paddle_mobile.cpp 16.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "io/paddle_mobile.h"
16 17
#include <utility>
#include "common/common.h"
18
#ifdef PADDLE_MOBILE_CL
19 20
#include <CL/cl.h>
#include "framework/cl/cl_tensor.h"
21
#endif
22
#include "operators/math/gemm.h"
23

24 25
namespace paddle_mobile {

26 27
template <typename Device, typename T>
void PaddleMobile<Device, T>::SetThreadNum(int num) {
28 29 30
#ifdef _OPENMP
  omp_set_num_threads(num);
#endif
31
}
32

33 34 35 36
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Load(const std::string &dirname,
                                       bool optimize, bool quantification,
                                       int batch_size, bool loddable) {
37
  if (loader_.get() == nullptr) {
38
    loader_ = std::make_shared<framework::Loader<Device, T>>();
39 40 41 42 43
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }

  if (executor_.get() == nullptr) {
44
    executor_ = std::make_shared<framework::Executor<Device, T>>(
L
liuruilong 已提交
45
        loader_->Load(dirname, optimize, quantification), config_, batch_size, optimize,
H
hjchen2 已提交
46
        loddable);
47 48 49 50
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

51
  return PMSuccess;
52 53
}

54 55 56 57 58
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Load(const std::string &model_path,
                                       const std::string &para_path,
                                       bool optimize, bool quantification,
                                       int batch_size, bool loddable) {
59
  if (loader_.get() == nullptr) {
60
    loader_ = std::make_shared<framework::Loader<Device, T>>();
61 62 63 64 65
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }

  if (executor_.get() == nullptr) {
66
    executor_ = std::make_shared<framework::Executor<Device, T>>(
L
liuruilong 已提交
67
        loader_->Load(model_path, para_path, optimize, quantification), config_, batch_size, optimize, loddable);
68 69 70 71
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

72
  return PMSuccess;
73 74
}

R
Ray Liu 已提交
75
template <typename Device, typename T>
L
liuruilong 已提交
76 77 78 79
bool PaddleMobile<Device, T>::LoadCombinedMemory(
    size_t model_len, const uint8_t *model_buf, size_t combined_params_len,
    uint8_t *combined_params_buf, bool optimize, bool quantification,
    int batch_size, bool loddable) {
80
  if (loader_.get() == nullptr) {
81
    loader_ = std::make_shared<framework::Loader<Device, T>>();
82 83 84 85
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }
  if (executor_.get() == nullptr) {
86
    executor_ = std::make_shared<framework::Executor<Device, T>>(
87
        loader_->LoadCombinedMemory(model_len, model_buf, combined_params_len,
L
liuruilong 已提交
88
                                    combined_params_buf, optimize,
L
liuruilong 已提交
89
                                    quantification), config_,
L
liuruilong 已提交
90
        batch_size, optimize, loddable);
91 92 93 94
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

95
  return PMSuccess;
96
}
97 98 99 100 101 102

template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(const framework::Tensor &input) {
  std::vector<std::pair<std::string, framework::Tensor>> inputs;
  inputs.push_back(std::make_pair("feed", input));
  return this->Predict(inputs);
103
}
104 105 106 107 108 109

template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(const framework::LoDTensor &input) {
  std::vector<std::pair<std::string, framework::LoDTensor>> inputs;
  inputs.push_back(std::make_pair("feed", input));
  return this->Predict(inputs);
110 111
}

112 113 114 115
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(
    const std::vector<std::pair<std::string, framework::Tensor>> &inputs) {
  return executor_->Predict(inputs);
xiebaiyuan's avatar
xiebaiyuan 已提交
116 117
}

118 119 120 121
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(
    const std::vector<std::pair<std::string, framework::LoDTensor>> &inputs) {
  return executor_->Predict(inputs);
xiebaiyuan's avatar
xiebaiyuan 已提交
122 123
}

124 125 126
template <typename Device, typename T>
std::vector<T> PaddleMobile<Device, T>::Predict(
    const std::vector<T> &input, const std::vector<int64_t> &dims) {
127 128 129
  return executor_->Predict(input, dims);
}

