Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
f35cd850
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f35cd850
编写于
11月 30, 2018
作者:
Z
ZhenWang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update the code style according suggestions.
上级
36607770
变更
17
隐藏空白更改
内联
并排
Showing
17 changed file
with
175 addition
and
423 deletion
+175
-423
CMakeLists.txt
CMakeLists.txt
+1
-1
src/common/types.cpp
src/common/types.cpp
+1
-1
src/io/paddle_mobile.cpp
src/io/paddle_mobile.cpp
+2
-1
src/operators/fusion_conv_add_relu_int8_op.h
src/operators/fusion_conv_add_relu_int8_op.h
+8
-10
src/operators/kernel/arm/conv_add_relu_int8_kernel.cpp
src/operators/kernel/arm/conv_add_relu_int8_kernel.cpp
+0
-39
src/operators/kernel/arm/conv_add_relu_kernel.cpp
src/operators/kernel/arm/conv_add_relu_kernel.cpp
+15
-1
src/operators/kernel/central-arm-func/conv_add_relu_arm_func.h
...perators/kernel/central-arm-func/conv_add_relu_arm_func.h
+30
-21
src/operators/kernel/central-arm-func/conv_add_relu_int8_arm_func.h
...ors/kernel/central-arm-func/conv_add_relu_int8_arm_func.h
+0
-125
src/operators/kernel/central-arm-func/conv_arm_func.h
src/operators/kernel/central-arm-func/conv_arm_func.h
+3
-10
src/operators/kernel/conv_add_relu_int8_kernel.h
src/operators/kernel/conv_add_relu_int8_kernel.h
+0
-45
src/operators/math/gemm.cpp
src/operators/math/gemm.cpp
+1
-0
src/operators/math/gemm.h
src/operators/math/gemm.h
+77
-11
src/operators/math/gemm_int8.cpp
src/operators/math/gemm_int8.cpp
+12
-123
src/operators/op_param.h
src/operators/op_param.h
+6
-23
test/common/test_gemm_int8_accuracy.cpp
test/common/test_gemm_int8_accuracy.cpp
+5
-5
test/operators/test_fusion_conv_add_relu_int8_op.cpp
test/operators/test_fusion_conv_add_relu_int8_op.cpp
+13
-7
test/operators/test_mul_op.cpp
test/operators/test_mul_op.cpp
+1
-0
未找到文件。
CMakeLists.txt
浏览文件 @
f35cd850
...
...
@@ -34,7 +34,7 @@ endif()
if
(
DEBUGING
)
message
(
STATUS
"debugging mode"
)
add_definitions
(
-DPADDLE_MOBILE_DEBUG
)
#
add_definitions(-DPADDLE_MOBILE_DEBUG)
else
()
endif
()
...
...
src/common/types.cpp
浏览文件 @
f35cd850
...
...
@@ -114,7 +114,7 @@ std::unordered_map<
{
G_OP_TYPE_DEPTHWISE_CONV
,
{{
"Input"
},
{
"Output"
}}},
{
G_OP_TYPE_FILL_CONSTANT
,
{{},
{
"Out"
}}},
{
G_OP_TYPE_FUSION_CONV_ADD_RELU
,
{{
"Input"
},
{
"Out"
}}},
{
G_OP_TYPE_FUSION_CONV_ADD_RELU_INT8
,
{{
"Input"
},
{
"Out
put
"
}}},
{
G_OP_TYPE_FUSION_CONV_ADD_RELU_INT8
,
{{
"Input"
},
{
"Out"
}}},
{
G_OP_TYPE_FUSION_CONV_ADD_PRELU
,
{{
"Input"
},
{
"Out"
}}},
{
G_OP_TYPE_FUSION_CONV_ADD_ADD_PRELU
,
{{
"Input"
},
{
"Out"
}}},
{
G_OP_TYPE_IM2SEQUENCE
,
{{
"X"
},
{
"Out"
}}},
...
...
src/io/paddle_mobile.cpp
浏览文件 @
f35cd850
...
...
@@ -153,7 +153,8 @@ double PaddleMobile<CPU, Precision::FP32>::GetPredictTime() {
paddle_mobile
::
operators
::
math
::
Gemm
gemm
;
auto
time1
=
paddle_mobile
::
time
();
gemm
.
Sgemm
(
m
,
n
,
k
,
static_cast
<
float
>
(
1
),
a
,
lda
,
b
,
ldb
,
static_cast
<
float
>
(
0
),
c
,
ldc
,
false
,
nullptr
);
static_cast
<
float
>
(
0
),
c
,
ldc
,
false
,
static_cast
<
float
*>
(
nullptr
));
auto
time2
=
paddle_mobile
::
time
();
double
cost
=
paddle_mobile
::
time_diff
(
time1
,
time2
);
paddle_mobile
::
memory
::
Free
(
a
);
...
...
src/operators/fusion_conv_add_relu_int8_op.h
浏览文件 @
f35cd850
...
...
