paddle_mobile.cpp 16.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "io/paddle_mobile.h"
16 17
#include <utility>
#include "common/common.h"
18 19 20
#ifdef _OPENMP
#include <omp.h>
#endif  // _OPENMP
21
#ifdef PADDLE_MOBILE_CL
22 23
#include <CL/cl.h>
#include "framework/cl/cl_tensor.h"
24
#endif
25
#include "operators/math/gemm.h"
26

27 28
namespace paddle_mobile {

29 30
template <typename Device, typename T>
void PaddleMobile<Device, T>::SetThreadNum(int num) {
31 32 33
#ifdef _OPENMP
  omp_set_num_threads(num);
#endif
34
}
35

36 37 38
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Load(const std::string &dirname,
                                       bool optimize, bool quantification,
39
                                       int batch_size, bool lod_mode) {
40
  if (loader_.get() == nullptr) {
41
    loader_ = std::make_shared<framework::Loader<Device, T>>();
42 43 44 45 46
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }

  if (executor_.get() == nullptr) {
47
    executor_ = std::make_shared<framework::Executor<Device, T>>(
H
hjchen2 已提交
48
        loader_->Load(dirname, optimize, quantification), batch_size, optimize,
49
        lod_mode);
50 51 52 53
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

54
  return PMSuccess;
55 56
}

57 58 59 60
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Load(const std::string &model_path,
                                       const std::string &para_path,
                                       bool optimize, bool quantification,
61
                                       int batch_size, bool lod_mode) {
62
  if (loader_.get() == nullptr) {
63
    loader_ = std::make_shared<framework::Loader<Device, T>>();
64 65 66 67 68
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }

  if (executor_.get() == nullptr) {
69
    executor_ = std::make_shared<framework::Executor<Device, T>>(
W
wangliu 已提交
70
        loader_->Load(model_path, para_path, optimize, quantification),
71
        batch_size, optimize, lod_mode);
72 73 74 75
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

76
  return PMSuccess;
77 78
}

79
template <typename Device, typename T>
80 81 82 83 84 85 86 87 88 89 90 91 92 93
PMStatus PaddleMobile<Device, T>::Load(const PaddleMobileConfig &config) {
  if (!config.model_dir.empty()) {
    return this->Load(config.model_dir, config.optimize, config.quantification,
                      config.batch_size, config.lod_mode);
  } else if (!config.prog_file.empty() && !config.param_file.empty()) {
    return this->Load(config.prog_file, config.param_file, config.optimize,
                      config.quantification, config.batch_size,
                      config.lod_mode);
  } else {
    LOG(kLOG_ERROR) << "Failed to load inference model";
    return PMNotInitialized;
  }
}

94
template <typename Device, typename T>
L
liuruilong 已提交
95 96 97
bool PaddleMobile<Device, T>::LoadCombinedMemory(
    size_t model_len, const uint8_t *model_buf, size_t combined_params_len,
    uint8_t *combined_params_buf, bool optimize, bool quantification,
98
    int batch_size, bool lod_mode) {
99
  if (loader_.get() == nullptr) {
100
    loader_ = std::make_shared<framework::Loader<Device, T>>();
101 102 103 104
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }
  if (executor_.get() == nullptr) {
105
    executor_ = std::make_shared<framework::Executor<Device, T>>(
106
        loader_->LoadCombinedMemory(model_len, model_buf, combined_params_len,
L
liuruilong 已提交
107
                                    combined_params_buf, optimize,
L
liuruilong 已提交
108
                                    quantification), config_, batch_size, optimize, lod_mode);
109 110 111 112
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

113 114 115 116 117 118 119 120
  return PMSuccess;
}

template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(const framework::Tensor &input) {
  std::vector<std::pair<std::string, framework::Tensor>> inputs;
  inputs.push_back(std::make_pair("feed", input));
  return this->Predict(inputs);
121
}
122 123 124 125 126 127 128 129 130 131 132 133

template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(const framework::LoDTensor &input) {
  std::vector<std::pair<std::string, framework::LoDTensor>> inputs;
  inputs.push_back(std::make_pair("feed", input));
  return this->Predict(inputs);
}

template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(
    const std::vector<std::pair<std::string, framework::Tensor>> &inputs) {
  return executor_->Predict(inputs);
134 135
}

136 137 138 139
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(
    const std::vector<std::pair<std::string, framework::LoDTensor>> &inputs) {
  return executor_->Predict(inputs);
xiebaiyuan's avatar
xiebaiyuan 已提交
140 141
}

142 143 144
template <typename Device, typename T>
std::vector<T> PaddleMobile<Device, T>::Predict(
    const std::vector<T> &input, const std::vector<int64_t> &dims) {
145 146 147
  return executor_->Predict(input, dims);
}