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict() {
  return executor_->Predict();
}

template <typename Device, typename T>
void PaddleMobile<Device, T>::Feed(const framework::Tensor &input,
                                   const std::string &var_name) {
  executor_->SetInput(input, var_name);
}

template <typename Device, typename T>
void PaddleMobile<Device, T>::Feed(const framework::LoDTensor &input,
                                   const std::string &var_name) {
  executor_->SetInput(input, var_name);
}

typedef std::shared_ptr<framework::LoDTensor> LoDTensorPtr;
template <typename Device, typename T>
LoDTensorPtr PaddleMobile<Device, T>::Fetch(const std::string &var_name) {
  return executor_->GetOutput(var_name);
}

template <typename Device, typename T>
void PaddleMobile<Device, T>::Clear() {
155 156 157
  executor_ = nullptr;
  loader_ = nullptr;
}
158 159 160

template <typename Device, typename T>
double PaddleMobile<Device, T>::GetPredictTime() {}
Y
yangfei 已提交
161 162 163

#ifdef PADDLE_MOBILE_CPU
template <>
164
double PaddleMobile<CPU, float>::GetPredictTime() {
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
  int m = 32;
  int n = 224 * 224;
  int k = 27;
  int lda = k;
  int ldb = n;
  int ldc = n;
  float *a =
      static_cast<float *>(paddle_mobile::memory::Alloc(sizeof(float) * m * k));
  float *b =
      static_cast<float *>(paddle_mobile::memory::Alloc(sizeof(float) * k * n));
  float *c =
      static_cast<float *>(paddle_mobile::memory::Alloc(sizeof(float) * m * n));
  int t1 = 1;
  int t2 = 1;
  for (int i = 0; i < m * k; ++i) {
180
    a[i] = t1 + rand() % t2;  // NOLINT
181 182
  }
  for (int i = 0; i < k * n; ++i) {
183
    b[i] = t1 + rand() % t2;  // NOLINT
184
  }
185 186

  operators::math::Gemm gemm;
187
  auto time1 = paddle_mobile::time();
Y
yangfei 已提交
188
  gemm.Sgemm(m, n, k, static_cast<float>(1), a, lda, b, ldb,
189 190
             static_cast<float>(0), c, ldc, false,
             static_cast<float *>(nullptr));
191 192 193 194 195 196 197
  auto time2 = paddle_mobile::time();
  double cost = paddle_mobile::time_diff(time1, time2);
  paddle_mobile::memory::Free(a);
  paddle_mobile::memory::Free(b);
  paddle_mobile::memory::Free(c);
  return cost;
}
Y
yangfei 已提交
198
#endif
199

200
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
201 202
template <typename Device, typename T>
void PaddleMobile<Device, T>::InjectVariable(const framework::Tensor &t,
203
                                             std::string var_name) {
204 205 206
  executor_->InjectVariable(t, var_name);
}

H
hjchen2 已提交
207 208
template <typename Device, typename T>
void PaddleMobile<Device, T>::FeedData(const framework::Tensor &t) {
209 210 211
  executor_->FeedData(t);
}

H
hjchen2 已提交
212 213
template <typename Device, typename T>
std::shared_ptr<framework::Tensor> PaddleMobile<Device, T>::FetchResult(
214
    int id) {
215 216 217
  return executor_->FetchResult(id);
}

H
hjchen2 已提交
218 219
template <typename Device, typename T>
void PaddleMobile<Device, T>::Predict_From_To(int start, int end) {
220 221 222
  executor_->Predict_From_To(start, end);
}

H
hjchen2 已提交
223 224
template <typename Device, typename T>
void PaddleMobile<Device, T>::Predict_From(int start) {
225 226 227
  executor_->Predict_From(start);
}

H
hjchen2 已提交
228 229
template <typename Device, typename T>
void PaddleMobile<Device, T>::Predict_To(int end) {
230 231 232 233
  executor_->Predict_To(end);
}
#endif

Y
yangfei 已提交
234
#ifdef PADDLE_MOBILE_CL
Z
zhangyang 已提交
235
static std::mutex lc;
H
hjchen2 已提交
236 237
template <typename Device, typename T>
void PaddleMobile<Device, T>::SetCLPath(std::string path) {
Y
yangfei 已提交
238 239 240 241
  std::lock_guard<std::mutex> lock(lc);
  if (framework::CLEngine::Instance()->GetCLPath() == "") {
    framework::CLEngine::Instance()->setClPath(path);
  }
Y
yangfei 已提交
242
}
243
template <>
H
hjchen2 已提交
244
double PaddleMobile<GPU_CL, float>::GetPredictTime() {
245 246 247
  cl_int status;
  cl_uint nPlatform;
  clGetPlatformIDs(0, NULL, &nPlatform);
Y
yangfei 已提交
248 249
  cl_platform_id *listPlatform = reinterpret_cast<cl_platform_id *>(
      malloc(nPlatform * sizeof(cl_platform_id)));
250 251 252 253
  clGetPlatformIDs(nPlatform, listPlatform, NULL);
  cl_uint nDevice = 0;
  clGetDeviceIDs(listPlatform[0], CL_DEVICE_TYPE_GPU, 0, NULL, &nDevice);
  cl_device_id *listDevice =
Y
yangfei 已提交
254
      reinterpret_cast<cl_device_id *>(malloc(nDevice * sizeof(cl_device_id)));
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
  clGetDeviceIDs(listPlatform[0], CL_DEVICE_TYPE_GPU, nDevice, listDevice,
                 NULL);
  cl_context context =
      clCreateContext(NULL, nDevice, listDevice, NULL, NULL, &status);
  cl_command_queue queue =
      clCreateCommandQueue(context, listDevice[0], 0, &status);

