paddle_mobile.cpp 15.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "io/paddle_mobile.h"
16
#ifdef PADDLE_MOBILE_CL
17 18
#include <CL/cl.h>
#include "framework/cl/cl_tensor.h"
19 20
#endif
#include "common/common.h"
21
#include "operators/math/gemm.h"
22 23
namespace paddle_mobile {

24 25 26 27 28
template <typename Dtype, Precision P>
void PaddleMobile<Dtype, P>::SetThreadNum(int num) {
#ifdef _OPENMP
  omp_set_num_threads(num);
#endif
29
}
30

31
template <typename Dtype, Precision P>
32
bool PaddleMobile<Dtype, P>::Load(const std::string &dirname, bool optimize,
H
hjchen2 已提交
33 34
                                  bool quantification, int batch_size,
                                  bool loddable) {
35
  if (loader_.get() == nullptr) {
36
    loader_ = std::make_shared<framework::Loader<Dtype, P>>();
37 38 39 40 41
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }

  if (executor_.get() == nullptr) {
42
    executor_ = std::make_shared<framework::Executor<Dtype, P>>(
H
hjchen2 已提交
43 44
        loader_->Load(dirname, optimize, quantification), batch_size, optimize,
        loddable);
45 46 47 48 49 50 51 52 53
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

  return true;
}

template <typename Dtype, Precision P>
bool PaddleMobile<Dtype, P>::Load(const std::string &model_path,
54
                                  const std::string &para_path, bool optimize,
H
hjchen2 已提交
55 56
                                  bool quantification, int batch_size,
                                  bool loddable) {
57
  if (loader_.get() == nullptr) {
58
    loader_ = std::make_shared<framework::Loader<Dtype, P>>();
59 60 61 62 63
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }

  if (executor_.get() == nullptr) {
64
    executor_ = std::make_shared<framework::Executor<Dtype, P>>(
W
wangliu 已提交
65
        loader_->Load(model_path, para_path, optimize, quantification),
H
hjchen2 已提交
66
        batch_size, optimize, loddable);
67 68 69 70 71 72 73
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

  return true;
}

74
template <typename Dtype, Precision P>
L
liuruilong 已提交
75 76 77 78
bool PaddleMobile<Dtype, P>::LoadCombinedMemory(size_t model_len,
                                                const uint8_t *model_buf,
                                                size_t combined_params_len,
                                                uint8_t *combined_params_buf) {
H
hjchen2 已提交
79
  int batch_size = 1;
80 81 82 83
  bool optimise = true;
  bool quantification = false;

  if (loader_.get() == nullptr) {
84
    loader_ = std::make_shared<framework::Loader<Dtype, P>>();
85 86 87 88 89
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }

  if (executor_.get() == nullptr) {
90
    executor_ = std::make_shared<framework::Executor<Dtype, P>>(
91 92
        loader_->LoadCombinedMemory(model_len, model_buf, combined_params_len,
                                    combined_params_buf, optimise,
93
                                    quantification),
H
hjchen2 已提交
94
        batch_size, optimise);
95 96 97 98 99 100
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

  return true;
}
101 102 103 104 105 106
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> PaddleMobile<Dtype, P>::Predict(
    const framework::Tensor &t) {
  return executor_->Predict(t);
}

xiebaiyuan's avatar
xiebaiyuan 已提交
107 108 109 110 111 112
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> PaddleMobile<Dtype, P>::PredictLod(
    const framework::LoDTensor &t) {
  return executor_->PredictLod(t);
}

113 114 115 116 117 118 119 120 121 122 123 124
template <typename Dtype, Precision P>
std::vector<typename PaddleMobile<Dtype, P>::Ptype>
PaddleMobile<Dtype, P>::Predict(const std::vector<Ptype> &input,
                                const std::vector<int64_t> &dims) {
  return executor_->Predict(input, dims);
}

template <typename Dtype, Precision P>
void PaddleMobile<Dtype, P>::Clear() {
  executor_ = nullptr;
  loader_ = nullptr;
}
125
template <typename Dtype, Precision P>
Y
yangfei 已提交
126 127 128 129 130
double PaddleMobile<Dtype, P>::GetPredictTime() {}