@@ -16,28 +16,26 @@ limitations under the License. */
#pragma once
#include <string>
#include "framework/operator.h"
#include "operators/kernel/conv_add_relu_
int8_
kernel.h"
#include "operators/kernel/conv_add_relu_kernel.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
using
std
::
string
;
template
<
typename
DeviceType
,
typename
T
>
class
FusionConvAddReluInt8Op
:
public
framework
::
OperatorWithKernel
<
DeviceType
,
FusionConvAddRelu
Int8
Param
<
DeviceType
>
,
operators
::
ConvAddRelu
Int8
Kernel
<
DeviceType
,
T
>>
{
DeviceType
,
FusionConvAddReluParam
<
DeviceType
>
,
operators
::
ConvAddReluKernel
<
DeviceType
,
T
>>
{
public:
FusionConvAddReluInt8Op
(
const
string
&
type
,
const
VariableNameMap
&
inputs
,
FusionConvAddReluInt8Op
(
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
std
::
shared_ptr
<
framework
::
Scope
>
scope
)
:
framework
::
OperatorWithKernel
<
DeviceType
,
FusionConvAddRelu
Int8
Param
<
DeviceType
>
,
operators
::
ConvAddRelu
Int8Kernel
<
DeviceType
,
T
>>
(
type
,
inputs
,
outputs
,
attrs
,
scope
)
{}
DeviceType
,
FusionConvAddReluParam
<
DeviceType
>
,
operators
::
ConvAddRelu
Kernel
<
DeviceType
,
T
>>
(
type
,
inputs
,
outputs
,
attrs
,
scope
)
{}
void
InferShape
()
const
override
;
protected:
};
}
// namespace operators
}
// namespace paddle_mobile
...
...
src/operators/kernel/arm/conv_add_relu_int8_kernel.cpp
已删除
100644 → 0
浏览文件 @
36607770
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADDRELU_INT8_OP
#include "operators/kernel/conv_add_relu_int8_kernel.h"
#include "operators/kernel/central-arm-func/conv_add_relu_int8_arm_func.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
>
bool
ConvAddReluInt8Kernel
<
CPU
,
int8_t
>::
Init
(
FusionConvAddReluInt8Param
<
CPU
>
*
param
)
{
return
true
;
}
template
<
>
void
ConvAddReluInt8Kernel
<
CPU
,
int8_t
>::
Compute
(
const
FusionConvAddReluInt8Param
<
CPU
>
&
param
)
{
ConvAddReluInt8Compute
<
int8_t
>
(
param
);
}
template
class
ConvAddReluInt8Kernel
<
CPU
,
int8_t
>;
}
// namespace operators
}
// namespace paddle_mobile
#endif // FUSION_CONVADDRELU_INT8_OP
src/operators/kernel/arm/conv_add_relu_kernel.cpp
浏览文件 @
f35cd850
...
...
@@ -28,10 +28,24 @@ bool ConvAddReluKernel<CPU, float>::Init(FusionConvAddReluParam<CPU> *param) {
template
<
>
void
ConvAddReluKernel
<
CPU
,
float
>::
Compute
(
const
FusionConvAddReluParam
<
CPU
>
&
param
)
{
ConvAddReluCompute
<
float
>
(
param
);
ConvAddReluCompute
<
float
,
float
>
(
param
);
}
template
class
ConvAddReluKernel
<
CPU
,
float
>;
#ifdef FUSION_CONVADDRELU_INT8_OP
template
<
>
bool
ConvAddReluKernel
<
CPU
,
int8_t
>::
Init
(
FusionConvAddReluParam
<
CPU
>
*
param
)
{
return
true
;
}
template
<
>
void
ConvAddReluKernel
<
CPU
,
int8_t
>::
Compute
(
const
FusionConvAddReluParam
<
CPU
>
&
param
)
{
ConvAddReluCompute
<
int8_t
,
int32_t
>
(
param
);
}
template
class
ConvAddReluKernel
<
CPU
,
int8_t
>;
#endif
}
// namespace operators
}
// namespace paddle_mobile
...
...
src/operators/kernel/central-arm-func/conv_add_relu_arm_func.h
浏览文件 @
f35cd850
...
...
@@ -25,22 +25,31 @@ limitations under the License. */
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
P
>
template
<
typename
P
,
typename
S
>
void
ConvAddReluCompute
(
const
FusionConvAddReluParam
<
CPU
>
&
param
)
{
const
Tensor
*
input
=
param
.
Input
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
bias
=
*
param
.
Bias
();
int
axis
=
param
.
Axis
();
int32_t
axis
=
param
.
Axis
();
S
*
bias_data
=
bias
.
data
<
S
>
();
Tensor
*
output
=
param
.
Output
();
float
*
biase_data
=
bias
.
data
<
float
>
();
output
->
mutable_data
<
P
>
();
int
groups
=
param
.
Groups
();
std
::
vector
<
int
>
strides
=
param
.
Strides
();
std
::
vector
<
int
>
paddings
=
param
.
Paddings
();
std
::
vector
<
int
>
dilations
=
param
.
Dilations
();
float
alpha
=
1.0
f
;
float
beta
=
1.0
f
;
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
#ifdef FUSION_CONVADDRELU_INT8_OP
Tensor
scale
=
*
param
.
InputScale
();
alpha
=
scale
.
data
<
float
>
()[
0
];
beta
=
0.0
f
;
#endif
int32_t
groups
=
param
.
Groups
();
std
::
vector
<
int32_t
>
strides
=
param
.
Strides
();
std
::
vector
<
int32_t
>
paddings
=
param
.
