paddle_mobile.cpp 16.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "io/paddle_mobile.h"
16 17
#include <utility>
#include "common/common.h"
18
#ifdef PADDLE_MOBILE_CL
19 20
#include <CL/cl.h>
#include "framework/cl/cl_tensor.h"
21
#endif
22
#include "operators/math/gemm.h"
23

24 25
namespace paddle_mobile {

26 27
template <typename Device, typename T>
void PaddleMobile<Device, T>::SetThreadNum(int num) {
28 29 30
#ifdef _OPENMP
  omp_set_num_threads(num);
#endif
31
}
32

33 34 35 36
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Load(const std::string &dirname,
                                       bool optimize, bool quantification,
                                       int batch_size, bool loddable) {
37
  if (loader_.get() == nullptr) {
38
    loader_ = std::make_shared<framework::Loader<Device, T>>();
39 40 41 42 43
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }

  if (executor_.get() == nullptr) {
44
    executor_ = std::make_shared<framework::Executor<Device, T>>(
H
hjchen2 已提交
45 46
        loader_->Load(dirname, optimize, quantification), batch_size, optimize,
        loddable);
47 48 49 50
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

51
  return PMSuccess;
52 53
}

54 55 56 57 58
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Load(const std::string &model_path,
                                       const std::string &para_path,
                                       bool optimize, bool quantification,
                                       int batch_size, bool loddable) {
59
  if (loader_.get() == nullptr) {
60
    loader_ = std::make_shared<framework::Loader<Device, T>>();
61 62 63 64 65
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }

  if (executor_.get() == nullptr) {
66
    executor_ = std::make_shared<framework::Executor<Device, T>>(
W
wangliu 已提交
67
        loader_->Load(model_path, para_path, optimize, quantification),
H
hjchen2 已提交
68
        batch_size, optimize, loddable);
69 70 71 72
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

73
  return PMSuccess;
74 75
}

R
Ray Liu 已提交
76
template <typename Device, typename T>
L
liuruilong 已提交
77 78 79 80
bool PaddleMobile<Device, T>::LoadCombinedMemory(
    size_t model_len, const uint8_t *model_buf, size_t combined_params_len,
    uint8_t *combined_params_buf, bool optimize, bool quantification,
    int batch_size, bool loddable) {
81
  if (loader_.get() == nullptr) {
82
    loader_ = std::make_shared<framework::Loader<Device, T>>();
83 84 85 86
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }
  if (executor_.get() == nullptr) {
87
    executor_ = std::make_shared<framework::Executor<Device, T>>(
88
        loader_->LoadCombinedMemory(model_len, model_buf, combined_params_len,
L
liuruilong 已提交
89
                                    combined_params_buf, optimize,
90
                                    quantification),
L
liuruilong 已提交
91
        batch_size, optimize, loddable);
92 93 94 95
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

96
  return PMSuccess;
97
}
98 99 100 101 102 103

template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(const framework::Tensor &input) {
  std::vector<std::pair<std::string, framework::Tensor>> inputs;
  inputs.push_back(std::make_pair("feed", input));
  return this->Predict(inputs);
104
}
105 106 107 108 109 110

template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(const framework::LoDTensor &input) {
  std::vector<std::pair<std::string, framework::LoDTensor>> inputs;
  inputs.push_back(std::make_pair("feed", input));
  return this->Predict(inputs);
111 112
}

113 114 115 116
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(
    const std::vector<std::pair<std::string, framework::Tensor>> &inputs) {
  return executor_->Predict(inputs);
xiebaiyuan's avatar
xiebaiyuan 已提交
117 118
}

119 120 121 122
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(
    const std::vector<std::pair<std::string, framework::LoDTensor>> &inputs) {
  return executor_->Predict(inputs);
xiebaiyuan's avatar
xiebaiyuan 已提交
123 124
}

125 126 127
template <typename Device, typename T>
std::vector<T> PaddleMobile<Device, T>::Predict(
    const std::vector<T> &input, const std::vector<int64_t> &dims) {
128 129 130
  return executor_->Predict(input, dims);
}

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict() {
  return executor_->Predict();
}

template <typename Device, typename T>
void PaddleMobile<Device, T>::Feed(const framework::Tensor &input,
                                   const std::string &var_name) {
  executor_->SetInput(input, var_name);
}

template <typename Device, typename T>
void PaddleMobile<Device, T>::Feed(const framework::LoDTensor &input,
                                   const std::string &var_name) {
  executor_->SetInput(input, var_name);
}

typedef std::shared_ptr<framework::LoDTensor> LoDTensorPtr;
template <typename Device, typename T>
LoDTensorPtr PaddleMobile<Device, T>::Fetch(const std::string &var_name) {
  return executor_->GetOutput(var_name);
}

template <typename Device, typename T>
void PaddleMobile<Device, T>::Clear() {
156 157 158
  executor_ = nullptr;
  loader_ = nullptr;
}
159 160 161

template <typename Device, typename T>
double PaddleMobile<Device, T>::GetPredictTime() {}
Y
yangfei 已提交
162 163 164