  int n = 1;
  int c = 3;
  int h = 224;
  int w = 224;
  float *input = static_cast<float *>(
      paddle_mobile::memory::Alloc(sizeof(float) * 3 * 224 * 224));
  float *filter = static_cast<float *>(
      paddle_mobile::memory::Alloc(sizeof(float) * 32 * 27));
  int input_w = w * (c + 3) / 4;
  int input_h = n * h;
  int filter_w = 3 * (3 + 3) / 4;
  int filter_h = 32 * 3;
  int output_w = 224 * (32 + 3) / 4;
  int output_h = 1 * 224;

  framework::DDim input_dims = {1, 3, 224, 224};
  framework::CLTensor input_cl_tensor(context, queue);
  input_cl_tensor.Resize(input_dims);
  cl_mem inputBuffer = input_cl_tensor.mutable_with_data<float>(input);

  framework::DDim filter_dims = {32, 3, 3, 3};
  framework::CLTensor filter_cl_tensor(context, queue);
  input_cl_tensor.Resize(filter_dims);
  cl_mem filterBuffer = filter_cl_tensor.mutable_with_data<float>(filter);

  cl_mem cl_filter_image = NULL;
  cl_mem cl_input_image = NULL;
  cl_mem cl_output_image = NULL;
  cl_image_format cf = {.image_channel_order = CL_RGBA,
                        .image_channel_data_type = CL_HALF_FLOAT};
  cl_input_image = clCreateImage2D(context, CL_MEM_READ_WRITE | 0, &cf, input_w,
                                   input_h, 0, NULL, &status);
  cl_filter_image = clCreateImage2D(context, CL_MEM_READ_WRITE | 0, &cf,
                                    filter_w, filter_h, 0, NULL, &status);
  cl_output_image = clCreateImage2D(context, CL_MEM_READ_WRITE | 0, &cf,
                                    output_w, output_h, 0, NULL, &status);
  char *code;
  std::string path = framework::CLEngine::Instance()->GetCLPath() +
                     "/cl_kernel/feed_kernel.cl";
  size_t length = readText(path.c_str(), &code);
  cl_program program = clCreateProgramWithSource(
      context, 1, (const char **)&code, &length, NULL);
  std::string path1 = "-cl-fast-relaxed-math -I " +
                      framework::CLEngine::Instance()->GetCLPath() +
                      "/cl_kernel";
  clBuildProgram(program, 0, 0, path1.c_str(), NULL, NULL);
  cl_kernel kernel = clCreateKernel(program, "feed", &status);

Y
yangfei 已提交
310 311 312 313 314 315
  int out_H = 224;
  int out_W = 224;
  int out_C = 3;
  int Stride2 = out_C * out_H * out_W;
  int Stride1 = out_H * out_W;
  int Stride0 = out_W;
316 317 318 319
  status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &inputBuffer);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_input_image);
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
320
  status = clSetKernelArg(kernel, 2, sizeof(cl_int), &out_H);
321
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
322
  status = clSetKernelArg(kernel, 3, sizeof(cl_int), &out_W);
323
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
324 325 326 327 328 329 330
  status = clSetKernelArg(kernel, 4, sizeof(cl_int), &out_C);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 5, sizeof(cl_int), &Stride0);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 6, sizeof(cl_int), &Stride1);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 7, sizeof(cl_int), &Stride2);
331 332
  CL_CHECK_ERRORS(status);

Y
yangfei 已提交
333
  size_t global_work_size[3] = {1, 224, 224};
334 335 336

  //  cl_event out_event = param.Out()->GetClEvent();

Y
yangfei 已提交
337
  status = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size,
338 339 340
                                  NULL, 0, NULL, NULL);
  CL_CHECK_ERRORS(status);

Y
yangfei 已提交
341 342 343 344 345 346 347
  out_H = 3;
  out_W = 3;
  out_C = 3;
  Stride2 = out_C * out_H * out_W;
  Stride1 = out_H * out_W;
  Stride0 = out_W;