Paddings
();
std
::
vector
<
int32_t
>
dilations
=
param
.
Dilations
();
const
int32_t
batch_size
=
static_cast
<
int32_t
>
(
input
->
dims
()[
0
]);
std
::
vector
<
int64_t
>
filter_shape_vec
(
framework
::
vectorize
(
filter
.
dims
()));
...
...
@@ -62,13 +71,13 @@ void ConvAddReluCompute(const FusionConvAddReluParam<CPU> ¶m) {
Tensor
col
;
Tensor
col_matrix
;
if
(
is_expand
)
{
col
.
mutable_data
<
float
>
(
col_shape
);
col
.
mutable_data
<
P
>
(
col_shape
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
input
->
dims
(),
1
,
static_cast
<
int
>
(
input
->
dims
().
size
()));
input
->
dims
(),
1
,
static_cast
<
int
32_t
>
(
input
->
dims
().
size
()));
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
filter
.
numel
()
/
filter
.
dims
()[
0
]};
...
...
@@ -78,17 +87,17 @@ void ConvAddReluCompute(const FusionConvAddReluParam<CPU> ¶m) {
output
->
numel
()
/
(
output
->
dims
()[
0
]
*
output
->
dims
()[
1
])};
// convolution operator: im2col(or vol2col) + gemm
int
in_step
=
static_cast
<
in
t
>
(
input
->
dims
()[
1
])
/
groups
;
int
out_step
=
static_cast
<
in
t
>
(
output
->
dims
()[
1
])
/
groups
;
int
32_t
in_step
=
static_cast
<
int32_
t
>
(
input
->
dims
()[
1
])
/
groups
;
int
32_t
out_step
=
static_cast
<
int32_
t
>
(
output
->
dims
()[
1
])
/
groups
;
math
::
Vol2ColFunctor
<
CPU
,
float
>
vol2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
CPU
,
float
>
im2col
;
math
::
Vol2ColFunctor
<
CPU
,
P
>
vol2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
CPU
,
P
>
im2col
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
32_t
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
for
(
int
32_t
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
in_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
if
(
!
is_expand
)
{
...
...
@@ -98,8 +107,8 @@ void ConvAddReluCompute(const FusionConvAddReluParam<CPU> ¶m) {
}
else
if
(
data_dim
==
2U
)
{
// im2col
im2col
(
in_slice
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
std
::
vector
<
int
32_t
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
col
);
}
else
if
(
data_dim
==
3U
)
{
// vol2col
...
...
@@ -109,9 +118,9 @@ void ConvAddReluCompute(const FusionConvAddReluParam<CPU> ¶m) {
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
)
,
&
out_slice
,
static_cast
<
float
>
(
1
),
true
,
biase
_data
);
math
::
matmul
(
filter_slice
,
false
,
col_matrix
,
false
,
alpha
,
&
out_slice
,
beta
,
true
,
bias
_data
);
}
}
}
...
...
src/operators/kernel/central-arm-func/conv_add_relu_int8_arm_func.h
已删除
100644 → 0
浏览文件 @
36607770
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADDRELU_INT8_OP
#pragma once
#include <vector>
#include "operators/math/conv_func.h"
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
#include "operators/math/vol2col.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
P
>
void
ConvAddReluInt8Compute
(
const
FusionConvAddReluInt8Param
<
CPU
>
&
param
)
{
const
Tensor
*
input
=
param
.
Input
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
bias
=
*
param
.
Bias
();
Tensor
scale
=
*
param
.
InputScale
();
int32_t
axis
=
param
.
Axis
();
Tensor
*
output
=
param
.
Output
();
output
->
mutable_data
<
P
>
();
int32_t
*
bias_data
=
bias
.
data
<
int32_t
>
();
float
scale_v
=
scale
.
data
<
float
>
()[
0
];
int32_t
groups
=
param
.
Groups
();
std
::
vector
<
int32_t
>
strides
=
param
.
Strides
();
std
::
vector
<
int32_t
>
paddings
=
param
.
Paddings
();
std
::
vector
<
int32_t
>
dilations
=
param
.
Dilations
();
const
int32_t
batch_size
=
static_cast
<
int32_t
>
(
input
->
dims
()[
0
]);
std
::
vector
<
int64_t
>
filter_shape_vec
(
framework
::
vectorize
(
filter
.
dims
()));
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
output
->
dims
()));
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
input
->
dims
()[
1
]
/
groups
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
];
col_shape_vec
[
j
+
1
+
data_dim
]
=
output_shape_vec
[
j
+
2
];
}
framework
::
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
framework
::
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
bool
is_expand
=
math
::
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
Tensor
col
;
Tensor
col_matrix
;
if
(
is_expand
)
{
col
.
mutable_data
<
P
>
(
col_shape
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
input
->
dims
(),
1
,
static_cast
<
int32_t
>
(
input
->
dims
().
size
()));
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
filter
.
numel
()
/
filter
.
dims
()[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
framework
::
DDim
output_matrix_shape
=
{
output
->
dims
()[
1
],
output
->
numel
()
/
(
output
->
dims
()[
0
]
*
output
->
dims
()[
1
])};
// convolution operator: im2col(or vol2col) + gemm
int32_t
in_step
=
static_cast
<
int32_t
>
(
input
->
dims
()[
1
])
/
groups
;
int32_t
out_step
=
static_cast
<
int32_t
>
(
output
->
dims
()[
1
])
/
groups
;
math
::
Vol2ColFunctor
<
CPU
,
P
>
vol2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
CPU
,
P
>
im2col
;
for
(
int32_t
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
for
(
int32_t
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
in_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
if
(
!
is_expand
)
{
col
.
