paddle_mobile.cpp 16.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "io/paddle_mobile.h"
16 17
#include <utility>
#include "common/common.h"
18
#ifdef PADDLE_MOBILE_CL
19 20
#include <CL/cl.h>
#include "framework/cl/cl_tensor.h"
21
#endif
22
#include "operators/math/gemm.h"
23

24 25
namespace paddle_mobile {

26 27
template <typename Device, typename T>
void PaddleMobile<Device, T>::SetThreadNum(int num) {
28 29 30
#ifdef _OPENMP
  omp_set_num_threads(num);
#endif
31
}
32

33 34 35 36
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Load(const std::string &dirname,
                                       bool optimize, bool quantification,
                                       int batch_size, bool loddable) {
37
  if (loader_.get() == nullptr) {
38
    loader_ = std::make_shared<framework::Loader<Device, T>>();
39 40 41 42 43
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }

  if (executor_.get() == nullptr) {
44
    executor_ = std::make_shared<framework::Executor<Device, T>>(
H
hjchen2 已提交
45 46
        loader_->Load(dirname, optimize, quantification), batch_size, optimize,
        loddable);
47 48 49 50
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

51
  return PMSuccess;
52 53
}

54 55 56 57 58
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Load(const std::string &model_path,
                                       const std::string &para_path,
                                       bool optimize, bool quantification,
                                       int batch_size, bool loddable) {
59
  if (loader_.get() == nullptr) {
60
    loader_ = std::make_shared<framework::Loader<Device, T>>();
61 62 63 64 65
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }

  if (executor_.get() == nullptr) {
66
    executor_ = std::make_shared<framework::Executor<Device, T>>(
W
wangliu 已提交
67
        loader_->Load(model_path, para_path, optimize, quantification),
H
hjchen2 已提交
68
        batch_size, optimize, loddable);
69 70 71 72
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

73
  return PMSuccess;
74 75
}

R
Ray Liu 已提交
76 77
template <typename Device, typename T>
bool PaddleMobile<Device, T>::LoadCombinedMemory(size_t model_len,
L
liuruilong 已提交
78 79
                                                const uint8_t *model_buf,
                                                size_t combined_params_len,
L
liuruilong 已提交
80 81 82 83
                                                uint8_t *combined_params_buf,
                                                bool optimize,
                                                bool quantification, int batch_size,
                                                bool loddable) {
84
  if (loader_.get() == nullptr) {
85
    loader_ = std::make_shared<framework::Loader<Device, T>>();
86 87 88 89
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }
  if (executor_.get() == nullptr) {
90
    executor_ = std::make_shared<framework::Executor<Device, T>>(
91
        loader_->LoadCombinedMemory(model_len, model_buf, combined_params_len,
L
liuruilong 已提交
92
                                    combined_params_buf, optimize,
93
                                    quantification),
L
liuruilong 已提交
94
        batch_size, optimize, loddable);
95 96 97 98
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

99
  return PMSuccess;
100
}
101 102 103 104 105 106

template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(const framework::Tensor &input) {
  std::vector<std::pair<std::string, framework::Tensor>> inputs;
  inputs.push_back(std::make_pair("feed", input));
  return this->Predict(inputs);
107
}
108 109 110 111 112 113

template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(const framework::LoDTensor &input) {
  std::vector<std::pair<std::string, framework::LoDTensor>> inputs;
  inputs.push_back(std::make_pair("feed", input));
  return this->Predict(inputs);
114 115
}

116 117 118 119
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(
    const std::vector<std::pair<std::string, framework::Tensor>> &inputs) {
  return executor_->Predict(inputs);
xiebaiyuan's avatar
xiebaiyuan 已提交
120 121
}

122 123 124 125
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(
    const std::vector<std::pair<std::string, framework::LoDTensor>> &inputs) {
  return executor_->Predict(inputs);
xiebaiyuan's avatar
xiebaiyuan 已提交
126 127
}

128 129 130
template <typename Device, typename T>
std::vector<T> PaddleMobile<Device, T>::Predict(
    const std::vector<T> &input, const std::vector<int64_t> &dims) {
131 132 133
  return executor_->Predict(input, dims);
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict() {
  return executor_->Predict();
}

template <typename Device, typename T>
void PaddleMobile<Device, T>::Feed(const framework::Tensor &input,
                                   const std::string &var_name) {
  executor_->SetInput(input, var_name);
}

template <typename Device, typename T>
void PaddleMobile<Device, T>::Feed(const framework::LoDTensor &input,
                                   const std::string &var_name) {
  executor_->SetInput(input, var_name);
}

typedef std::shared_ptr<framework::LoDTensor> LoDTensorPtr;
template <typename Device, typename T>
LoDTensorPtr PaddleMobile<Device, T>::Fetch(const std::string &var_name) {
  return executor_->GetOutput(var_name);
}

template <typename Device, typename T>
void PaddleMobile<Device, T>::Clear() {
159 160 161
  executor_ = nullptr;
  loader_ = nullptr;
}
162 163 164

template <typename Device, typename T>
double PaddleMobile<Device, T>::GetPredictTime() {}
Y
yangfei 已提交
165 166 167

