_WITH_CUDA
lite
::
TargetWrapperCuda
::
MemcpySync
(
data
,
src_data
,
num
*
sizeof
(
T
),
lite
::
IoDirection
::
DtoH
);
lite
::
TargetWrapperCuda
::
MemcpyAsync
(
data
,
src_data
,
num
*
sizeof
(
T
),
lite
::
IoDirection
::
DtoH
,
*
io_stream_
);
lite
::
TargetWrapperCuda
::
StreamSync
(
*
io_stream_
);
#else
LOG
(
FATAL
)
<<
"Please compile the lib with CUDA."
;
#endif
...
...
lite/api/paddle_api.h
浏览文件 @
84bdddb2
...
...
@@ -24,6 +24,10 @@
#include <vector>
#include "paddle_place.h" // NOLINT
#ifdef LITE_WITH_CUDA
#include "lite/backends/cuda/cuda_utils.h"
#endif
namespace
paddle
{
namespace
lite_api
{
...
...
@@ -61,8 +65,16 @@ struct LITE_API Tensor {
// Set LoD of the tensor
void
SetLoD
(
const
lod_t
&
lod
);
#ifdef LITE_WITH_CUDA
explicit
Tensor
(
void
*
raw
,
cudaStream_t
*
stream
);
explicit
Tensor
(
const
void
*
raw
,
cudaStream_t
*
stream
);
#endif
private:
void
*
raw_tensor_
;
#ifdef LITE_WITH_CUDA
cudaStream_t
*
io_stream_
{
nullptr
};
#endif
};
/// The PaddlePredictor defines the basic interfaces for different kinds of
...
...
@@ -155,6 +167,8 @@ class LITE_API CxxConfig : public ConfigBase {
#endif
#ifdef LITE_WITH_CUDA
bool
multi_stream_
{
false
};
cudaStream_t
*
exec_stream_
{
nullptr
};
cudaStream_t
*
io_stream_
{
nullptr
};
#endif
#ifdef LITE_WITH_MLU
lite_api
::
MLUCoreVersion
mlu_core_version_
{
lite_api
::
MLUCoreVersion
::
MLU_270
};
...
...
@@ -203,6 +217,12 @@ class LITE_API CxxConfig : public ConfigBase {
#ifdef LITE_WITH_CUDA
void
set_multi_stream
(
bool
multi_stream
)
{
multi_stream_
=
multi_stream
;
}
bool
multi_stream
()
const
{
return
multi_stream_
;
}
void
set_exec_stream
(
cudaStream_t
*
exec_stream
)
{
exec_stream_
=
exec_stream
;
}
void
set_io_stream
(
cudaStream_t
*
io_stream
)
{
io_stream_
=
io_stream
;
}
cudaStream_t
*
exec_stream
()
{
return
exec_stream_
;
}
cudaStream_t
*
io_stream
()
{
return
io_stream_
;
}
#endif
#ifdef LITE_WITH_MLU
...
...
lite/api/test_resnet50_lite_cuda.cc
0 → 100644
浏览文件 @
84bdddb2
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <vector>
#include "lite/api/paddle_api.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
#include "lite/api/test_helper.h"
#include "lite/backends/cuda/cuda_utils.h"
#include "lite/backends/cuda/target_wrapper.h"
#include "lite/utils/cp_logging.h"
namespace
paddle
{
namespace
lite
{
void
RunModel
(
lite_api
::
CxxConfig
config
)
{
auto
predictor
=
lite_api
::
CreatePaddlePredictor
(
config
);
const
int
batch_size
=
4
;
const
int
channels
=
3
;
const
int
height
=
224
;
const
int
width
=
224
;
auto
input_tensor
=
predictor
->
GetInput
(
0
);
std
::
vector
<
int64_t
>
input_shape
{
batch_size
,
channels
,
height
,
width
};
input_tensor
->
Resize
(
input_shape
);
std
::
vector
<
float
>
in_data
(
batch_size
*
channels
*
height
*
width
);
for
(
size_t
i
=
0
;
i
<
in_data
.
size
();
i
++
)
{
in_data
[
i
]
=
1
;
}
input_tensor
->
CopyFromCpu
<
float
,
lite_api
::
TargetType
::
kCUDA
>
(
in_data
.
data
());
for
(
int
i
=
0
;
i
<
FLAGS_warmup
;
++
i
)
{
predictor
->
Run
();
}
auto
start
=
GetCurrentUS
();
for
(
int
i
=
0
;
i
<
FLAGS_repeats
;
++
i
)
{
predictor
->
Run
();
}
LOG
(
INFO
)
<<
"================== Speed Report ==================="
;
LOG
(
INFO
)
<<
"Model: "
<<
FLAGS_model_dir
<<
", threads num "
<<
FLAGS_threads
<<
", warmup: "
<<
FLAGS_warmup
<<
", repeats: "
<<
FLAGS_repeats
<<
", spend "
<<
(
GetCurrentUS
()
-
start
)
/
FLAGS_repeats
/
1000.0
<<
" ms in average."
