paddle_mobile.cpp 17.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "io/paddle_mobile.h"
16 17
#include <utility>
#include "common/common.h"
18 19 20
#ifdef _OPENMP
#include <omp.h>
#endif  // _OPENMP
21
#ifdef PADDLE_MOBILE_CL
22 23
#include <CL/cl.h>
#include "framework/cl/cl_tensor.h"
24
#endif
25
#include "operators/math/gemm.h"
26

27 28
namespace paddle_mobile {

29 30
template <typename Device, typename T>
void PaddleMobile<Device, T>::SetThreadNum(int num) {
31 32 33
#ifdef _OPENMP
  omp_set_num_threads(num);
#endif
34
}
35

36 37 38
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Load(const std::string &dirname,
                                       bool optimize, bool quantification,
39
                                       int batch_size, bool lod_mode) {
40
  if (loader_.get() == nullptr) {
41
    loader_ = std::make_shared<framework::Loader<Device, T>>();
42 43 44 45 46
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }

  if (executor_.get() == nullptr) {
47
    executor_ = std::make_shared<framework::Executor<Device, T>>(
L
liuruilong 已提交
48 49
        loader_->Load(dirname, optimize, quantification), config_, batch_size,
        optimize, lod_mode);
50 51 52 53
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

54
  return PMSuccess;
55 56
}

57 58 59 60
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Load(const std::string &model_path,
                                       const std::string &para_path,
                                       bool optimize, bool quantification,
61
                                       int batch_size, bool lod_mode) {
62
  if (loader_.get() == nullptr) {
63
    loader_ = std::make_shared<framework::Loader<Device, T>>();
64 65 66 67 68
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }

  if (executor_.get() == nullptr) {
69
    executor_ = std::make_shared<framework::Executor<Device, T>>(
L
liuruilong 已提交
70
        loader_->Load(model_path, para_path, optimize, quantification), config_,
71
        batch_size, optimize, lod_mode);
72 73 74 75
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

76
  return PMSuccess;
77 78
}

79
template <typename Device, typename T>
80 81 82 83 84 85 86 87 88 89 90 91 92 93
PMStatus PaddleMobile<Device, T>::Load(const PaddleMobileConfig &config) {
  if (!config.model_dir.empty()) {
    return this->Load(config.model_dir, config.optimize, config.quantification,
                      config.batch_size, config.lod_mode);
  } else if (!config.prog_file.empty() && !config.param_file.empty()) {
    return this->Load(config.prog_file, config.param_file, config.optimize,
                      config.quantification, config.batch_size,
                      config.lod_mode);
  } else {
    LOG(kLOG_ERROR) << "Failed to load inference model";
    return PMNotInitialized;
  }
}

94
template <typename Device, typename T>
L
liuruilong 已提交
95 96 97
bool PaddleMobile<Device, T>::LoadCombinedMemory(
    size_t model_len, const uint8_t *model_buf, size_t combined_params_len,
    uint8_t *combined_params_buf, bool optimize, bool quantification,
98
    int batch_size, bool lod_mode) {
99
  if (loader_.get() == nullptr) {
100
    loader_ = std::make_shared<framework::Loader<Device, T>>();
101 102 103 104
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }
  if (executor_.get() == nullptr) {
105
    executor_ = std::make_shared<framework::Executor<Device, T>>(
106
        loader_->LoadCombinedMemory(model_len, model_buf, combined_params_len,
L
liuruilong 已提交
107
                                    combined_params_buf, optimize,
L
liuruilong 已提交
108 109
                                    quantification),
        config_, batch_size, optimize, lod_mode);
110 111 112 113
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

114 115 116 117 118 119 120 121
  return PMSuccess;
}

template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(const framework::Tensor &input) {
  std::vector<std::pair<std::string, framework::Tensor>> inputs;
  inputs.push_back(std::make_pair("feed", input));
  return this->Predict(inputs);
122
}
123 124 125 126 127 128 129 130 131 132 133 134

template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(const framework::LoDTensor &input) {
  std::vector<std::pair<std::string, framework::LoDTensor>> inputs;
  inputs.push_back(std::make_pair("feed", input));
  return this->Predict(inputs);
}

template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(
    const std::vector<std::pair<std::string, framework::Tensor>> &inputs) {
  return executor_->Predict(inputs);
135 136
}

137 138 139 140
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(
    const std::vector<std::pair<std::string, framework::LoDTensor>> &inputs) {
  return executor_->Predict(inputs);
xiebaiyuan's avatar
xiebaiyuan 已提交
141 142
}