#ifdef PADDLE_MOBILE_CPU
template <>
double PaddleMobile<CPU, Precision::FP32>::GetPredictTime() {
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
  int m = 32;
  int n = 224 * 224;
  int k = 27;
  int lda = k;
  int ldb = n;
  int ldc = n;
  float *a =
      static_cast<float *>(paddle_mobile::memory::Alloc(sizeof(float) * m * k));
  float *b =
      static_cast<float *>(paddle_mobile::memory::Alloc(sizeof(float) * k * n));
  float *c =
      static_cast<float *>(paddle_mobile::memory::Alloc(sizeof(float) * m * n));
  int t1 = 1;
  int t2 = 1;
  for (int i = 0; i < m * k; ++i) {
Y
yangfei 已提交
146 147
    unsigned int seed = 100;
    a[i] = t1 + rand_r(&seed) % t2;
148 149
  }
  for (int i = 0; i < k * n; ++i) {
Y
yangfei 已提交
150 151
    unsigned int seed = 200;
    b[i] = t1 + rand_r(&seed) % t2;
152 153 154
  }
  paddle_mobile::operators::math::Gemm gemm;
  auto time1 = paddle_mobile::time();
Y
yangfei 已提交
155 156
  gemm.Sgemm(m, n, k, static_cast<float>(1), a, lda, b, ldb,
             static_cast<float>(0), c, ldc, false, nullptr);
157 158 159 160 161 162 163
  auto time2 = paddle_mobile::time();
  double cost = paddle_mobile::time_diff(time1, time2);
  paddle_mobile::memory::Free(a);
  paddle_mobile::memory::Free(b);
  paddle_mobile::memory::Free(c);
  return cost;
}
Y
yangfei 已提交
164
#endif
165

166
template <typename Dtype, Precision P>
L
liuruilong 已提交
167
PaddleMobile<Dtype, P>::~PaddleMobile() {
168 169 170 171
  executor_ = nullptr;
  loader_ = nullptr;
}

172 173 174 175
#ifdef PADDLE_MOBILE_FPGA

template <typename Dtype, Precision P>
void PaddleMobile<Dtype, P>::InjectVariable(const framework::Tensor &t,
H
hjchen2 已提交
176
                                            std::string var_name) {
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
  executor_->InjectVariable(t, var_name);
}

template <typename Dtype, Precision P>
void PaddleMobile<Dtype, P>::FeedData(const framework::Tensor &t) {
  executor_->FeedData(t);
}

template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> PaddleMobile<Dtype, P>::FetchResult(int id) {
  return executor_->FetchResult(id);
}

template <typename Dtype, Precision P>
void PaddleMobile<Dtype, P>::Predict_From_To(int start, int end) {
  executor_->Predict_From_To(start, end);
}

template <typename Dtype, Precision P>
void PaddleMobile<Dtype, P>::Predict_From(int start) {
  executor_->Predict_From(start);
}

template <typename Dtype, Precision P>
void PaddleMobile<Dtype, P>::Predict_To(int end) {
  executor_->Predict_To(end);
}
#endif

Y
yangfei 已提交
206
#ifdef PADDLE_MOBILE_CL
Z
zhangyang 已提交
207
static std::mutex lc;
Y
yangfei 已提交
208 209
template <typename Dtype, Precision P>
void PaddleMobile<Dtype, P>::SetCLPath(std::string path) {
Y
yangfei 已提交
210 211 212 213
  std::lock_guard<std::mutex> lock(lc);
  if (framework::CLEngine::Instance()->GetCLPath() == "") {
    framework::CLEngine::Instance()->setClPath(path);
  }
Y
yangfei 已提交
214
}
215 216
template <>
double PaddleMobile<GPU_CL, Precision::FP32>::GetPredictTime() {
217 218 219
  cl_int status;
  cl_uint nPlatform;
  clGetPlatformIDs(0, NULL, &nPlatform);
Y
yangfei 已提交
220 221
  cl_platform_id *listPlatform = reinterpret_cast<cl_platform_id *>(
      malloc(nPlatform * sizeof(cl_platform_id)));
222 223 224 225
  clGetPlatformIDs(nPlatform, listPlatform, NULL);
  cl_uint nDevice = 0;
  clGetDeviceIDs(listPlatform[0], CL_DEVICE_TYPE_GPU, 0, NULL, &nDevice);
  cl_device_id *listDevice =
Y
yangfei 已提交
226
      reinterpret_cast<cl_device_id *>(malloc(nDevice * sizeof(cl_device_id)));
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
  clGetDeviceIDs(listPlatform[0], CL_DEVICE_TYPE_GPU, nDevice, listDevice,
                 NULL);
  cl_context context =
      clCreateContext(NULL, nDevice, listDevice, NULL, NULL, &status);
  cl_command_queue queue =
      clCreateCommandQueue(context, listDevice[0], 0, &status);

