paddle_mobile.cpp 3.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "io/paddle_mobile.h"

namespace paddle_mobile {

19 20 21 22 23 24 25 26
template <typename Dtype, Precision P>
void PaddleMobile<Dtype, P>::SetThreadNum(int num) {
#ifdef _OPENMP
  //  omp_set_dynamic(0);
  omp_set_num_threads(num);
#endif
};

27
template <typename Dtype, Precision P>
W
wangliu 已提交
28 29
bool PaddleMobile<Dtype, P>::Load(const std::string &dirname, bool optimize,
                                  bool quantification, int batch_size) {
30 31 32 33 34 35 36 37
  if (loader_.get() == nullptr) {
    loader_ = std::make_shared<Loader<Dtype, P>>();
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }

  if (executor_.get() == nullptr) {
    executor_ = std::make_shared<Executor<Dtype, P>>(
W
wangliu 已提交
38
        loader_->Load(dirname, optimize, quantification), batch_size, optimize);
39 40 41 42 43 44 45 46 47
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

  return true;
}

template <typename Dtype, Precision P>
bool PaddleMobile<Dtype, P>::Load(const std::string &model_path,
W
wangliu 已提交
48 49
                                  const std::string &para_path, bool optimize,
                                  bool quantification, int batch_size) {
50 51 52 53 54 55 56 57
  if (loader_.get() == nullptr) {
    loader_ = std::make_shared<Loader<Dtype, P>>();
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }

  if (executor_.get() == nullptr) {
    executor_ = std::make_shared<Executor<Dtype, P>>(
W
wangliu 已提交
58 59
        loader_->Load(model_path, para_path, optimize, quantification),
        batch_size, optimize);
60 61 62 63 64 65 66
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

  return true;
}

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
template <typename Dtype, Precision P>
bool PaddleMobile<Dtype, P>::LoadCombinedMemory(
    size_t model_len, const uint8_t *model_buf, size_t combined_params_len,
    const uint8_t *combined_params_buf) {
  int batch_size = 1;
  bool optimise = true;
  bool quantification = false;

  if (loader_.get() == nullptr) {
    loader_ = std::make_shared<Loader<Dtype, P>>();
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }

  if (executor_.get() == nullptr) {
    executor_ = std::make_shared<Executor<Dtype, P>>(
        loader_->LoadCombinedMemory(model_len, model_buf, combined_params_len,
                                    combined_params_buf, optimise,
                                    quantification),
        batch_size, optimise);
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

  return true;
}
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> PaddleMobile<Dtype, P>::Predict(
    const framework::Tensor &t) {
  return executor_->Predict(t);
}

template <typename Dtype, Precision P>
std::vector<typename PaddleMobile<Dtype, P>::Ptype>
PaddleMobile<Dtype, P>::Predict(const std::vector<Ptype> &input,
                                const std::vector<int64_t> &dims) {
  return executor_->Predict(input, dims);
}

template <typename Dtype, Precision P>
void PaddleMobile<Dtype, P>::Clear() {
  executor_ = nullptr;
  loader_ = nullptr;
}

112
template <typename Dtype, Precision P>
L
liuruilong 已提交
113
PaddleMobile<Dtype, P>::~PaddleMobile() {
114 115 116 117
  executor_ = nullptr;
  loader_ = nullptr;
}

118
template class PaddleMobile<CPU, Precision::FP32>;
119

120
template class PaddleMobile<FPGA, Precision::FP32>;
121

122 123 124
template class PaddleMobile<GPU_MALI, Precision::FP32>;

}  // namespace paddle_mobile