348 349 350 351
  status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &filterBuffer);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_filter_image);
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
352 353 354
  status = clSetKernelArg(kernel, 2, sizeof(cl_int), &out_H);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 3, sizeof(cl_int), &out_W);
355
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
356
  status = clSetKernelArg(kernel, 4, sizeof(cl_int), &out_C);
357
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
358 359 360 361 362
  status = clSetKernelArg(kernel, 5, sizeof(cl_int), &Stride0);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 6, sizeof(cl_int), &Stride1);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 7, sizeof(cl_int), &Stride2);
363 364
  CL_CHECK_ERRORS(status);

Y
yangfei 已提交
365
  size_t global_work_size1[3] = {1, 3, 96};
366 367 368

  //  cl_event out_event = param.Out()->GetClEvent();

Y
yangfei 已提交
369
  status = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size1,
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
                                  NULL, 0, NULL, NULL);
  CL_CHECK_ERRORS(status);

  clFinish(queue);
  queue = clCreateCommandQueue(context, listDevice[0], 0, &status);

  path = framework::CLEngine::Instance()->GetCLPath() +
         "/cl_kernel/conv_kernel.cl";
  size_t length1 = readText(path.c_str(), &code);
  program = clCreateProgramWithSource(context, 1, (const char **)&code,
                                      &length1, &status);
  CL_CHECK_ERRORS(status);
  clBuildProgram(program, 0, 0, path1.c_str(), NULL, NULL);
  kernel = clCreateKernel(program, "conv_3x3", &status);
  CL_CHECK_ERRORS(status);

  int c_block = (32 + 3) / 4;
  int nh = n * h;
  int stride = 1;
  int offset = 0;
  int input_c = (c + 3) / 4;
  int dilation = 1;
  int input_width = 224;
  int input_height = 224;
  int output_width = 224;
  int output_height = 224;
  status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 1, sizeof(int), &w);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &cl_input_image);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &cl_filter_image);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &cl_output_image);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 6, sizeof(int), &stride);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 7, sizeof(int), &offset);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 8, sizeof(int), &input_c);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 9, sizeof(int), &dilation);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 10, sizeof(int), &input_width);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 11, sizeof(int), &input_height);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 12, sizeof(int), &output_width);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 13, sizeof(int), &output_height);
  CL_CHECK_ERRORS(status);

  //  cl_event out_event = param.Output()->GetClEvent();
  //  cl_event wait_event = param.Input()->GetClEvent();
  size_t global_work_size2[3] = {8, 224, 224};
  auto time1 = paddle_mobile::time();
  status = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size2,
                                  NULL, 0, NULL, NULL);
  CL_CHECK_ERRORS(status);
  clFinish(queue);
  auto time2 = paddle_mobile::time();
  paddle_mobile::memory::Free(input);
  paddle_mobile::memory::Free(filter);
Y
yangfei 已提交
436 437 438 439 440
  if (status == CL_SUCCESS) {
    return paddle_mobile::time_diff(time1, time2);
  } else {
    return -1;
  }
441
}
H
hjchen2 已提交
442 443
template <typename Device, typename T>
int PaddleMobile<Device, T>::readText(
444
    const char *kernelPath,
Y
yangfei 已提交
445
    char **pcode) {  // 读取文本文件放入 pcode,返回字符串长度
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
  FILE *fp;
  int size;
  // printf("<readText> File: %s\n", kernelPath);
  fp = fopen(kernelPath, "rb");
  if (!fp) {
    printf("<readText> Open file failed\n");
    return -1;
  }
  if (fseek(fp, 0, SEEK_END) != 0) {
    printf("<readText> Seek end of file failed\n");
    return -1;
  }
  if ((size = ftell(fp)) < 0) {
    printf("<readText> Get file position failed\n");
    return -1;
  }
  rewind(fp);
Y
yangfei 已提交
463
  if ((*pcode = reinterpret_cast<char *>(malloc(size + 1))) == NULL) {
464 465 466 467 468 469 470 471
    printf("<readText> Allocate space failed\n");
    return -1;
  }
  fread(*pcode, 1, size, fp);
  (*pcode)[size] = '\0';
  fclose(fp);
  return size + 1;
}
Y
yangfei 已提交
472 473
#endif

474 475 476 477
template class PaddleMobile<CPU, float>;
template class PaddleMobile<FPGA, float>;
template class PaddleMobile<GPU_MALI, float>;
template class PaddleMobile<GPU_CL, float>;
Y
yangfei 已提交
478

479
}  // namespace paddle_mobile