#ifdef PADDLE_MOBILE_CPU
template <>
165
double PaddleMobile<CPU, float>::GetPredictTime() {
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
  int m = 32;
  int n = 224 * 224;
  int k = 27;
  int lda = k;
  int ldb = n;
  int ldc = n;
  float *a =
      static_cast<float *>(paddle_mobile::memory::Alloc(sizeof(float) * m * k));
  float *b =
      static_cast<float *>(paddle_mobile::memory::Alloc(sizeof(float) * k * n));
  float *c =
      static_cast<float *>(paddle_mobile::memory::Alloc(sizeof(float) * m * n));
  int t1 = 1;
  int t2 = 1;
  for (int i = 0; i < m * k; ++i) {
181
    a[i] = t1 + rand() % t2;  // NOLINT
182 183
  }
  for (int i = 0; i < k * n; ++i) {
184
    b[i] = t1 + rand() % t2;  // NOLINT
185
  }
186 187

  operators::math::Gemm gemm;
188
  auto time1 = paddle_mobile::time();
Y
yangfei 已提交
189
  gemm.Sgemm(m, n, k, static_cast<float>(1), a, lda, b, ldb,
190 191
             static_cast<float>(0), c, ldc, false,
             static_cast<float *>(nullptr));
192 193 194 195 196 197 198
  auto time2 = paddle_mobile::time();
  double cost = paddle_mobile::time_diff(time1, time2);
  paddle_mobile::memory::Free(a);
  paddle_mobile::memory::Free(b);
  paddle_mobile::memory::Free(c);
  return cost;
}
Y
yangfei 已提交
199
#endif
200

201
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
202 203
template <typename Device, typename T>
void PaddleMobile<Device, T>::InjectVariable(const framework::Tensor &t,
204
                                             std::string var_name) {
205 206 207
  executor_->InjectVariable(t, var_name);
}

H
hjchen2 已提交
208 209
template <typename Device, typename T>
void PaddleMobile<Device, T>::FeedData(const framework::Tensor &t) {
210 211 212
  executor_->FeedData(t);
}

H
hjchen2 已提交
213 214
template <typename Device, typename T>
std::shared_ptr<framework::Tensor> PaddleMobile<Device, T>::FetchResult(
215
    int id) {
216 217 218
  return executor_->FetchResult(id);
}

H
hjchen2 已提交
219 220
template <typename Device, typename T>
void PaddleMobile<Device, T>::Predict_From_To(int start, int end) {
221 222 223
  executor_->Predict_From_To(start, end);
}

H
hjchen2 已提交
224 225
template <typename Device, typename T>
void PaddleMobile<Device, T>::Predict_From(int start) {
226 227 228
  executor_->Predict_From(start);
}

H
hjchen2 已提交
229 230
template <typename Device, typename T>
void PaddleMobile<Device, T>::Predict_To(int end) {
231 232 233 234
  executor_->Predict_To(end);
}
#endif

Y
yangfei 已提交
235
#ifdef PADDLE_MOBILE_CL
Z
zhangyang 已提交
236
static std::mutex lc;
H
hjchen2 已提交
237 238
template <typename Device, typename T>
void PaddleMobile<Device, T>::SetCLPath(std::string path) {
Y
yangfei 已提交
239 240 241 242
  std::lock_guard<std::mutex> lock(lc);
  if (framework::CLEngine::Instance()->GetCLPath() == "") {
    framework::CLEngine::Instance()->setClPath(path);
  }
Y
yangfei 已提交
243
}
244
template <>
H
hjchen2 已提交
245
double PaddleMobile<GPU_CL, float>::GetPredictTime() {
246 247 248
  cl_int status;
  cl_uint nPlatform;
  clGetPlatformIDs(0, NULL, &nPlatform);
Y
yangfei 已提交
249 250
  cl_platform_id *listPlatform = reinterpret_cast<cl_platform_id *>(
      malloc(nPlatform * sizeof(cl_platform_id)));
251 252 253 254
  clGetPlatformIDs(nPlatform, listPlatform, NULL);
  cl_uint nDevice = 0;
  clGetDeviceIDs(listPlatform[0], CL_DEVICE_TYPE_GPU, 0, NULL, &nDevice);
  cl_device_id *listDevice =
Y
yangfei 已提交
255
      reinterpret_cast<cl_device_id *>(malloc(nDevice * sizeof(cl_device_id)));
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
  clGetDeviceIDs(listPlatform[0], CL_DEVICE_TYPE_GPU, nDevice, listDevice,
                 NULL);
  cl_context context =
      clCreateContext(NULL, nDevice, listDevice, NULL, NULL, &status);
  cl_command_queue queue =
      clCreateCommandQueue(context, listDevice[0], 0, &status);