#ifdef PADDLE_MOBILE_CPU
template <>
168
double PaddleMobile<CPU, float>::GetPredictTime() {
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
  int m = 32;
  int n = 224 * 224;
  int k = 27;
  int lda = k;
  int ldb = n;
  int ldc = n;
  float *a =
      static_cast<float *>(paddle_mobile::memory::Alloc(sizeof(float) * m * k));
  float *b =
      static_cast<float *>(paddle_mobile::memory::Alloc(sizeof(float) * k * n));
  float *c =
      static_cast<float *>(paddle_mobile::memory::Alloc(sizeof(float) * m * n));
  int t1 = 1;
  int t2 = 1;
  for (int i = 0; i < m * k; ++i) {
184
    a[i] = t1 + rand() % t2;  // NOLINT
185 186
  }
  for (int i = 0; i < k * n; ++i) {
187
    b[i] = t1 + rand() % t2;  // NOLINT
188
  }
189 190

  operators::math::Gemm gemm;
191
  auto time1 = paddle_mobile::time();
Y
yangfei 已提交
192
  gemm.Sgemm(m, n, k, static_cast<float>(1), a, lda, b, ldb,
193 194
             static_cast<float>(0), c, ldc, false,
             static_cast<float *>(nullptr));
195 196 197 198 199 200 201
  auto time2 = paddle_mobile::time();
  double cost = paddle_mobile::time_diff(time1, time2);
  paddle_mobile::memory::Free(a);
  paddle_mobile::memory::Free(b);
  paddle_mobile::memory::Free(c);
  return cost;
}
Y
yangfei 已提交
202
#endif
203

204
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
205 206
template <typename Device, typename T>
void PaddleMobile<Device, T>::InjectVariable(const framework::Tensor &t,
207
                                             std::string var_name) {
208 209 210
  executor_->InjectVariable(t, var_name);
}

H
hjchen2 已提交
211 212
template <typename Device, typename T>
void PaddleMobile<Device, T>::FeedData(const framework::Tensor &t) {
213 214 215
  executor_->FeedData(t);
}

H
hjchen2 已提交
216 217
template <typename Device, typename T>
std::shared_ptr<framework::Tensor> PaddleMobile<Device, T>::FetchResult(
218
    int id) {
219 220 221
  return executor_->FetchResult(id);
}

H
hjchen2 已提交
222 223
template <typename Device, typename T>
void PaddleMobile<Device, T>::Predict_From_To(int start, int end) {
224 225 226
  executor_->Predict_From_To(start, end);
}

H
hjchen2 已提交
227 228
template <typename Device, typename T>
void PaddleMobile<Device, T>::Predict_From(int start) {
229 230 231
  executor_->Predict_From(start);
}

H
hjchen2 已提交
232 233
template <typename Device, typename T>
void PaddleMobile<Device, T>::Predict_To(int end) {
234 235 236 237
  executor_->Predict_To(end);
}
#endif

Y
yangfei 已提交
238
#ifdef PADDLE_MOBILE_CL
Z
zhangyang 已提交
239
static std::mutex lc;
H
hjchen2 已提交
240 241
template <typename Device, typename T>
void PaddleMobile<Device, T>::SetCLPath(std::string path) {
Y
yangfei 已提交
242 243 244 245
  std::lock_guard<std::mutex> lock(lc);
  if (framework::CLEngine::Instance()->GetCLPath() == "") {
    framework::CLEngine::Instance()->setClPath(path);
  }
Y
yangfei 已提交
246
}
247
template <>
H
hjchen2 已提交
248
double PaddleMobile<GPU_CL, float>::GetPredictTime() {
249 250 251
  cl_int status;
  cl_uint nPlatform;
  clGetPlatformIDs(0, NULL, &nPlatform);
Y
yangfei 已提交
252 253
  cl_platform_id *listPlatform = reinterpret_cast<cl_platform_id *>(
      malloc(nPlatform * sizeof(cl_platform_id)));
254 255 256 257
  clGetPlatformIDs(nPlatform, listPlatform, NULL);
  cl_uint nDevice = 0;
  clGetDeviceIDs(listPlatform[0], CL_DEVICE_TYPE_GPU, 0, NULL, &nDevice);
  cl_device_id *listDevice =
Y
yangfei 已提交
258
      reinterpret_cast<cl_device_id *>(malloc(nDevice * sizeof(cl_device_id)));
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
  clGetDeviceIDs(listPlatform[0], CL_DEVICE_TYPE_GPU, nDevice, listDevice,
                 NULL);
  cl_context context =
      clCreateContext(NULL, nDevice, listDevice, NULL, NULL, &status);
  cl_command_queue queue =
      clCreateCommandQueue(context, listDevice[0], 0, &status);