  int n = 1;
  int c = 3;
  int h = 224;
  int w = 224;
  float *input = static_cast<float *>(
      paddle_mobile::memory::Alloc(sizeof(float) * 3 * 224 * 224));
  float *filter = static_cast<float *>(
      paddle_mobile::memory::Alloc(sizeof(float) * 32 * 27));
  int input_w = w * (c + 3) / 4;
  int input_h = n * h;
  int filter_w = 3 * (3 + 3) / 4;
  int filter_h = 32 * 3;
  int output_w = 224 * (32 + 3) / 4;
  int output_h = 1 * 224;

  framework::DDim input_dims = {1, 3, 224, 224};
  framework::CLTensor input_cl_tensor(context, queue);
  input_cl_tensor.Resize(input_dims);
  cl_mem inputBuffer = input_cl_tensor.mutable_with_data<float>(input);

  framework::DDim filter_dims = {32, 3, 3, 3};
  framework::CLTensor filter_cl_tensor(context, queue);
  input_cl_tensor.Resize(filter_dims);
  cl_mem filterBuffer = filter_cl_tensor.mutable_with_data<float>(filter);

  cl_mem cl_filter_image = NULL;
  cl_mem cl_input_image = NULL;
  cl_mem cl_output_image = NULL;
  cl_image_format cf = {.image_channel_order = CL_RGBA,
                        .image_channel_data_type = CL_HALF_FLOAT};
  cl_input_image = clCreateImage2D(context, CL_MEM_READ_WRITE | 0, &cf, input_w,
                                   input_h, 0, NULL, &status);
  cl_filter_image = clCreateImage2D(context, CL_MEM_READ_WRITE | 0, &cf,
                                    filter_w, filter_h, 0, NULL, &status);
  cl_output_image = clCreateImage2D(context, CL_MEM_READ_WRITE | 0, &cf,
                                    output_w, output_h, 0, NULL, &status);
  char *code;
  std::string path = framework::CLEngine::Instance()->GetCLPath() +
                     "/cl_kernel/feed_kernel.cl";
  size_t length = readText(path.c_str(), &code);
  cl_program program = clCreateProgramWithSource(
      context, 1, (const char **)&code, &length, NULL);
  std::string path1 = "-cl-fast-relaxed-math -I " +
                      framework::CLEngine::Instance()->GetCLPath() +
                      "/cl_kernel";
  clBuildProgram(program, 0, 0, path1.c_str(), NULL, NULL);
  cl_kernel kernel = clCreateKernel(program, "feed", &status);

Y
yangfei 已提交
282 283 284 285 286 287
  int out_H = 224;
  int out_W = 224;
  int out_C = 3;
  int Stride2 = out_C * out_H * out_W;
  int Stride1 = out_H * out_W;
  int Stride0 = out_W;
288 289 290 291
  status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &inputBuffer);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_input_image);
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
292
  status = clSetKernelArg(kernel, 2, sizeof(cl_int), &out_H);
293
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
294
  status = clSetKernelArg(kernel, 3, sizeof(cl_int), &out_W);
295
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
296 297 298 299 300 301 302
  status = clSetKernelArg(kernel, 4, sizeof(cl_int), &out_C);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 5, sizeof(cl_int), &Stride0);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 6, sizeof(cl_int), &Stride1);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 7, sizeof(cl_int), &Stride2);
303 304
  CL_CHECK_ERRORS(status);

Y
yangfei 已提交
305
  size_t global_work_size[3] = {1, 224, 224};
306 307 308

  //  cl_event out_event = param.Out()->GetClEvent();

Y
yangfei 已提交
309
  status = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size,
310 311 312
                                  NULL, 0, NULL, NULL);
  CL_CHECK_ERRORS(status);

Y
yangfei 已提交
313 314 315 316 317 318 319
  out_H = 3;
  out_W = 3;
  out_C = 3;
  Stride2 = out_C * out_H * out_W;
  Stride1 = out_H * out_W;
  Stride0 = out_W;