  int n = 1;
  int c = 3;
  int h = 224;
  int w = 224;
  float *input = static_cast<float *>(
      paddle_mobile::memory::Alloc(sizeof(float) * 3 * 224 * 224));
  float *filter = static_cast<float *>(
      paddle_mobile::memory::Alloc(sizeof(float) * 32 * 27));
  int input_w = w * (c + 3) / 4;
  int input_h = n * h;
  int filter_w = 3 * (3 + 3) / 4;
  int filter_h = 32 * 3;
  int output_w = 224 * (32 + 3) / 4;
  int output_h = 1 * 224;

  framework::DDim input_dims = {1, 3, 224, 224};
  framework::CLTensor input_cl_tensor(context, queue);
  input_cl_tensor.Resize(input_dims);
  cl_mem inputBuffer = input_cl_tensor.mutable_with_data<float>(input);

  framework::DDim filter_dims = {32, 3, 3, 3};
  framework::CLTensor filter_cl_tensor(context, queue);
  input_cl_tensor.Resize(filter_dims);
  cl_mem filterBuffer = filter_cl_tensor.mutable_with_data<float>(filter);

  cl_mem cl_filter_image = NULL;
  cl_mem cl_input_image = NULL;
  cl_mem cl_output_image = NULL;
  cl_image_format cf = {.image_channel_order = CL_RGBA,
                        .image_channel_data_type = CL_HALF_FLOAT};
  cl_input_image = clCreateImage2D(context, CL_MEM_READ_WRITE | 0, &cf, input_w,
                                   input_h, 0, NULL, &status);
  cl_filter_image = clCreateImage2D(context, CL_MEM_READ_WRITE | 0, &cf,
                                    filter_w, filter_h, 0, NULL, &status);
  cl_output_image = clCreateImage2D(context, CL_MEM_READ_WRITE | 0, &cf,
                                    output_w, output_h, 0, NULL, &status);
  char *code;
  std::string path = framework::CLEngine::Instance()->GetCLPath() +
                     "/cl_kernel/feed_kernel.cl";
  size_t length = readText(path.c_str(), &code);
  cl_program program = clCreateProgramWithSource(
      context, 1, (const char **)&code, &length, NULL);
  std::string path1 = "-cl-fast-relaxed-math -I " +
                      framework::CLEngine::Instance()->GetCLPath() +
                      "/cl_kernel";
  clBuildProgram(program, 0, 0, path1.c_str(), NULL, NULL);
  cl_kernel kernel = clCreateKernel(program, "feed", &status);

Y
yangfei 已提交
311 312 313 314 315 316
  int out_H = 224;
  int out_W = 224;
  int out_C = 3;
  int Stride2 = out_C * out_H * out_W;
  int Stride1 = out_H * out_W;
  int Stride0 = out_W;
317 318 319 320
  status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &inputBuffer);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_input_image);
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
321
  status = clSetKernelArg(kernel, 2, sizeof(cl_int), &out_H);
322
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
323
  status = clSetKernelArg(kernel, 3, sizeof(cl_int), &out_W);
324
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
325 326 327 328 329 330 331
  status = clSetKernelArg(kernel, 4, sizeof(cl_int), &out_C);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 5, sizeof(cl_int), &Stride0);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 6, sizeof(cl_int), &Stride1);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 7, sizeof(cl_int), &Stride2);
332 333
  CL_CHECK_ERRORS(status);

Y
yangfei 已提交
334
  size_t global_work_size[3] = {1, 224, 224};
335 336 337

  //  cl_event out_event = param.Out()->GetClEvent();

Y
yangfei 已提交
338
  status = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size,
339 340 341
                                  NULL, 0, NULL, NULL);
  CL_CHECK_ERRORS(status);

Y
yangfei 已提交
342 343 344 345 346 347 348
  out_H = 3;
  out_W = 3;
  out_C = 3;
  Stride2 = out_C * out_H * out_W;
  Stride1 = out_H * out_W;
  Stride0 = out_W;