  int n = 1;
  int c = 3;
  int h = 224;
  int w = 224;
  float *input = static_cast<float *>(
      paddle_mobile::memory::Alloc(sizeof(float) * 3 * 224 * 224));
  float *filter = static_cast<float *>(
      paddle_mobile::memory::Alloc(sizeof(float) * 32 * 27));
  int input_w = w * (c + 3) / 4;
  int input_h = n * h;
  int filter_w = 3 * (3 + 3) / 4;
  int filter_h = 32 * 3;
  int output_w = 224 * (32 + 3) / 4;
  int output_h = 1 * 224;

  framework::DDim input_dims = {1, 3, 224, 224};
  framework::CLTensor input_cl_tensor(context, queue);
  input_cl_tensor.Resize(input_dims);
  cl_mem inputBuffer = input_cl_tensor.mutable_with_data<float>(input);

  framework::DDim filter_dims = {32, 3, 3, 3};
  framework::CLTensor filter_cl_tensor(context, queue);
  input_cl_tensor.Resize(filter_dims);
  cl_mem filterBuffer = filter_cl_tensor.mutable_with_data<float>(filter);

  cl_mem cl_filter_image = NULL;
  cl_mem cl_input_image = NULL;
  cl_mem cl_output_image = NULL;
  cl_image_format cf = {.image_channel_order = CL_RGBA,
                        .image_channel_data_type = CL_HALF_FLOAT};
  cl_input_image = clCreateImage2D(context, CL_MEM_READ_WRITE | 0, &cf, input_w,
                                   input_h, 0, NULL, &status);
  cl_filter_image = clCreateImage2D(context, CL_MEM_READ_WRITE | 0, &cf,
                                    filter_w, filter_h, 0, NULL, &status);
  cl_output_image = clCreateImage2D(context, CL_MEM_READ_WRITE | 0, &cf,
                                    output_w, output_h, 0, NULL, &status);
  char *code;
  std::string path = framework::CLEngine::Instance()->GetCLPath() +
                     "/cl_kernel/feed_kernel.cl";
  size_t length = readText(path.c_str(), &code);
  cl_program program = clCreateProgramWithSource(
      context, 1, (const char **)&code, &length, NULL);
  std::string path1 = "-cl-fast-relaxed-math -I " +
                      framework::CLEngine::Instance()->GetCLPath() +
                      "/cl_kernel";
  clBuildProgram(program, 0, 0, path1.c_str(), NULL, NULL);
  cl_kernel kernel = clCreateKernel(program, "feed", &status);

Y
yangfei 已提交
314 315 316 317 318 319
  int out_H = 224;
  int out_W = 224;
  int out_C = 3;
  int Stride2 = out_C * out_H * out_W;
  int Stride1 = out_H * out_W;
  int Stride0 = out_W;
320 321 322 323
  status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &inputBuffer);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_input_image);
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
324
  status = clSetKernelArg(kernel, 2, sizeof(cl_int), &out_H);
325
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
326
  status = clSetKernelArg(kernel, 3, sizeof(cl_int), &out_W);
327
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
328 329 330 331 332 333 334
  status = clSetKernelArg(kernel, 4, sizeof(cl_int), &out_C);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 5, sizeof(cl_int), &Stride0);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 6, sizeof(cl_int), &Stride1);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 7, sizeof(cl_int), &Stride2);
335 336
  CL_CHECK_ERRORS(status);

Y
yangfei 已提交
337
  size_t global_work_size[3] = {1, 224, 224};
338 339 340

  //  cl_event out_event = param.Out()->GetClEvent();

Y
yangfei 已提交
341
  status = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size,
342 343 344
                                  NULL, 0, NULL, NULL);
  CL_CHECK_ERRORS(status);

Y
yangfei 已提交
345 346 347 348 349 350 351
  out_H = 3;
  out_W = 3;
  out_C = 3;
  Stride2 = out_C * out_H * out_W;
  Stride1 = out_H * out_W;
  Stride0 = out_W;