;
std
::
vector
<
float
>
results
{
0.000241399
,
0.000224183
,
0.000536607
,
0.000286386
,
0.000726817
,
0.000212999
,
0.00638716
,
0.00128127
,
0.000135354
,
0.000767598
,
0.000241399
,
0.000224183
,
0.000536607
,
0.000286386
,
0.000726817
,
0.000212999
,
0.00638716
,
0.00128127
,
0.000135354
,
0.000767598
,
0.000241399
,
0.000224183
,
0.000536607
,
0.000286386
,
0.000726817
,
0.000212999
,
0.00638716
,
0.00128127
,
0.000135354
,
0.000767598
,
0.000241399
,
0.000224183
,
0.000536607
,
0.000286386
,
0.000726817
,
0.000212999
,
0.00638716
,
0.00128127
,
0.000135354
,
0.000767598
};
auto
out
=
predictor
->
GetOutput
(
0
);
ASSERT_EQ
(
out
->
shape
().
size
(),
2u
);
ASSERT_EQ
(
out
->
shape
()[
0
],
batch_size
);
ASSERT_EQ
(
out
->
shape
()[
1
],
1000
);
std
::
vector
<
int64_t
>
shape
=
out
->
shape
();
int
out_num
=
std
::
accumulate
(
shape
.
begin
(),
shape
.
end
(),
1
,
std
::
multiplies
<
int
>
());
std
::
vector
<
float
>
out_cpu
(
out_num
);
out
->
CopyToCpu
(
out_cpu
.
data
());
int
step
=
100
;
for
(
size_t
i
=
0
;
i
<
results
.
size
();
++
i
)
{
EXPECT_NEAR
(
out_cpu
[
i
*
step
],
results
[
i
],
1e-6
);
}
}
TEST
(
Resnet50
,
config_no_stream
)
{
lite_api
::
CxxConfig
config
;
config
.
set_model_dir
(
FLAGS_model_dir
);
config
.
set_valid_places
({
lite_api
::
Place
{
TARGET
(
kCUDA
),
PRECISION
(
kFloat
)}});
RunModel
(
config
);
}
TEST
(
Resnet50
,
config_exec_stream
)
{
lite_api
::
CxxConfig
config
;
config
.
set_model_dir
(
FLAGS_model_dir
);
config
.
set_valid_places
({
lite_api
::
Place
{
TARGET
(
kCUDA
),
PRECISION
(
kFloat
)}});
cudaStream_t
exec_stream
;
lite
::
TargetWrapperCuda
::
CreateStream
(
&
exec_stream
);
config
.
set_exec_stream
(
&
exec_stream
);
RunModel
(
config
);
}
TEST
(
Resnet50
,
config_io_stream
)
{
lite_api
::
CxxConfig
config
;
config
.
set_model_dir
(
FLAGS_model_dir
);
config
.
set_valid_places
({
lite_api
::
Place
{
TARGET
(
kCUDA
),
PRECISION
(
kFloat
)}});
cudaStream_t
io_stream
;
lite
::
TargetWrapperCuda
::
CreateStream
(
&
io_stream
);
config
.
set_io_stream
(
&
io_stream
);
RunModel
(
config
);
}
TEST
(
Resnet50
,
config_all_stream
)
{
lite_api
::
CxxConfig
config
;
config
.
set_model_dir
(
FLAGS_model_dir
);
config
.
set_valid_places
({
lite_api
::
Place
{
TARGET
(
kCUDA
),
PRECISION
(
kFloat
)}});
cudaStream_t
exec_stream
;
lite
::
TargetWrapperCuda
::
CreateStream
(
&
exec_stream
);
config
.
set_exec_stream
(
&
exec_stream
);
cudaStream_t
io_stream
;
lite
::
TargetWrapperCuda
::
CreateStream
(
&
io_stream
);
config
.
set_io_stream
(
&
io_stream
);
RunModel
(
config
);
}
TEST
(
Resnet50
,
config_multi_exec_stream
)
{
lite_api
::
CxxConfig
config
;
config
.
set_model_dir
(
FLAGS_model_dir
);
config
.
set_valid_places
({
lite_api
::
Place
{
TARGET
(
kCUDA
),
PRECISION
(
kFloat
)}});
config
.
set_multi_stream
(
true
);
RunModel
(
config
);
}
}
// namespace lite
}
// namespace paddle
lite/backends/cuda/target_wrapper.h
浏览文件 @
84bdddb2
...