ShareDataWith
(
in_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
data_dim
==
2U
)
{
// im2col
im2col
(
in_slice
,
dilations
,
strides
,
std
::
vector
<
int32_t
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
col
);
}
else
if
(
data_dim
==
3U
)
{
// vol2col
vol2col
(
in_slice
,
dilations
,
strides
,
paddings
,
&
col
);
}
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
(
filter_slice
,
false
,
col_matrix
,
false
,
scale_v
,
&
out_slice
,
static_cast
<
float
>
(
0
),
true
,
bias_data
);
}
}
}
}
// namespace operators
}
// namespace paddle_mobile
#endif // FUSION_CONVADDRELU_INT8_OP
src/operators/kernel/central-arm-func/conv_arm_func.h
浏览文件 @
f35cd850
...
...
@@ -106,16 +106,9 @@ inline void GemmConv(const ConvParam<CPU> ¶m) {
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
if
(
param
.
Input
()
->
type
()
==
typeid
(
int8_t
))
{
math
::
matmul
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
0
),
false
,
static_cast
<
int32_t
*>
(
nullptr
));
}
else
{
math
::
matmul
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
0
),
false
,
static_cast
<
float
*>
(
nullptr
));
}
math
::
matmul
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
0
),
false
,
static_cast
<
Otype
*>
(
nullptr
));
}
}
}
...
...
src/operators/kernel/conv_add_relu_int8_kernel.h
已删除
100644 → 0
浏览文件 @
36607770
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADDRELU_INT8_OP
#pragma once
#include <vector>
#include "framework/ddim.h"
#include "framework/operator.h"
#include "operators/math/conv_func.h"
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
#include "operators/math/vol2col.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
using
framework
::
DDim
;
using
framework
::
OpKernelBase
;
template
<
typename
DeviceType
,
typename
T
>
class
ConvAddReluInt8Kernel
:
public
OpKernelBase
<
DeviceType
,
FusionConvAddReluInt8Param
<
DeviceType
>>
{
public:
void
Compute
(
const
FusionConvAddReluInt8Param
<
DeviceType
>
&
param
);
bool
Init
(
FusionConvAddReluInt8Param
<
DeviceType
>
*
param
);
};
}
// namespace operators
}
// namespace paddle_mobile
#endif // FUSION_CONVADDRELU_INT8_OP
src/operators/math/gemm.cpp
浏览文件 @
f35cd850
...
...
@@ -2924,6 +2924,7 @@ void Gemm::WriteWithBnAddRelu(int mc, int nc, float *c, float *C, int ldc,
#endif // __ARM_NEON
// 32位 float 矩阵乘法
template
<
>
void
Gemm
::
Sgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
bias
)
{
...
...
src/operators/math/gemm.h
浏览文件 @
f35cd850
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include <string>
#include "common/log.h"
#include "memory/t_malloc.h"
// 矩阵取值运算宏,假设矩阵按行存储
#define A(i, j) A[(i)*lda + (j)]
...
...
@@ -163,11 +164,6 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
float *new_bias);
*/
// 32位 float 矩阵乘法
void
Sgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
bias
);
// 32位 float 矩阵乘法, 并对结果进行 batchnrom
void
SgemmWithBn
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
...
...
@@ -201,11 +197,13 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
int32_t
ldc
);
// 8 bits int inner product
template
<
typename
Otype
>
void
InnerKernel
(
int32_t
mc
,
int32_t
nc
,
float
alpha
,
const
int8_t
*
a
,
const
int8_t
*
b
,
float
beta
,
int32_t
*
c
,
int32_t
*
C
,
const
int8_t
*
b
,
float
beta
,
int32_t
*
c
,
Otype
*
C
,
int32_t
ldc
,
bool
relu
);
template
<
typename
Otype
>
void
InnerKernelWithBias
(
int32_t
mc
,
int32_t
nc
,
float
alpha
,
const
int8_t
*
a
,
const
int8_t
*
b
,
float
beta
,
int32_t
*
c
,
int8_t
*
C
,
const
int8_t
*
b
,
float
beta
,
int32_t
*
c
,
Otype
*
C
,
int32_t
ldc
,
bool
relu
,
int32_t
*
bias
);
// 8 bits int pack function
...
...