352 353 354 355
  status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &filterBuffer);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_filter_image);
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
356 357 358
  status = clSetKernelArg(kernel, 2, sizeof(cl_int), &out_H);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 3, sizeof(cl_int), &out_W);
359
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
360
  status = clSetKernelArg(kernel, 4, sizeof(cl_int), &out_C);
361
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
362 363 364 365 366
  status = clSetKernelArg(kernel, 5, sizeof(cl_int), &Stride0);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 6, sizeof(cl_int), &Stride1);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 7, sizeof(cl_int), &Stride2);
367 368
  CL_CHECK_ERRORS(status);

Y
yangfei 已提交
369
  size_t global_work_size1[3] = {1, 3, 96};
370 371 372

  //  cl_event out_event = param.Out()->GetClEvent();

Y
yangfei 已提交
373
  status = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size1,
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
                                  NULL, 0, NULL, NULL);
  CL_CHECK_ERRORS(status);

  clFinish(queue);
  queue = clCreateCommandQueue(context, listDevice[0], 0, &status);

  path = framework::CLEngine::Instance()->GetCLPath() +
         "/cl_kernel/conv_kernel.cl";
  size_t length1 = readText(path.c_str(), &code);
  program = clCreateProgramWithSource(context, 1, (const char **)&code,
                                      &length1, &status);
  CL_CHECK_ERRORS(status);
  clBuildProgram(program, 0, 0, path1.c_str(), NULL, NULL);
  kernel = clCreateKernel(program, "conv_3x3", &status);
  CL_CHECK_ERRORS(status);

  int c_block = (32 + 3) / 4;
  int nh = n * h;
  int stride = 1;
  int offset = 0;
  int input_c = (c + 3) / 4;
  int dilation = 1;
  int input_width = 224;
  int input_height = 224;
  int output_width = 224;
  int output_height = 224;
  status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 1, sizeof(int), &w);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &cl_input_image);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &cl_filter_image);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &cl_output_image);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 6, sizeof(int), &stride);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 7, sizeof(int), &offset);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 8, sizeof(int), &input_c);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 9, sizeof(int), &dilation);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 10, sizeof(int), &input_width);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 11, sizeof(int), &input_height);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 12, sizeof(int), &output_width);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 13, sizeof(int), &output_height);
  CL_CHECK_ERRORS(status);

  //  cl_event out_event = param.Output()->GetClEvent();
  //  cl_event wait_event = param.Input()->GetClEvent();
  size_t global_work_size2[3] = {8, 224, 224};
  auto time1 = paddle_mobile::time();
  status = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size2,
                                  NULL, 0, NULL, NULL);
  CL_CHECK_ERRORS(status);
  clFinish(queue);
  auto time2 = paddle_mobile::time();
  paddle_mobile::memory::Free(input);
  paddle_mobile::memory::Free(filter);
Y
yangfei 已提交
440 441 442 443 444
  if (status == CL_SUCCESS) {
    return paddle_mobile::time_diff(time1, time2);
  } else {
    return -1;
  }
445
}
H
hjchen2 已提交
446 447
template <typename Device, typename T>
int PaddleMobile<Device, T>::readText(
448
    const char *kernelPath,
Y
yangfei 已提交
449
    char **pcode) {  // 读取文本文件放入 pcode,返回字符串长度
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
  FILE *fp;
  int size;
  // printf("<readText> File: %s\n", kernelPath);
  fp = fopen(kernelPath, "rb");
  if (!fp) {
    printf("<readText> Open file failed\n");
    return -1;
  }
  if (fseek(fp, 0, SEEK_END) != 0) {
    printf("<readText> Seek end of file failed\n");
    return -1;
  }
  if ((size = ftell(fp)) < 0) {
    printf("<readText> Get file position failed\n");
    return -1;
  }
  rewind(fp);
Y
yangfei 已提交
467
  if ((*pcode = reinterpret_cast<char *>(malloc(size + 1))) == NULL) {
468 469 470 471 472 473 474 475
    printf("<readText> Allocate space failed\n");
    return -1;
  }
  fread(*pcode, 1, size, fp);
  (*pcode)[size] = '\0';
  fclose(fp);
  return size + 1;
}
Y
yangfei 已提交
476 477
#endif

478 479 480 481
template class PaddleMobile<CPU, float>;
template class PaddleMobile<FPGA, float>;
template class PaddleMobile<GPU_MALI, float>;
template class PaddleMobile<GPU_CL, float>;
Y
yangfei 已提交
482

483
}  // namespace paddle_mobile