...
@@ -15,6 +15,7 @@
#pragma once
#include <cuda.h>
#include <cuda_runtime.h>
#include "lite/backends/cuda/cuda_utils.h"
#include "lite/core/target_wrapper.h"
namespace
paddle
{
...
...
@@ -31,34 +32,40 @@ class TargetWrapper<TARGET(kCUDA)> {
static
size_t
num_devices
();
static
size_t
maximum_stream
()
{
return
0
;
}
static
size_
t
GetCurDevice
()
{
static
in
t
GetCurDevice
()
{
int
dev_id
;
cudaGetDevice
(
&
dev_id
);
CUDA_CALL
(
cudaGetDevice
(
&
dev_id
)
);
return
dev_id
;
}
static
void
CreateStream
(
stream_t
*
stream
)
{}
static
void
DestroyStream
(
const
stream_t
&
stream
)
{}
static
void
CreateStream
(
stream_t
*
stream
)
{
CUDA_CALL
(
cudaStreamCreate
(
stream
));
}
static
void
DestroyStream
(
const
stream_t
&
stream
)
{
CUDA_CALL
(
cudaStreamDestroy
(
stream
));
}
static
void
CreateEvent
(
event_t
*
event
)
{
cudaEventCreate
(
event
);
}
static
void
CreateEvent
(
event_t
*
event
)
{
CUDA_CALL
(
cudaEventCreate
(
event
)
);
}
static
void
CreateEventWithFlags
(
event_t
*
event
,
unsigned
int
flags
=
cudaEventDisableTiming
)
{
cudaEventCreateWithFlags
(
event
,
flags
);
CUDA_CALL
(
cudaEventCreateWithFlags
(
event
,
flags
));
}
static
void
DestroyEvent
(
const
event_t
&
event
)
{
CUDA_CALL
(
cudaEventDestroy
(
event
));
}
static
void
DestroyEvent
(
const
event_t
&
event
)
{
cudaEventDestroy
(
event
);
}
static
void
RecordEvent
(
const
event_t
&
event
)
{}
static
void
RecordEvent
(
const
event_t
&
event
,
const
stream_t
&
stream
)
{
cudaEventRecord
(
event
,
stream
);
CUDA_CALL
(
cudaEventRecord
(
event
,
stream
)
);
}
static
void
SyncEvent
(
const
event_t
&
event
)
{}
static
void
StreamSync
(
const
stream_t
&
stream
)
{
cudaStreamSynchronize
(
stream
);
CUDA_CALL
(
cudaStreamSynchronize
(
stream
)
);
}
static
void
StreamSync
(
const
stream_t
&
stream
,
const
event_t
&
event
)
{
cudaStreamWaitEvent
(
stream
,
event
,
0
);
CUDA_CALL
(
cudaStreamWaitEvent
(
stream
,
event
,
0
)
);
}
static
void
DeviceSync
()
{
cudaDeviceSynchronize
(
);
}
static
void
DeviceSync
()
{
CUDA_CALL
(
cudaDeviceSynchronize
()
);
}
static
void
*
Malloc
(
size_t
size
);
static
void
Free
(
void
*
ptr
);
...
...
lite/core/device_info.h
浏览文件 @
84bdddb2
...
...
@@ -26,6 +26,10 @@
namespace
paddle
{
namespace
lite
{
// kMaxStream is determined by multi-stream performance testing, may change with
// default multi-stream algorithm changes.
constexpr
int
kMaxStream
=
6
;
#if ((defined LITE_WITH_ARM) || (defined LITE_WITH_MLU))
typedef
enum
{
...
...
@@ -159,7 +163,7 @@ class Env {
static
Devs
*
devs
=
new
Devs
();
return
*
devs
;
}
static
void
Init
(
int
max_stream
=
6
)
{
static
void
Init
(
int
max_stream
=
lite
::
kMaxStream
)
{
#ifdef LITE_WITH_MLU
CNRT_CALL
(
cnrtInit
(
0
));
#endif
...
...
@@ -305,6 +309,7 @@ class Device<TARGET(kCUDA)> {
bool
has_hmma_
;
bool
has_imma_
;
int
runtime_version_
;
// Currently used in exec multi-stream.
std
::
vector
<
cudaStream_t
>
exec_stream_
;
std
::
vector
<
cudaStream_t
>
io_stream_
;
};
...
...
lite/core/optimizer.h
浏览文件 @
84bdddb2
...