@@ -229,12 +227,15 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
const
int8_t
*
B
,
int32_t
ldb
,
int8_t
*
buffer
);
// 8 bits int matrix product
template
<
typename
Itype
,
typename
Btype
,
typename
Otype
>
void
Sgemm
(
int32_t
m
,
int32_t
n
,
int32_t
k
,
float
alpha
,
const
Itype
*
A
,
int32_t
lda
,
const
Itype
*
B
,
int32_t
ldb
,
float
beta
,
Otype
*
C
,
int32_t
ldc
,
bool
relu
,
Btype
*
bias
);
template
<
typename
Otype
>
void
Sgemm
(
int32_t
m
,
int32_t
n
,
int32_t
k
,
float
alpha
,
const
int8_t
*
A
,
int32_t
lda
,
const
int8_t
*
B
,
int32_t
ldb
,
float
beta
,
int32_t
*
C
,
int32_t
ldc
,
bool
relu
,
int32_t
*
bias
);
void
Sgemm
(
int32_t
m
,
int32_t
n
,
int32_t
k
,
float
alpha
,
const
int8_t
*
A
,
int32_t
lda
,
const
int8_t
*
B
,
int32_t
ldb
,
float
beta
,
int8_t
*
C
,
int32_t
lda
,
const
int8_t
*
B
,
int32_t
ldb
,
float
beta
,
Otype
*
C
,
int32_t
ldc
,
bool
relu
,
int32_t
*
bias
);
void
Sgemm_omp
(
int32_t
m
,
int32_t
n
,
int32_t
k
,
float
alpha
,
const
int8_t
*
A
,
int32_t
lda
,
const
int8_t
*
B
,
int32_t
ldb
,
float
beta
,
int32_t
*
C
,
int32_t
ldc
,
bool
relu
,
int32_t
*
bias
);
...
...
@@ -266,6 +267,71 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
int8_t
*
zero_int8
;
};
// 8 bits int matrix product (m*k x k*n)
template
<
typename
Otype
>
void
Gemm
::
Sgemm
(
int32_t
m
,
int32_t
n
,
int32_t
k
,
float
alpha
,
const
int8_t
*
A
,
int32_t
lda
,
const
int8_t
*
B
,
int32_t
ldb
,
float
beta
,
Otype
*
C
,
int32_t
ldc
,
bool
relu
,
int32_t
*
bias
)
{
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster)
int32_t
L1
=
32
*
1024
;
int32_t
L2
=
512
*
1024
;
const
int32_t
k_complete
=
(
k
+
15
)
-
((
k
+
15
)
&
15
);
KC
=
k_complete
;
MC
=
L1
/
(
KC
*
sizeof
(
int8_t
));
NC
=
L2
/
(
KC
*
sizeof
(
int8_t
));
// make sure MC is multiple of MR_INT8, and NC is multiple of NR_INT8
if
(
MC
==
0
)
{
MC
=
MR_INT8
;
}
else
{
int32_t
mblock_num
=
(
m
+
MC
-
1
)
/
MC
;
MC
=
(
m
+
mblock_num
-
1
)
/
mblock_num
;
MC
=
(
MC
+
MR_INT8
-
1
)
/
MR_INT8
*
MR_INT8
;
}
// DLOG << "mblock_num = " << mblock_num << ", MC = " << MC << "\n";
if
(
NC
==
0
)
{
NC
=
NR_INT8
;
}
else
{
int32_t
nblock_num
=
(
n
+
NC
-
1
)
/
NC
;
NC
=
(
n
+
nblock_num
-
1
)
/
nblock_num
;
NC
=
(
NC
+
NR_INT8
-
1
)
/
NR_INT8
*
NR_INT8
;
}
// DLOG << "nblock_num = " << nblock_num << ", NC = " << NC << "\n";
packedA_int8
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
MC
*
KC
));
packedB_int8
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
KC
*
NC
));
packedC_int32
=
static_cast
<
int32_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int32_t
)
*
MC
*
NC
));
zero_int8
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
k
));
memset
(
static_cast
<
void
*>
(
zero_int8
),
0
,
sizeof
(
int8_t
)
*
k
);
int32_t
mc
,
nc
;
for
(
int32_t
j
=
0
;
j
<
n
;
j
+=
NC
)
{
nc
=
s_min
(
n
-
j
,
NC
);
PackMatrixB_2c_16
(
k
,
nc
,
nc
%
NR_INT8
,
&
B
(
0
,
j
),
ldb
,
packedB_int8
);
for
(
int32_t
i
=
0
;
i
<
m
;
i
+=
MC
)
{
mc
=
s_min
(
m
-
i
,
MC
);
PackMatrixA_4r_16
(
mc
,
k
,
mc
%
MR_INT8
,
&
A
(
i
,
0
),
lda
,
packedA_int8
);
if
(
bias
==
nullptr
)
{
InnerKernel
(
mc
,
nc
,
alpha
,
packedA_int8
,
packedB_int8
,
beta
,
packedC_int32
,
&
C
(
i
,
j
),
ldc
,
relu
);
}
else
{
InnerKernelWithBias
(
mc
,
nc
,
alpha
,
packedA_int8
,
packedB_int8
,
beta
,
packedC_int32
,
&
C
(
i
,
j
),
ldc
,
relu
,
bias
+
i
);
}
}
}
paddle_mobile
::
memory
::
Free
(
packedA_int8
);
paddle_mobile
::
memory
::
Free
(
packedB_int8
);
paddle_mobile
::
memory
::
Free
(
packedC_int32
);
paddle_mobile
::
memory
::
Free
(
zero_int8
);
}
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
src/operators/math/gemm_int8.cpp
浏览文件 @
f35cd850
...
...
@@ -14,7 +14,6 @@ limitations under the License. */
#include <string.h>
#include "common/log.h"
#include "memory/t_malloc.h"
#include "operators/math/gemm.h"
#if __ARM_NEON
#include <arm_neon.h>
...