143 144 145
template <typename Device, typename T>
std::vector<T> PaddleMobile<Device, T>::Predict(
    const std::vector<T> &input, const std::vector<int64_t> &dims) {
146 147 148
  return executor_->Predict(input, dims);
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict() {
  return executor_->Predict();
}

template <typename Device, typename T>
void PaddleMobile<Device, T>::Feed(const framework::Tensor &input,
                                   const std::string &var_name) {
  executor_->SetInput(input, var_name);
}

template <typename Device, typename T>
void PaddleMobile<Device, T>::Feed(const framework::LoDTensor &input,
                                   const std::string &var_name) {
  executor_->SetInput(input, var_name);
}

typedef std::shared_ptr<framework::LoDTensor> LoDTensorPtr;
template <typename Device, typename T>
LoDTensorPtr PaddleMobile<Device, T>::Fetch(const std::string &var_name) {
  return executor_->GetOutput(var_name);
}

template <typename Device, typename T>
void PaddleMobile<Device, T>::Clear() {
174 175 176
  executor_ = nullptr;
  loader_ = nullptr;
}
177 178 179

template <typename Device, typename T>
double PaddleMobile<Device, T>::GetPredictTime() {}
Y
yangfei 已提交
180 181 182

#ifdef PADDLE_MOBILE_CPU
template <>
183
double PaddleMobile<CPU, float>::GetPredictTime() {
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
  int m = 32;
  int n = 224 * 224;
  int k = 27;
  int lda = k;
  int ldb = n;
  int ldc = n;
  float *a =
      static_cast<float *>(paddle_mobile::memory::Alloc(sizeof(float) * m * k));
  float *b =
      static_cast<float *>(paddle_mobile::memory::Alloc(sizeof(float) * k * n));
  float *c =
      static_cast<float *>(paddle_mobile::memory::Alloc(sizeof(float) * m * n));
  int t1 = 1;
  int t2 = 1;
  for (int i = 0; i < m * k; ++i) {
199
    a[i] = t1 + rand() % t2;  // NOLINT
200 201
  }
  for (int i = 0; i < k * n; ++i) {
202
    b[i] = t1 + rand() % t2;  // NOLINT
203
  }
204 205

  operators::math::Gemm gemm;
206
  auto time1 = paddle_mobile::time();
Y
yangfei 已提交
207
  gemm.Sgemm(m, n, k, static_cast<float>(1), a, lda, b, ldb,
208 209
             static_cast<float>(0), c, ldc, false,
             static_cast<float *>(nullptr));
210 211 212 213 214 215 216
  auto time2 = paddle_mobile::time();
  double cost = paddle_mobile::time_diff(time1, time2);
  paddle_mobile::memory::Free(a);
  paddle_mobile::memory::Free(b);
  paddle_mobile::memory::Free(c);
  return cost;
}
Y
yangfei 已提交
217
#endif
218

219
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
220 221
template <typename Device, typename T>
void PaddleMobile<Device, T>::InjectVariable(const framework::Tensor &t,
222
                                             std::string var_name) {
223 224 225
  executor_->InjectVariable(t, var_name);
}

H
hjchen2 已提交
226 227
template <typename Device, typename T>
void PaddleMobile<Device, T>::FeedData(const framework::Tensor &t) {
228 229 230
  executor_->FeedData(t);
}

H
hjchen2 已提交
231 232
template <typename Device, typename T>
std::shared_ptr<framework::Tensor> PaddleMobile<Device, T>::FetchResult(
233
    int id) {
234 235 236
  return executor_->FetchResult(id);
}

H
hjchen2 已提交
237 238
template <typename Device, typename T>
void PaddleMobile<Device, T>::Predict_From_To(int start, int end) {
239 240 241
  executor_->Predict_From_To(start, end);
}

H
hjchen2 已提交
242 243
template <typename Device, typename T>
void PaddleMobile<Device, T>::Predict_From(int start) {
244 245 246
  executor_->Predict_From(start);
}

H
hjchen2 已提交
247 248
template <typename Device, typename T>
void PaddleMobile<Device, T>::Predict_To(int end) {
249 250 251 252
  executor_->Predict_To(end);
}
#endif