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict() {
  return executor_->Predict();
}

template <typename Device, typename T>
void PaddleMobile<Device, T>::Feed(const framework::Tensor &input,
                                   const std::string &var_name) {
  executor_->SetInput(input, var_name);
}

template <typename Device, typename T>
void PaddleMobile<Device, T>::Feed(const framework::LoDTensor &input,
                                   const std::string &var_name) {
  executor_->SetInput(input, var_name);
}

typedef std::shared_ptr<framework::LoDTensor> LoDTensorPtr;
template <typename Device, typename T>
LoDTensorPtr PaddleMobile<Device, T>::Fetch(const std::string &var_name) {
  return executor_->GetOutput(var_name);
}

template <typename Device, typename T>
void PaddleMobile<Device, T>::Clear() {
173 174 175
  executor_ = nullptr;
  loader_ = nullptr;
}
176 177 178

template <typename Device, typename T>
double PaddleMobile<Device, T>::GetPredictTime() {}
Y
yangfei 已提交
179 180 181

#ifdef PADDLE_MOBILE_CPU
template <>
182
double PaddleMobile<CPU, float>::GetPredictTime() {
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
  int m = 32;
  int n = 224 * 224;
  int k = 27;
  int lda = k;
  int ldb = n;
  int ldc = n;
  float *a =
      static_cast<float *>(paddle_mobile::memory::Alloc(sizeof(float) * m * k));
  float *b =
      static_cast<float *>(paddle_mobile::memory::Alloc(sizeof(float) * k * n));
  float *c =
      static_cast<float *>(paddle_mobile::memory::Alloc(sizeof(float) * m * n));
  int t1 = 1;
  int t2 = 1;
  for (int i = 0; i < m * k; ++i) {
198
    a[i] = t1 + rand() % t2;  // NOLINT
199 200
  }
  for (int i = 0; i < k * n; ++i) {
201
    b[i] = t1 + rand() % t2;  // NOLINT
202
  }
203 204

  operators::math::Gemm gemm;
205
  auto time1 = paddle_mobile::time();
Y
yangfei 已提交
206
  gemm.Sgemm(m, n, k, static_cast<float>(1), a, lda, b, ldb,
207 208
             static_cast<float>(0), c, ldc, false,
             static_cast<float *>(nullptr));
209 210 211 212 213 214 215
  auto time2 = paddle_mobile::time();
  double cost = paddle_mobile::time_diff(time1, time2);
  paddle_mobile::memory::Free(a);
  paddle_mobile::memory::Free(b);
  paddle_mobile::memory::Free(c);
  return cost;
}
Y
yangfei 已提交
216
#endif
217

218
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
219 220
template <typename Device, typename T>
void PaddleMobile<Device, T>::InjectVariable(const framework::Tensor &t,
221
                                             std::string var_name) {
222 223 224
  executor_->InjectVariable(t, var_name);
}

H
hjchen2 已提交
225 226
template <typename Device, typename T>
void PaddleMobile<Device, T>::FeedData(const framework::Tensor &t) {
227 228 229
  executor_->FeedData(t);
}

H
hjchen2 已提交
230 231
template <typename Device, typename T>
std::shared_ptr<framework::Tensor> PaddleMobile<Device, T>::FetchResult(
232
    int id) {
233 234 235
  return executor_->FetchResult(id);
}

H
hjchen2 已提交
236 237
template <typename Device, typename T>
void PaddleMobile<Device, T>::Predict_From_To(int start, int end) {
238 239 240
  executor_->Predict_From_To(start, end);
}

H
hjchen2 已提交
241 242
template <typename Device, typename T>
void PaddleMobile<Device, T>::Predict_From(int start) {
243 244 245
  executor_->Predict_From(start);
}

H
hjchen2 已提交
246 247
template <typename Device, typename T>
void PaddleMobile<Device, T>::Predict_To(int end) {
248 249 250 251
  executor_->Predict_To(end);
}
#endif