349 350 351 352
  status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &filterBuffer);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_filter_image);
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
353 354 355
  status = clSetKernelArg(kernel, 2, sizeof(cl_int), &out_H);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 3, sizeof(cl_int), &out_W);
356
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
357
  status = clSetKernelArg(kernel, 4, sizeof(cl_int), &out_C);
358
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
359 360 361 362 363
  status = clSetKernelArg(kernel, 5, sizeof(cl_int), &Stride0);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 6, sizeof(cl_int), &Stride1);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 7, sizeof(cl_int), &Stride2);
364 365
  CL_CHECK_ERRORS(status);

Y
yangfei 已提交
366
  size_t global_work_size1[3] = {1, 3, 96};
367 368 369

  //  cl_event out_event = param.Out()->GetClEvent();

Y
yangfei 已提交
370
  status = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size1,
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
                                  NULL, 0, NULL, NULL);
  CL_CHECK_ERRORS(status);

  clFinish(queue);
  queue = clCreateCommandQueue(context, listDevice[0], 0, &status);

  path = framework::CLEngine::Instance()->GetCLPath() +
         "/cl_kernel/conv_kernel.cl";
  size_t length1 = readText(path.c_str(), &code);
  program = clCreateProgramWithSource(context, 1, (const char **)&code,
                                      &length1, &status);
  CL_CHECK_ERRORS(status);
  clBuildProgram(program, 0, 0, path1.c_str(), NULL, NULL);
  kernel = clCreateKernel(program, "conv_3x3", &status);
  CL_CHECK_ERRORS(status);

  int c_block = (32 + 3) / 4;
  int nh = n * h;
  int stride = 1;
  int offset = 0;
  int input_c = (c + 3) / 4;
  int dilation = 1;
  int input_width = 224;
  int input_height = 224;
  int output_width = 224;
  int output_height = 224;
  status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 1, sizeof(int), &w);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &cl_input_image);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &cl_filter_image);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &cl_output_image);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 6, sizeof(int), &stride);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 7, sizeof(int), &offset);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 8, sizeof(int), &input_c);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 9, sizeof(int), &dilation);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 10, sizeof(int), &input_width);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 11, sizeof(int), &input_height);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 12, sizeof(int), &output_width);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 13, sizeof(int), &output_height);
  CL_CHECK_ERRORS(status);

  //  cl_event out_event = param.Output()->GetClEvent();
  //  cl_event wait_event = param.Input()->GetClEvent();
  size_t global_work_size2[3] = {8, 224, 224};
  auto time1 = paddle_mobile::time();
  status = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size2,
                                  NULL, 0, NULL, NULL);
  CL_CHECK_ERRORS(status);
  clFinish(queue);
  auto time2 = paddle_mobile::time();
  paddle_mobile::memory::Free(input);
  paddle_mobile::memory::Free(filter);
Y
yangfei 已提交
437 438 439 440 441
  if (status == CL_SUCCESS) {
    return paddle_mobile::time_diff(time1, time2);
  } else {
    return -1;
  }
442
}
H
hjchen2 已提交
443 444
template <typename Device, typename T>
int PaddleMobile<Device, T>::readText(
445
    const char *kernelPath,
Y
yangfei 已提交
446
    char **pcode) {  // 读取文本文件放入 pcode,返回字符串长度
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
  FILE *fp;
  int size;
  // printf("<readText> File: %s\n", kernelPath);
  fp = fopen(kernelPath, "rb");
  if (!fp) {
    printf("<readText> Open file failed\n");
    return -1;
  }
  if (fseek(fp, 0, SEEK_END) != 0) {
    printf("<readText> Seek end of file failed\n");
    return -1;
  }
  if ((size = ftell(fp)) < 0) {
    printf("<readText> Get file position failed\n");
    return -1;
  }
  rewind(fp);
Y
yangfei 已提交
464
  if ((*pcode = reinterpret_cast<char *>(malloc(size + 1))) == NULL) {
465 466 467 468 469 470 471 472
    printf("<readText> Allocate space failed\n");
    return -1;
  }
  fread(*pcode, 1, size, fp);
  (*pcode)[size] = '\0';
  fclose(fp);
  return size + 1;
}
Y
yangfei 已提交
473 474
#endif

475 476 477 478
template class PaddleMobile<CPU, float>;
template class PaddleMobile<FPGA, float>;
template class PaddleMobile<GPU_MALI, float>;
template class PaddleMobile<GPU_CL, float>;
Y
yangfei 已提交
479

480
}  // namespace paddle_mobile