Y
yangfei 已提交
253
#ifdef PADDLE_MOBILE_CL
Z
zhangyang 已提交
254
static std::mutex lc;
H
hjchen2 已提交
255 256
template <typename Device, typename T>
void PaddleMobile<Device, T>::SetCLPath(std::string path) {
Y
yangfei 已提交
257 258 259 260
  std::lock_guard<std::mutex> lock(lc);
  if (framework::CLEngine::Instance()->GetCLPath() == "") {
    framework::CLEngine::Instance()->setClPath(path);
  }
Y
yangfei 已提交
261
}
262
template <>
H
hjchen2 已提交
263
double PaddleMobile<GPU_CL, float>::GetPredictTime() {
264 265 266
  cl_int status;
  cl_uint nPlatform;
  clGetPlatformIDs(0, NULL, &nPlatform);
Y
yangfei 已提交
267 268
  cl_platform_id *listPlatform = reinterpret_cast<cl_platform_id *>(
      malloc(nPlatform * sizeof(cl_platform_id)));
269 270 271 272
  clGetPlatformIDs(nPlatform, listPlatform, NULL);
  cl_uint nDevice = 0;
  clGetDeviceIDs(listPlatform[0], CL_DEVICE_TYPE_GPU, 0, NULL, &nDevice);
  cl_device_id *listDevice =
Y
yangfei 已提交
273
      reinterpret_cast<cl_device_id *>(malloc(nDevice * sizeof(cl_device_id)));
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
  clGetDeviceIDs(listPlatform[0], CL_DEVICE_TYPE_GPU, nDevice, listDevice,
                 NULL);
  cl_context context =
      clCreateContext(NULL, nDevice, listDevice, NULL, NULL, &status);
  cl_command_queue queue =
      clCreateCommandQueue(context, listDevice[0], 0, &status);

  int n = 1;
  int c = 3;
  int h = 224;
  int w = 224;
  float *input = static_cast<float *>(
      paddle_mobile::memory::Alloc(sizeof(float) * 3 * 224 * 224));
  float *filter = static_cast<float *>(
      paddle_mobile::memory::Alloc(sizeof(float) * 32 * 27));
  int input_w = w * (c + 3) / 4;
  int input_h = n * h;
  int filter_w = 3 * (3 + 3) / 4;
  int filter_h = 32 * 3;
  int output_w = 224 * (32 + 3) / 4;
  int output_h = 1 * 224;

  framework::DDim input_dims = {1, 3, 224, 224};
  framework::CLTensor input_cl_tensor(context, queue);
  input_cl_tensor.Resize(input_dims);
  cl_mem inputBuffer = input_cl_tensor.mutable_with_data<float>(input);

  framework::DDim filter_dims = {32, 3, 3, 3};
  framework::CLTensor filter_cl_tensor(context, queue);
  input_cl_tensor.Resize(filter_dims);
  cl_mem filterBuffer = filter_cl_tensor.mutable_with_data<float>(filter);

  cl_mem cl_filter_image = NULL;
  cl_mem cl_input_image = NULL;
  cl_mem cl_output_image = NULL;
  cl_image_format cf = {.image_channel_order = CL_RGBA,
                        .image_channel_data_type = CL_HALF_FLOAT};
  cl_input_image = clCreateImage2D(context, CL_MEM_READ_WRITE | 0, &cf, input_w,
                                   input_h, 0, NULL, &status);
  cl_filter_image = clCreateImage2D(context, CL_MEM_READ_WRITE | 0, &cf,
                                    filter_w, filter_h, 0, NULL, &status);
  cl_output_image = clCreateImage2D(context, CL_MEM_READ_WRITE | 0, &cf,
                                    output_w, output_h, 0, NULL, &status);
  char *code;
  std::string path = framework::CLEngine::Instance()->GetCLPath() +
                     "/cl_kernel/feed_kernel.cl";
  size_t length = readText(path.c_str(), &code);
  cl_program program = clCreateProgramWithSource(
      context, 1, (const char **)&code, &length, NULL);
  std::string path1 = "-cl-fast-relaxed-math -I " +
                      framework::CLEngine::Instance()->GetCLPath() +
                      "/cl_kernel";
  clBuildProgram(program, 0, 0, path1.c_str(), NULL, NULL);
  cl_kernel kernel = clCreateKernel(program, "feed", &status);

Y
yangfei 已提交
329 330 331 332 333 334
  int out_H = 224;
  int out_W = 224;
  int out_C = 3;
  int Stride2 = out_C * out_H * out_W;
  int Stride1 = out_H * out_W;
  int Stride0 = out_W;
335 336 337 338
  status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &inputBuffer);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_input_image);
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
339
  status = clSetKernelArg(kernel, 2, sizeof(cl_int), &out_H);
340
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
341
  status = clSetKernelArg(kernel, 3, sizeof(cl_int), &out_W);
342
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
343 344 345 346 347 348 349
  status = clSetKernelArg(kernel, 4, sizeof(cl_int), &out_C);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 5, sizeof(cl_int), &Stride0);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 6, sizeof(cl_int), &Stride1);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 7, sizeof(cl_int), &Stride2);
350 351
  CL_CHECK_ERRORS(status);

Y
yangfei 已提交
352
  size_t global_work_size[3] = {1, 224, 224};
353 354 355

  //  cl_event out_event = param.Out()->GetClEvent();

Y
yangfei 已提交
356
  status = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size,
357 358 359
                                  NULL, 0, NULL, NULL);
  CL_CHECK_ERRORS(status);