Y
yangfei 已提交
252
#ifdef PADDLE_MOBILE_CL
Z
zhangyang 已提交
253
static std::mutex lc;
H
hjchen2 已提交
254 255
template <typename Device, typename T>
void PaddleMobile<Device, T>::SetCLPath(std::string path) {
Y
yangfei 已提交
256 257 258 259
  std::lock_guard<std::mutex> lock(lc);
  if (framework::CLEngine::Instance()->GetCLPath() == "") {
    framework::CLEngine::Instance()->setClPath(path);
  }
Y
yangfei 已提交
260
}
261
template <>
H
hjchen2 已提交
262
double PaddleMobile<GPU_CL, float>::GetPredictTime() {
263 264 265
  cl_int status;
  cl_uint nPlatform;
  clGetPlatformIDs(0, NULL, &nPlatform);
Y
yangfei 已提交
266 267
  cl_platform_id *listPlatform = reinterpret_cast<cl_platform_id *>(
      malloc(nPlatform * sizeof(cl_platform_id)));
268 269 270 271
  clGetPlatformIDs(nPlatform, listPlatform, NULL);
  cl_uint nDevice = 0;
  clGetDeviceIDs(listPlatform[0], CL_DEVICE_TYPE_GPU, 0, NULL, &nDevice);
  cl_device_id *listDevice =
Y
yangfei 已提交
272
      reinterpret_cast<cl_device_id *>(malloc(nDevice * sizeof(cl_device_id)));
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
  clGetDeviceIDs(listPlatform[0], CL_DEVICE_TYPE_GPU, nDevice, listDevice,
                 NULL);
  cl_context context =
      clCreateContext(NULL, nDevice, listDevice, NULL, NULL, &status);
  cl_command_queue queue =
      clCreateCommandQueue(context, listDevice[0], 0, &status);

  int n = 1;
  int c = 3;
  int h = 224;
  int w = 224;
  float *input = static_cast<float *>(
      paddle_mobile::memory::Alloc(sizeof(float) * 3 * 224 * 224));
  float *filter = static_cast<float *>(
      paddle_mobile::memory::Alloc(sizeof(float) * 32 * 27));
  int input_w = w * (c + 3) / 4;
  int input_h = n * h;
  int filter_w = 3 * (3 + 3) / 4;
  int filter_h = 32 * 3;
  int output_w = 224 * (32 + 3) / 4;
  int output_h = 1 * 224;

  framework::DDim input_dims = {1, 3, 224, 224};
  framework::CLTensor input_cl_tensor(context, queue);
  input_cl_tensor.Resize(input_dims);
  cl_mem inputBuffer = input_cl_tensor.mutable_with_data<float>(input);

  framework::DDim filter_dims = {32, 3, 3, 3};
  framework::CLTensor filter_cl_tensor(context, queue);
  input_cl_tensor.Resize(filter_dims);
  cl_mem filterBuffer = filter_cl_tensor.mutable_with_data<float>(filter);

  cl_mem cl_filter_image = NULL;
  cl_mem cl_input_image = NULL;
  cl_mem cl_output_image = NULL;
  cl_image_format cf = {.image_channel_order = CL_RGBA,
                        .image_channel_data_type = CL_HALF_FLOAT};
  cl_input_image = clCreateImage2D(context, CL_MEM_READ_WRITE | 0, &cf, input_w,
                                   input_h, 0, NULL, &status);
  cl_filter_image = clCreateImage2D(context, CL_MEM_READ_WRITE | 0, &cf,
                                    filter_w, filter_h, 0, NULL, &status);
  cl_output_image = clCreateImage2D(context, CL_MEM_READ_WRITE | 0, &cf,
                                    output_w, output_h, 0, NULL, &status);
  char *code;
  std::string path = framework::CLEngine::Instance()->GetCLPath() +
                     "/cl_kernel/feed_kernel.cl";
  size_t length = readText(path.c_str(), &code);
  cl_program program = clCreateProgramWithSource(
      context, 1, (const char **)&code, &length, NULL);
  std::string path1 = "-cl-fast-relaxed-math -I " +
                      framework::CLEngine::Instance()->GetCLPath() +
                      "/cl_kernel";
  clBuildProgram(program, 0, 0, path1.c_str(), NULL, NULL);
  cl_kernel kernel = clCreateKernel(program, "feed", &status);

Y
yangfei 已提交
328 329 330 331 332 333
  int out_H = 224;
  int out_W = 224;
  int out_C = 3;
  int Stride2 = out_C * out_H * out_W;
  int Stride1 = out_H * out_W;
  int Stride0 = out_W;
334 335 336 337
  status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &inputBuffer);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_input_image);
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
338
  status = clSetKernelArg(kernel, 2, sizeof(cl_int), &out_H);
339
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
340
  status = clSetKernelArg(kernel, 3, sizeof(cl_int), &out_W);
341
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
342 343 344 345 346 347 348
  status = clSetKernelArg(kernel, 4, sizeof(cl_int), &out_C);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 5, sizeof(cl_int), &Stride0);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 6, sizeof(cl_int), &Stride1);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 7, sizeof(cl_int), &Stride2);
349 350
  CL_CHECK_ERRORS(status);

Y
yangfei 已提交
351
  size_t global_work_size[3] = {1, 224, 224};
352 353 354

  //  cl_event out_event = param.Out()->GetClEvent();

Y
yangfei 已提交
355
  status = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size,
356 357 358
                                  NULL, 0, NULL, NULL);
  CL_CHECK_ERRORS(status);

