cxx_api_impl.cc 6.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/cxx_api.h"
16 17
#include <memory>
#include <mutex>  //NOLINT
18
#include <string>
Y
Yan Chunwei 已提交
19
#include "lite/api/paddle_api.h"
20
#include "lite/core/device_info.h"
21
#include "lite/core/version.h"
22 23 24 25 26

#ifndef LITE_ON_TINY_PUBLISH
#include "lite/api/paddle_use_passes.h"
#endif

27
#if (defined LITE_WITH_X86) && (defined PADDLE_WITH_MKLML) && \
28
    !(defined LITE_ON_MODEL_OPTIMIZE_TOOL) && !defined(__APPLE__)
29 30 31
#include <omp.h>
#include "lite/backends/x86/mklml.h"
#endif
Y
Yan Chunwei 已提交
32 33 34 35
namespace paddle {
namespace lite {

void CxxPaddleApiImpl::Init(const lite_api::CxxConfig &config) {
36
  config_ = config;
37 38 39
  if (!status_is_cloned_) {
    auto places = config.valid_places();
    std::vector<std::string> passes = config.get_passes_internal();
40
#ifdef LITE_WITH_CUDA
41 42 43 44 45 46 47 48 49 50
    // if kCUDA is included in valid places, it should be initialized first,
    // otherwise skip this step.
    for (auto &p : places) {
      if (p.target == TARGET(kCUDA)) {
        Env<TARGET(kCUDA)>::Init();
        if (config_.multi_stream()) {
          passes = {"multi_stream_analysis_pass"};
          VLOG(3) << "add pass: " << passes[0];
        }
        break;
51
      }
52
    }
53
#endif
54
#ifdef LITE_WITH_MLU
55 56 57 58 59 60 61
    Env<TARGET(kMLU)>::Init();
    lite::DeviceInfo::Global().SetMLURunMode(config.mlu_core_version(),
                                             config.mlu_core_number(),
                                             config.mlu_use_first_conv(),
                                             config.mlu_first_conv_mean(),
                                             config.mlu_first_conv_std(),
                                             config.mlu_input_layout());
62
#endif  // LITE_WITH_MLU
63 64 65 66 67 68 69 70 71 72 73 74
    auto use_layout_preprocess_pass =
        config.model_dir().find("OPENCL_PRE_PRECESS");
    VLOG(1) << "use_layout_preprocess_pass:" << use_layout_preprocess_pass;
    if (places[0].target == TARGET(kOpenCL) &&
        use_layout_preprocess_pass != std::string::npos) {
      passes = {"type_layout_cast_preprocess_pass"};
      VLOG(1) << "add pass:" << passes[0];
    }
    raw_predictor_->Build(config, places, passes);
  } else {
    raw_predictor_->PrepareFeedFetch();
    CHECK(raw_predictor_) << "The Predictor can not be nullptr in Clone mode.";
75
  }
T
TianXiaogang 已提交
76 77
  mode_ = config.power_mode();
  threads_ = config.threads();
78
#if (defined LITE_WITH_X86) && (defined PADDLE_WITH_MKLML) && \
79
    !(defined LITE_ON_MODEL_OPTIMIZE_TOOL)
80
  int num_threads = config.x86_math_library_num_threads();
81 82 83
  int real_num_threads = num_threads > 1 ? num_threads : 1;
  paddle::lite::x86::MKL_Set_Num_Threads(real_num_threads);
  omp_set_num_threads(real_num_threads);
84
  VLOG(3) << "set_x86_math_library_math_threads() is set successfully and the "
85
             "number of threads is:"
86
          << real_num_threads;
87
#endif
Y
Yan Chunwei 已提交
88 89 90
}

std::unique_ptr<lite_api::Tensor> CxxPaddleApiImpl::GetInput(int i) {
91
  auto *x = raw_predictor_->GetInput(i);
Y
Yan Chunwei 已提交
92 93 94 95 96
  return std::unique_ptr<lite_api::Tensor>(new lite_api::Tensor(x));
}

std::unique_ptr<const lite_api::Tensor> CxxPaddleApiImpl::GetOutput(
    int i) const {
97
  const auto *x = raw_predictor_->GetOutput(i);
Y
Yan Chunwei 已提交
98 99 100
  return std::unique_ptr<lite_api::Tensor>(new lite_api::Tensor(x));
}