Y
yangfei 已提交
360 361 362 363 364 365 366
  out_H = 3;
  out_W = 3;
  out_C = 3;
  Stride2 = out_C * out_H * out_W;
  Stride1 = out_H * out_W;
  Stride0 = out_W;

367 368 369 370
  status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &filterBuffer);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_filter_image);
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
371 372 373
  status = clSetKernelArg(kernel, 2, sizeof(cl_int), &out_H);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 3, sizeof(cl_int), &out_W);
374
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
375
  status = clSetKernelArg(kernel, 4, sizeof(cl_int), &out_C);
376
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
377 378 379 380 381
  status = clSetKernelArg(kernel, 5, sizeof(cl_int), &Stride0);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 6, sizeof(cl_int), &Stride1);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 7, sizeof(cl_int), &Stride2);
382 383
  CL_CHECK_ERRORS(status);

Y
yangfei 已提交
384
  size_t global_work_size1[3] = {1, 3, 96};
385 386 387

  //  cl_event out_event = param.Out()->GetClEvent();

Y
yangfei 已提交
388
  status = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size1,
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
                                  NULL, 0, NULL, NULL);
  CL_CHECK_ERRORS(status);

  clFinish(queue);
  queue = clCreateCommandQueue(context, listDevice[0], 0, &status);

  path = framework::CLEngine::Instance()->GetCLPath() +
         "/cl_kernel/conv_kernel.cl";
  size_t length1 = readText(path.c_str(), &code);
  program = clCreateProgramWithSource(context, 1, (const char **)&code,
                                      &length1, &status);
  CL_CHECK_ERRORS(status);
  clBuildProgram(program, 0, 0, path1.c_str(), NULL, NULL);
  kernel = clCreateKernel(program, "conv_3x3", &status);
  CL_CHECK_ERRORS(status);

  int c_block = (32 + 3) / 4;
  int nh = n * h;
  int stride = 1;
  int offset = 0;
  int input_c = (c + 3) / 4;
  int dilation = 1;
  int input_width = 224;
  int input_height = 224;
  int output_width = 224;
  int output_height = 224;
  status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 1, sizeof(int), &w);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &cl_input_image);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &cl_filter_image);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &cl_output_image);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 6, sizeof(int), &stride);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 7, sizeof(int), &offset);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 8, sizeof(int), &input_c);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 9, sizeof(int), &dilation);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 10, sizeof(int), &input_width);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 11, sizeof(int), &input_height);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 12, sizeof(int), &output_width);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 13, sizeof(int), &output_height);
  CL_CHECK_ERRORS(status);

  //  cl_event out_event = param.Output()->GetClEvent();
  //  cl_event wait_event = param.Input()->GetClEvent();
  size_t global_work_size2[3] = {8, 224, 224};
  auto time1 = paddle_mobile::time();
  status = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size2,
                                  NULL, 0, NULL, NULL);
  CL_CHECK_ERRORS(status);
  clFinish(queue);
  auto time2 = paddle_mobile::time();
  paddle_mobile::memory::Free(input);
  paddle_mobile::memory::Free(filter);
Y
yangfei 已提交
455 456 457 458 459
  if (status == CL_SUCCESS) {
    return paddle_mobile::time_diff(time1, time2);
  } else {
    return -1;
  }
460
}
H
hjchen2 已提交
461 462
template <typename Device, typename T>
int PaddleMobile<Device, T>::readText(
463
    const char *kernelPath,
Y
yangfei 已提交
464
    char **pcode) {  // 读取文本文件放入 pcode,返回字符串长度
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
  FILE *fp;
  int size;
  // printf("<readText> File: %s\n", kernelPath);
  fp = fopen(kernelPath, "rb");
  if (!fp) {
    printf("<readText> Open file failed\n");
    return -1;
  }
  if (fseek(fp, 0, SEEK_END) != 0) {
    printf("<readText> Seek end of file failed\n");
    return -1;
  }
  if ((size = ftell(fp)) < 0) {
    printf("<readText> Get file position failed\n");
    return -1;
  }
  rewind(fp);
Y
yangfei 已提交
482
  if ((*pcode = reinterpret_cast<char *>(malloc(size + 1))) == NULL) {
483 484 485 486 487 488 489 490
    printf("<readText> Allocate space failed\n");
    return -1;
  }
  fread(*pcode, 1, size, fp);
  (*pcode)[size] = '\0';
  fclose(fp);
  return size + 1;
}
Y
yangfei 已提交
491 492
#endif

493 494 495 496
template class PaddleMobile<CPU, float>;
template class PaddleMobile<FPGA, float>;
template class PaddleMobile<GPU_MALI, float>;
template class PaddleMobile<GPU_CL, float>;
Y
yangfei 已提交
497

498
}  // namespace paddle_mobile