...
@@ -670,6 +669,11 @@ void Gemm::AddDot6x8(int32_t k, const int8_t *a, const int8_t *b, int32_t *c,
}
// 8 bits int inner product
template
<
>
void
Gemm
::
InnerKernel
(
int32_t
mc
,
int32_t
nc
,
float
alpha
,
const
int8_t
*
a
,
const
int8_t
*
b
,
float
beta
,
int32_t
*
c
,
int8_t
*
C
,
int32_t
ldc
,
bool
relu
)
{}
template
<
>
void
Gemm
::
InnerKernel
(
int32_t
mc
,
int32_t
nc
,
float
alpha
,
const
int8_t
*
a
,
const
int8_t
*
b
,
float
beta
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
,
bool
relu
)
{
...
...
@@ -691,6 +695,7 @@ void Gemm::InnerKernel(int32_t mc, int32_t nc, float alpha, const int8_t *a,
}
}
template
<
>
void
Gemm
::
InnerKernelWithBias
(
int32_t
mc
,
int32_t
nc
,
float
alpha
,
const
int8_t
*
a
,
const
int8_t
*
b
,
float
beta
,
int32_t
*
c
,
int8_t
*
C
,
int32_t
ldc
,
bool
relu
,
...
...
@@ -715,6 +720,12 @@ void Gemm::InnerKernelWithBias(int32_t mc, int32_t nc, float alpha,
}
}
template
<
>
void
Gemm
::
InnerKernelWithBias
(
int32_t
mc
,
int32_t
nc
,
float
alpha
,
const
int8_t
*
a
,
const
int8_t
*
b
,
float
beta
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
,
bool
relu
,
int32_t
*
bias
)
{}
// 8 bits int PackMatrixA_4r
void
Gemm
::
PackMatrixA_4r_16
(
int32_t
m
,
int32_t
k
,
int32_t
m_tail
,
const
int8_t
*
A
,
int32_t
lda
,
int8_t
*
buffer
)
{
...
...
@@ -1083,128 +1094,6 @@ void Gemm::PackMatrixB_8c(int32_t k, int32_t n, int32_t n_tail, const int8_t *B,
}
}
// 8 bits int matrix product (m*k x k*n)
void
Gemm
::
Sgemm
(
int32_t
m
,
int32_t
n
,
int32_t
k
,
float
alpha
,
const
int8_t
*
A
,
int32_t
lda
,
const
int8_t
*
B
,
int32_t
ldb
,
float
beta
,
int32_t
*
C
,
int32_t
ldc
,
bool
relu
,
int32_t
*
bias
)
{
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster)
int32_t
L1
=
32
*
1024
;
int32_t
L2
=
512
*
1024
;
const
int32_t
k_complete
=
(
k
+
15
)
-
((
k
+
15
)
&
15
);
KC
=
k_complete
;
MC
=
L1
/
(
KC
*
sizeof
(
int8_t
));
NC
=
L2
/
(
KC
*
sizeof
(
int8_t
));
// make sure MC is multiple of MR_INT8, and NC is multiple of NR_INT8
if
(
MC
==
0
)
{
MC
=
MR_INT8
;
}
else
{
int32_t
mblock_num
=
(
m
+
MC
-
1
)
/
MC
;
MC
=
(
m
+
mblock_num
-
1
)
/
mblock_num
;
MC
=
(
MC
+
MR_INT8
-
1
)
/
MR_INT8
*
MR_INT8
;
}
// DLOG << "mblock_num = " << mblock_num << ", MC = " << MC << "\n";
if
(
NC
==
0
)
{
NC
=
NR_INT8
;
}
else
{
int32_t
nblock_num
=
(
n
+
NC
-
1
)
/
NC
;
NC
=
(
n
+
nblock_num
-
1
)
/
nblock_num
;
NC
=
(
NC
+
NR_INT8
-
1
)
/
NR_INT8
*
NR_INT8
;
}
// DLOG << "nblock_num = " << nblock_num << ", NC = " << NC << "\n";
packedA_int8
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
MC
*
KC
));
packedB_int8
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
KC
*
NC
));
packedC_int32
=
static_cast
<
int32_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int32_t
)
*
MC
*
NC
));
zero_int8
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
k
));
memset
(
static_cast
<
void
*>
(
zero_int8
),
0
,
sizeof
(
int8_t
)
*
k
);
int32_t
mc
,
nc
;
for
(
int32_t
j
=
0
;
j
<
n
;
j
+=
NC
)
{
nc
=
s_min
(
n
-
j
,
NC
);
PackMatrixB_2c_16
(
k
,
nc
,
nc
%
NR_INT8
,
&
B
(
0
,
j
),
ldb
,
packedB_int8
);
for
(
int32_t
i
=
0
;
i
<
m
;
i
+=
MC
)
{
mc
=
s_min
(
m
-
i
,
MC
);
PackMatrixA_4r_16
(
mc
,
k
,
mc
%
MR_INT8
,
&
A
(
i
,
0
),
lda
,
packedA_int8
);
if
(
bias
==
nullptr
)
{
InnerKernel
(
mc
,
nc
,
alpha
,
packedA_int8
,
packedB_int8
,
beta
,
packedC_int32
,
&
C
(
i
,
j
),
ldc
,
relu
);
}
}
}
paddle_mobile
::
memory
::
Free
(
packedA_int8
);
paddle_mobile
::
memory
::
Free
(
packedB_int8
);
paddle_mobile
::
memory
::
Free
(
packedC_int32
);
paddle_mobile
::
memory
::
Free
(
zero_int8
);
}
// 8 bits int matrix product (m*k x k*n)
void
Gemm
::
Sgemm