Y
yangfei 已提交
359 360 361 362 363 364 365
  out_H = 3;
  out_W = 3;
  out_C = 3;
  Stride2 = out_C * out_H * out_W;
  Stride1 = out_H * out_W;
  Stride0 = out_W;

366 367 368 369
  status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &filterBuffer);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_filter_image);
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
370 371 372
  status = clSetKernelArg(kernel, 2, sizeof(cl_int), &out_H);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 3, sizeof(cl_int), &out_W);
373
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
374
  status = clSetKernelArg(kernel, 4, sizeof(cl_int), &out_C);
375
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
376 377 378 379 380
  status = clSetKernelArg(kernel, 5, sizeof(cl_int), &Stride0);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 6, sizeof(cl_int), &Stride1);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 7, sizeof(cl_int), &Stride2);
381 382
  CL_CHECK_ERRORS(status);

Y
yangfei 已提交
383
  size_t global_work_size1[3] = {1, 3, 96};
384 385 386

  //  cl_event out_event = param.Out()->GetClEvent();

Y
yangfei 已提交
387
  status = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size1,
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
                                  NULL, 0, NULL, NULL);
  CL_CHECK_ERRORS(status);

  clFinish(queue);
  queue = clCreateCommandQueue(context, listDevice[0], 0, &status);

  path = framework::CLEngine::Instance()->GetCLPath() +
         "/cl_kernel/conv_kernel.cl";
  size_t length1 = readText(path.c_str(), &code);
  program = clCreateProgramWithSource(context, 1, (const char **)&code,
                                      &length1, &status);
  CL_CHECK_ERRORS(status);
  clBuildProgram(program, 0, 0, path1.c_str(), NULL, NULL);
  kernel = clCreateKernel(program, "conv_3x3", &status);
  CL_CHECK_ERRORS(status);

  int c_block = (32 + 3) / 4;
  int nh = n * h;
  int stride = 1;
  int offset = 0;
  int input_c = (c + 3) / 4;
  int dilation = 1;
  int input_width = 224;
  int input_height = 224;
  int output_width = 224;
  int output_height = 224;
  status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 1, sizeof(int), &w);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &cl_input_image);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &cl_filter_image);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &cl_output_image);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 6, sizeof(int), &stride);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 7, sizeof(int), &offset);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 8, sizeof(int), &input_c);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 9, sizeof(int), &dilation);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 10, sizeof(int), &input_width);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 11, sizeof(int), &input_height);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 12, sizeof(int), &output_width);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 13, sizeof(int), &output_height);
  CL_CHECK_ERRORS(status);

  //  cl_event out_event = param.Output()->GetClEvent();
  //  cl_event wait_event = param.Input()->GetClEvent();
  size_t global_work_size2[3] = {8, 224, 224};
  auto time1 = paddle_mobile::time();
  status = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size2,
                                  NULL, 0, NULL, NULL);
  CL_CHECK_ERRORS(status);
  clFinish(queue);
  auto time2 = paddle_mobile::time();
  paddle_mobile::memory::Free(input);
  paddle_mobile::memory::Free(filter);
Y
yangfei 已提交
454 455 456 457 458
  if (status == CL_SUCCESS) {
    return paddle_mobile::time_diff(time1, time2);
  } else {
    return -1;
  }
459
}
H
hjchen2 已提交
460 461
template <typename Device, typename T>
int PaddleMobile<Device, T>::readText(
462
    const char *kernelPath,
Y
yangfei 已提交
463
    char **pcode) {  // 读取文本文件放入 pcode,返回字符串长度
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
  FILE *fp;
  int size;
  // printf("<readText> File: %s\n", kernelPath);
  fp = fopen(kernelPath, "rb");
  if (!fp) {
    printf("<readText> Open file failed\n");
    return -1;
  }
  if (fseek(fp, 0, SEEK_END) != 0) {
    printf("<readText> Seek end of file failed\n");
    return -1;
  }
  if ((size = ftell(fp)) < 0) {
    printf("<readText> Get file position failed\n");
    return -1;
  }
  rewind(fp);
Y
yangfei 已提交
481
  if ((*pcode = reinterpret_cast<char *>(malloc(size + 1))) == NULL) {
482 483 484 485 486 487 488 489
    printf("<readText> Allocate space failed\n");
    return -1;
  }
  fread(*pcode, 1, size, fp);
  (*pcode)[size] = '\0';
  fclose(fp);
  return size + 1;
}
Y
yangfei 已提交
490 491
#endif

492 493 494 495
template class PaddleMobile<CPU, float>;
template class PaddleMobile<FPGA, float>;
template class PaddleMobile<GPU_MALI, float>;
template class PaddleMobile<GPU_CL, float>;
Y
yangfei 已提交
496

497
}  // namespace paddle_mobile