S
sangoly 已提交
101
std::vector<std::string> CxxPaddleApiImpl::GetInputNames() {
102
  return raw_predictor_->GetInputNames();
103 104
}

105
std::vector<std::string> CxxPaddleApiImpl::GetParamNames() {
106
  return raw_predictor_->GetParamNames();
107 108
}

S
sangoly 已提交
109
std::vector<std::string> CxxPaddleApiImpl::GetOutputNames() {
110
  return raw_predictor_->GetOutputNames();
111 112
}

T
TianXiaogang 已提交
113 114 115 116
void CxxPaddleApiImpl::Run() {
#ifdef LITE_WITH_ARM
  lite::DeviceInfo::Global().SetRunMode(mode_, threads_);
#endif
117
  raw_predictor_->Run();
T
TianXiaogang 已提交
118
}
Y
Yan Chunwei 已提交
119

120 121
std::shared_ptr<lite_api::PaddlePredictor> CxxPaddleApiImpl::Clone() {
  std::lock_guard<std::mutex> lock(mutex_);
122 123 124 125 126 127 128 129 130 131 132
  auto predictor =
      std::make_shared<lite::CxxPaddleApiImpl>(raw_predictor_->Clone());
  predictor->Init(config_);
  return predictor;
}

std::shared_ptr<lite_api::PaddlePredictor> CxxPaddleApiImpl::Clone(
    const std::vector<std::string> &var_names) {
  std::lock_guard<std::mutex> lock(mutex_);
  auto predictor = std::make_shared<lite::CxxPaddleApiImpl>(
      raw_predictor_->Clone(var_names));
133 134 135 136
  predictor->Init(config_);
  return predictor;
}

137 138
std::string CxxPaddleApiImpl::GetVersion() const { return version(); }

Y
Yan Chunwei 已提交
139 140
std::unique_ptr<const lite_api::Tensor> CxxPaddleApiImpl::GetTensor(
    const std::string &name) const {
141
  auto *x = raw_predictor_->GetTensor(name);
Y
Yan Chunwei 已提交
142 143 144
  return std::unique_ptr<const lite_api::Tensor>(new lite_api::Tensor(x));
}

145 146 147
std::unique_ptr<lite_api::Tensor> CxxPaddleApiImpl::GetMutableTensor(
    const std::string &name) {
  return std::unique_ptr<lite_api::Tensor>(
148
      new lite_api::Tensor(raw_predictor_->GetMutableTensor(name)));
149 150
}

151 152 153
std::unique_ptr<lite_api::Tensor> CxxPaddleApiImpl::GetInputByName(
    const std::string &name) {
  return std::unique_ptr<lite_api::Tensor>(
154
      new lite_api::Tensor(raw_predictor_->GetInputByName(name)));
155 156
}

Y
Yan Chunwei 已提交
157
void CxxPaddleApiImpl::SaveOptimizedModel(const std::string &model_dir,
158 159
                                          lite_api::LiteModelType model_type,
                                          bool record_info) {
160
  raw_predictor_->SaveModel(model_dir, model_type, record_info);
Y
Yan Chunwei 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
}

}  // namespace lite

namespace lite_api {

template <>
std::shared_ptr<PaddlePredictor> CreatePaddlePredictor(
    const CxxConfig &config) {
  auto x = std::make_shared<lite::CxxPaddleApiImpl>();
  x->Init(config);
  return x;
}

}  // namespace lite_api
}  // namespace paddle