(
int32_t
m
,
int32_t
n
,
int32_t
k
,
float
alpha
,
const
int8_t
*
A
,
int32_t
lda
,
const
int8_t
*
B
,
int32_t
ldb
,
float
beta
,
int8_t
*
C
,
int32_t
ldc
,
bool
relu
,
int32_t
*
bias
)
{
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster)
int32_t
L1
=
32
*
1024
;
int32_t
L2
=
512
*
1024
;
const
int32_t
k_complete
=
(
k
+
15
)
-
((
k
+
15
)
&
15
);
KC
=
k_complete
;
MC
=
L1
/
(
KC
*
sizeof
(
int8_t
));
NC
=
L2
/
(
KC
*
sizeof
(
int8_t
));
// make sure MC is multiple of MR_INT8, and NC is multiple of NR_INT8
if
(
MC
==
0
)
{
MC
=
MR_INT8
;
}
else
{
int32_t
mblock_num
=
(
m
+
MC
-
1
)
/
MC
;
MC
=
(
m
+
mblock_num
-
1
)
/
mblock_num
;
MC
=
(
MC
+
MR_INT8
-
1
)
/
MR_INT8
*
MR_INT8
;
}
// DLOG << "mblock_num = " << mblock_num << ", MC = " << MC << "\n";
if
(
NC
==
0
)
{
NC
=
NR_INT8
;
}
else
{
int32_t
nblock_num
=
(
n
+
NC
-
1
)
/
NC
;
NC
=
(
n
+
nblock_num
-
1
)
/
nblock_num
;
NC
=
(
NC
+
NR_INT8
-
1
)
/
NR_INT8
*
NR_INT8
;
}
// DLOG << "nblock_num = " << nblock_num << ", NC = " << NC << "\n";
packedA_int8
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
MC
*
KC
));
packedB_int8
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
KC
*
NC
));
packedC_int32
=
static_cast
<
int32_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int32_t
)
*
MC
*
NC
));
zero_int8
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
k
));
memset
(
static_cast
<
void
*>
(
zero_int8
),
0
,
sizeof
(
int8_t
)
*
k
);
int32_t
mc
,
nc
;
for
(
int32_t
j
=
0
;
j
<
n
;
j
+=
NC
)
{
nc
=
s_min
(
n
-
j
,
NC
);
PackMatrixB_2c_16
(
k
,
nc
,
nc
%
NR_INT8
,
&
B
(
0
,
j
),
ldb
,
packedB_int8
);
for
(
int32_t
i
=
0
;
i
<
m
;
i
+=
MC
)
{
mc
=
s_min
(
m
-
i
,
MC
);
PackMatrixA_4r_16
(
mc
,
k
,
mc
%
MR_INT8
,
&
A
(
i
,
0
),
lda
,
packedA_int8
);
if
(
bias
!=
nullptr
)
{
InnerKernelWithBias
(
mc
,
nc
,
alpha
,
packedA_int8
,
packedB_int8
,
beta
,
packedC_int32
,
&
C
(
i
,
j
),
ldc
,
relu
,
bias
+
i
);
}
}
}
paddle_mobile
::
memory
::
Free
(
packedA_int8
);
paddle_mobile
::
memory
::
Free
(
packedB_int8
);
paddle_mobile
::
memory
::
Free
(
packedC_int32
);
paddle_mobile
::
memory
::
Free
(
zero_int8
);
}
// 8 bits int write back
// C = A * B
void
Gemm
::
WriteBasic
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int32_t
*
C
,
...
...
src/operators/op_param.h
浏览文件 @
f35cd850
...
...
@@ -1705,36 +1705,19 @@ class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
FusionConvAddReluParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
,
const
Scope
&
scope
)
:
FusionConvAddParam
<
DeviceType
>
(
inputs
,
outputs
,
attrs
,
scope
)
{}
};
#endif
:
FusionConvAddParam
<
DeviceType
>
(
inputs
,
outputs
,
attrs
,
scope
)
{
#ifdef FUSION_CONVADDRELU_INT8_OP
template
<
typename
Dtype
>
class
FusionConvAddReluInt8Param
:
public
ConvParam
<
Dtype
>
{
typedef
typename
DtypeTensorTrait
<
Dtype
>::
gtype
GType
;
typedef
typename
DtypeTensorTrait
<
Dtype
>::
rtype
RType
;
public:
FusionConvAddReluInt8Param
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
,
const
Scope
&
scope
)
:
ConvParam
<
Dtype
>
(
inputs
,
outputs
,
attrs
,
scope
)
{
scale_
=
OpParam
::
InputScaleFrom
<
GType
>
(
inputs
,
scope
);
bias_
=
OpParam
::
InputYFrom
<
GType
>
(
inputs
,
scope
);
axis_
=
OpParam
::
GetAttr
<
int
>
(
"axis"
,
attrs
);
#endif
}
#ifdef FUSION_CONVADDRELU_INT8_OP
typedef
typename
DtypeTensorTrait
<
DeviceType
>::
gtype
GType
;
typedef
typename
DtypeTensorTrait
<
DeviceType
>::
rtype
RType
;
const
RType
*
InputScale
()
const
{
return
scale_
;
}
RType
*
Bias
()
const
{
return
bias_
;
}
const
int
&
Axis
()
const
{
return
axis_
;
}
protected:
RType
*
scale_
;
RType
*
bias_
;
int
axis_
;
#endif
};
#endif
...