...
@@ -40,7 +40,9 @@ class Optimizer {
public:
Optimizer
()
{}
Optimizer
(
Program
&&
program
,
const
std
::
vector
<
Place
>&
valid_places
)
{
Optimizer
(
Program
&&
program
,
const
std
::
vector
<
Place
>&
valid_places
,
const
std
::
vector
<
std
::
string
>&
passes
)
{
program_
=
&
program
;
valid_places_
=
valid_places
;
CHECK
(
!
valid_places
.
empty
())
<<
"At least one valid_place should be set"
;
...
...
@@ -50,7 +52,7 @@ class Optimizer {
factor
.
ConsiderPrecision
();
factor
.
ConsiderDataLayout
();
Run
(
std
::
move
(
program
),
valid_places
,
factor
,
{}
);
Run
(
std
::
move
(
program
),
valid_places
,
factor
,
passes
);
}
void
Run
(
Program
&&
program
,
...
...
lite/core/program.cc
浏览文件 @
84bdddb2
...
...
@@ -73,7 +73,7 @@ void RuntimeProgram::UpdateVarsOfProgram(cpp::ProgramDesc* desc) {
std
::
map
<
std
::
string
,
cpp
::
VarDesc
>
origin_var_maps
;
auto
&
main_block
=
*
desc
->
GetBlock
<
cpp
::
BlockDesc
>
(
0
);
auto
var_size
=
main_block
.
VarsSize
();
for
(
int
i
=
0
;
i
<
var_size
;
i
++
)
{
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
var_size
)
;
i
++
)
{
auto
v
=
main_block
.
GetVar
<
cpp
::
VarDesc
>
(
i
);
auto
name
=
v
->
Name
();
origin_var_maps
.
emplace
(
name
,
*
v
);
...
...
@@ -144,6 +144,15 @@ void RuntimeProgram::UpdateVarsOfProgram(cpp::ProgramDesc* desc) {
}
}
}
#ifdef LITE_WITH_CUDA
void
RuntimeProgram
::
UpdateContext
(
cudaStream_t
*
exec
,
cudaStream_t
*
io
)
{
for
(
auto
&
inst
:
instructions_
)
{
inst
.
UpdateContext
(
exec
,
io
);
}
}
#endif
void
RuntimeProgram
::
Run
()
{
#ifdef LITE_WITH_PRECISION_PROFILE
auto
inst_precision_profiler
=
paddle
::
lite
::
profile
::
PrecisionProfiler
();
...
...
@@ -210,7 +219,8 @@ void Program::Build(const cpp::ProgramDesc& prog) {
if
(
op_type
==
"while"
||
op_type
==
"conditional_block"
||
op_type
==
"subgraph"
)
{
auto
sub_block_idx
=
op_desc
.
GetAttr
<
int32_t
>
(
"sub_block"
);
CHECK
(
sub_block_idx
>=
0
&&
sub_block_idx
<
program
.
BlocksSize
())
CHECK
(
sub_block_idx
>=
0
&&
sub_block_idx
<
static_cast
<
int
>
(
program
.
BlocksSize
()))
<<
"Invalid attribute sub_block("
<<
sub_block_idx
<<
") for "
<<
op_type
;
auto
sub_block_desc
=
...
...
lite/core/program.h
浏览文件 @
84bdddb2
...
...
@@ -128,6 +128,12 @@ struct Instruction {
}
}
void
Sync
()
const
{
kernel_
->
mutable_context
()
->
As
<
CUDAContext
>
().
Sync
();
}
void
UpdateContext
(
cudaStream_t
*
exec
,
cudaStream_t
*
io
)
{
if
(
kernel_
->
target
()
==
TargetType
::
kCUDA
)
{
kernel_
->
mutable_context
()
->
As
<
CUDAContext
>
().
SetExecStream
(
*
exec
);
kernel_
->
mutable_context
()
->
As
<
CUDAContext
>
().
SetIoStream
(
*
io
);
}
}
#endif
#ifdef LITE_WITH_PROFILE
...
...
@@ -215,6 +221,12 @@ class LITE_API RuntimeProgram {
// be added in vars_.
void
UpdateVarsOfProgram
(
cpp
::
ProgramDesc
*
desc
);
#ifdef LITE_WITH_CUDA
// UpdateContext will update the exec stream and io stream of all kernels in
// the program.
void
UpdateContext
(
cudaStream_t
*
exec
,
cudaStream_t
*
io
);
#endif
private:
RuntimeProgram
(
const
RuntimeProgram
&
)
=
delete
;
std
::
vector
<
Instruction
>
instructions_
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录