cxx_api_impl.cc 3.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/cxx_api.h"
16
#include <string>
Y
Yan Chunwei 已提交
17
#include "lite/api/paddle_api.h"
18
#include "lite/core/device_info.h"
19
#include "lite/core/version.h"
Y
Yan Chunwei 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

namespace paddle {
namespace lite {

class CxxPaddleApiImpl : public lite_api::PaddlePredictor {
 public:
  CxxPaddleApiImpl();

  /// Create a new predictor from a config.
  void Init(const lite_api::CxxConfig &config);

  std::unique_ptr<lite_api::Tensor> GetInput(int i) override;

  std::unique_ptr<const lite_api::Tensor> GetOutput(int i) const override;

  void Run() override;

37 38
  std::string GetVersion() const override;

Y
Yan Chunwei 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52
  std::unique_ptr<const lite_api::Tensor> GetTensor(
      const std::string &name) const override;

  void SaveOptimizedModel(const std::string &model_dir,
                          lite_api::LiteModelType model_type =
                              lite_api::LiteModelType::kProtobuf) override;

 private:
  Predictor raw_predictor_;
};

CxxPaddleApiImpl::CxxPaddleApiImpl() {}

void CxxPaddleApiImpl::Init(const lite_api::CxxConfig &config) {
53 54 55
#ifdef LITE_WITH_CUDA
  Env<TARGET(kCUDA)>::Init();
#endif
Y
Yan Chunwei 已提交
56 57
  auto places = config.valid_places();
  places.emplace_back(TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny));
58
  raw_predictor_.Build(config, places);
Y
Yan Chunwei 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
}

std::unique_ptr<lite_api::Tensor> CxxPaddleApiImpl::GetInput(int i) {
  auto *x = raw_predictor_.GetInput(i);
  return std::unique_ptr<lite_api::Tensor>(new lite_api::Tensor(x));
}

std::unique_ptr<const lite_api::Tensor> CxxPaddleApiImpl::GetOutput(
    int i) const {
  const auto *x = raw_predictor_.GetOutput(i);
  return std::unique_ptr<lite_api::Tensor>(new lite_api::Tensor(x));
}

void CxxPaddleApiImpl::Run() { raw_predictor_.Run(); }

74 75
std::string CxxPaddleApiImpl::GetVersion() const { return version(); }

Y
Yan Chunwei 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
std::unique_ptr<const lite_api::Tensor> CxxPaddleApiImpl::GetTensor(
    const std::string &name) const {
  auto *x = raw_predictor_.GetTensor(name);
  return std::unique_ptr<const lite_api::Tensor>(new lite_api::Tensor(x));
}

void CxxPaddleApiImpl::SaveOptimizedModel(const std::string &model_dir,
                                          lite_api::LiteModelType model_type) {
  raw_predictor_.SaveModel(model_dir, model_type);
}

}  // namespace lite

namespace lite_api {

template <>
std::shared_ptr<PaddlePredictor> CreatePaddlePredictor(
    const CxxConfig &config) {
  auto x = std::make_shared<lite::CxxPaddleApiImpl>();
  x->Init(config);
  return x;
}

}  // namespace lite_api
}  // namespace paddle