...
test/common/test_gemm_int8_accuracy.cpp
浏览文件 @
f35cd850
...
...
@@ -12,10 +12,10 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <climits>
#include <cstdlib>
#include <ctime>
#include <iostream>
#include <limits>
#include <random>
#include "../test_helper.h"
#include "common/log.h"
...
...
@@ -57,10 +57,10 @@ void print_matirx(int m, int n, int ldc, int8_t *c) {
int32_t
qadd_int32
(
int32_t
l
,
int32_t
r
)
{
int64_t
res
=
static_cast
<
int64_t
>
(
l
)
+
static_cast
<
int64_t
>
(
r
);
if
(
res
>
INT_MAX
)
return
INT_MAX
;
else
if
(
res
<
INT_MIN
)
return
INT_MIN
;
if
(
res
>
std
::
numeric_limits
<
int32_t
>::
max
()
)
return
std
::
numeric_limits
<
int32_t
>::
max
()
;
else
if
(
res
<
std
::
numeric_limits
<
int32_t
>::
min
()
)
return
std
::
numeric_limits
<
int32_t
>::
min
()
;
else
return
static_cast
<
int32_t
>
(
res
);
}
...
...
test/operators/test_fusion_conv_add_relu_int8_op.cpp
浏览文件 @
f35cd850
...
...
@@ -12,6 +12,10 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADDRELU_INT8_OP
#include <limits>
#include <iostream>
#include "../test_helper.h"
#include "../test_include.h"
#include "operators/fusion_conv_add_relu_int8_op.h"
...
...
@@ -19,10 +23,10 @@ limitations under the License. */
namespace
paddle_mobile
{
int32_t
qadd_int32
(
int32_t
l
,
int32_t
r
)
{
int64_t
res
=
static_cast
<
int64_t
>
(
l
)
+
static_cast
<
int64_t
>
(
r
);
if
(
res
>
INT_MAX
)
return
INT_MAX
;
else
if
(
res
<
INT_MIN
)
return
INT_MIN
;
if
(
res
>
std
::
numeric_limits
<
int32_t
>::
max
()
)
return
std
::
numeric_limits
<
int32_t
>::
max
()
;
else
if
(
res
<
std
::
numeric_limits
<
int32_t
>::
min
()
)
return
std
::
numeric_limits
<
int32_t
>::
min
()
;
else
return
static_cast
<
int32_t
>
(
res
);
}
...
...
@@ -217,8 +221,8 @@ int TestConvOp(int in_channels, int in_height, int in_width, int out_channels) {
inputs
[
"Input"
]
=
std
::
vector
<
std
::
string
>
({
"input"
});
inputs
[
"Filter"
]
=
std
::
vector
<
std
::
string
>
({
"filter"
});
inputs
[
"Scale"
]
=
std
::
vector
<
std
::
string
>
({
"scale"
});
inputs
[
"Y"
]
=
std
::
vector
<
std
::
string
>
({
"
y
"
});
outputs
[
"Out
put
"
]
=
std
::
vector
<
std
::
string
>
({
"output"
});
inputs
[
"Y"
]
=
std
::
vector
<
std
::
string
>
({
"
bias
"
});
outputs
[
"Out"
]
=
std
::
vector
<
std
::
string
>
({
"output"
});
auto
input_var
=
scope
.
get
()
->
Var
(
"input"
);
auto
input
=
input_var
->
template
GetMutable
<
framework
::
LoDTensor
>();
...
...
@@ -234,7 +238,7 @@ int TestConvOp(int in_channels, int in_height, int in_width, int out_channels) {
float
scale_v
=
0.000828
f
;
scale
->
mutable_data
<
float
>
()[
0
]
=
scale_v
;
auto
bias_var
=
scope
.
get
()
->
Var
(
"
y
"
);
auto
bias_var
=
scope
.
get
()
->
Var
(
"
bias
"
);
auto
bias
=
bias_var
->
template
GetMutable
<
framework
::
LoDTensor
>();
SetupTensor
<
int32_t
>
(
bias
,
bias_shape
,
-
127
,
127
);
...
...
@@ -352,3 +356,5 @@ int main(int argc, char *argv[]) {
paddle_mobile
::
TestConvOp
<
int8_t
,
5
,
2
,
1
>
(
in_channels
,
in_height
,
in_width
,
out_channels
);
}
#endif
test/operators/test_mul_op.cpp
浏览文件 @
f35cd850
...
...
@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <iostream>
#include "../test_helper.h"
#include "../test_include.h"
#include "operators/mul_op.h"
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录