320 321 322 323
  status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &filterBuffer);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_filter_image);
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
324 325 326
  status = clSetKernelArg(kernel, 2, sizeof(cl_int), &out_H);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 3, sizeof(cl_int), &out_W);
327
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
328
  status = clSetKernelArg(kernel, 4, sizeof(cl_int), &out_C);
329
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
330 331 332 333 334
  status = clSetKernelArg(kernel, 5, sizeof(cl_int), &Stride0);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 6, sizeof(cl_int), &Stride1);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 7, sizeof(cl_int), &Stride2);
335 336
  CL_CHECK_ERRORS(status);

Y
yangfei 已提交
337
  size_t global_work_size1[3] = {1, 3, 96};
338 339 340

  //  cl_event out_event = param.Out()->GetClEvent();

Y
yangfei 已提交
341
  status = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size1,
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
                                  NULL, 0, NULL, NULL);
  CL_CHECK_ERRORS(status);

  clFinish(queue);
  queue = clCreateCommandQueue(context, listDevice[0], 0, &status);

  path = framework::CLEngine::Instance()->GetCLPath() +
         "/cl_kernel/conv_kernel.cl";
  size_t length1 = readText(path.c_str(), &code);
  program = clCreateProgramWithSource(context, 1, (const char **)&code,
                                      &length1, &status);
  CL_CHECK_ERRORS(status);
  clBuildProgram(program, 0, 0, path1.c_str(), NULL, NULL);
  kernel = clCreateKernel(program, "conv_3x3", &status);
  CL_CHECK_ERRORS(status);

  int c_block = (32 + 3) / 4;
  int nh = n * h;
  int stride = 1;
  int offset = 0;
  int input_c = (c + 3) / 4;
  int dilation = 1;
  int input_width = 224;
  int input_height = 224;
  int output_width = 224;
  int output_height = 224;
  status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 1, sizeof(int), &w);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &cl_input_image);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &cl_filter_image);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &cl_output_image);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 6, sizeof(int), &stride);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 7, sizeof(int), &offset);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 8, sizeof(int), &input_c);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 9, sizeof(int), &dilation);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 10, sizeof(int), &input_width);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 11, sizeof(int), &input_height);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 12, sizeof(int), &output_width);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 13, sizeof(int), &output_height);
  CL_CHECK_ERRORS(status);

  //  cl_event out_event = param.Output()->GetClEvent();
  //  cl_event wait_event = param.Input()->GetClEvent();
  size_t global_work_size2[3] = {8, 224, 224};
  auto time1 = paddle_mobile::time();
  status = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size2,
                                  NULL, 0, NULL, NULL);
  CL_CHECK_ERRORS(status);
  clFinish(queue);
  auto time2 = paddle_mobile::time();
  paddle_mobile::memory::Free(input);
  paddle_mobile::memory::Free(filter);
Y
yangfei 已提交
408 409 410 411 412
  if (status == CL_SUCCESS) {
    return paddle_mobile::time_diff(time1, time2);
  } else {
    return -1;
  }
413 414 415 416
}
template <typename Dtype, Precision P>
int PaddleMobile<Dtype, P>::readText(
    const char *kernelPath,
Y
yangfei 已提交
417
    char **pcode) {  // 读取文本文件放入 pcode,返回字符串长度
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
  FILE *fp;
  int size;
  // printf("<readText> File: %s\n", kernelPath);
  fp = fopen(kernelPath, "rb");
  if (!fp) {
    printf("<readText> Open file failed\n");
    return -1;
  }
  if (fseek(fp, 0, SEEK_END) != 0) {
    printf("<readText> Seek end of file failed\n");
    return -1;
  }
  if ((size = ftell(fp)) < 0) {
    printf("<readText> Get file position failed\n");
    return -1;
  }
  rewind(fp);
Y
yangfei 已提交
435
  if ((*pcode = reinterpret_cast<char *>(malloc(size + 1))) == NULL) {
436 437 438 439 440 441 442 443 444
    printf("<readText> Allocate space failed\n");
    return -1;
  }
  fread(*pcode, 1, size, fp);
  (*pcode)[size] = '\0';
  fclose(fp);
  return size + 1;
}

Y
yangfei 已提交
445 446
#endif

447 448 449 450
template class PaddleMobile<CPU, Precision::FP32>;
template class PaddleMobile<FPGA, Precision::FP32>;
template class PaddleMobile<GPU_MALI, Precision::FP32>;

Y
yangfei 已提交
451 452
template class PaddleMobile<GPU_CL, Precision::FP32>;

453
}  // namespace paddle_mobile