api.cpp 42.5 KB
Newer Older
H
hanbuhe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhangyang 已提交
15
#include "fpga/V1/api.h"
J
jameswu2014 已提交
16
#include <memory>
Z
zhangyang 已提交
17
#include "fpga/V1/bias_scale.h"
Z
zhangyang 已提交
18
#include "fpga/V1/deconv_filter.h"
Z
zhangyang 已提交
19 20
#include "fpga/V1/filter.h"
#include "fpga/V1/image.h"
Z
zhangyang 已提交
21

Z
zhangyang 已提交
22
namespace paddle_mobile {
H
hanbuhe 已提交
23 24
namespace fpga {

25 26 27
#define USE_RELU 1
#define USE_BIAS 2

Z
zhangyang 已提交
28 29
void format_image(framework::Tensor *image_tensor) {
  auto dims = image_tensor->dims();
Z
zhangyang 已提交
30
  auto channel = dims[1], height = dims[2], width = dims[3];
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
  std::type_index input_type = image_tensor->type();
  if (input_type == typeid(float)) {
    auto data_ptr = image_tensor->data<float>();
    auto external_ptr = reinterpret_cast<float *>(image_tensor->external_data);
    float *p_data = external_ptr == nullptr ? data_ptr : external_ptr;

    image::format_image<float>(&p_data, channel, height, width);
    if (p_data != data_ptr && external_ptr == nullptr) {
      image_tensor->reset_data_ptr(p_data);
    }
  } else {
    auto data_ptr = image_tensor->data<int8_t>();
    auto external_ptr = reinterpret_cast<int8_t *>(image_tensor->external_data);
    int8_t *p_data = external_ptr == nullptr ? data_ptr : external_ptr;

    image::format_image<int8_t>(&p_data, channel, height, width);
    if (p_data != data_ptr && external_ptr == nullptr) {
      image_tensor->reset_data_ptr(p_data);
    }
50
  }
Z
zhangyang 已提交
51 52
}

Z
zhangyang0701 已提交
53 54 55 56 57 58 59
void format_ofm(framework::Tensor *ofm_tensor) {
  if (ofm_tensor->type() == typeid(float)) {
    format_fp32_ofm(ofm_tensor);
  } else {
    format_fp16_ofm(ofm_tensor);
  }
}
60
void format_fp16_ofm(framework::Tensor *ofm_tensor) {
Z
zhangyang 已提交
61
  auto dims = ofm_tensor->dims();
62 63
  size_t memory_size = 0;
  if (dims.size() == 4) {
J
jameswu2014 已提交
64 65 66
    auto channel = dims[1], height = dims[2], width = dims[3], num = dims[0];
    memory_size = num * height * align_to_x(channel * width, IMAGE_ALIGNMENT) *
                  sizeof(half);
67 68 69 70 71 72
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(half);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
73
  // memset(p, 0, memory_size);
74
  ofm_tensor->reset_data_ptr(p);
75
  ofm_tensor->set_type(typeid(half));
76
  ofm_tensor->fpga_data_num = memory_size / sizeof(half);
77
  fpga::fpga_flush(p, memory_size);
78 79
}

80 81 82 83 84 85 86 87 88 89 90 91 92
void format_fp16_ofm(framework::Tensor *ofm_tensor, framework::DDim dims) {
  // auto dims = ofm_tensor->dims();
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(half);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(half);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
93
  // memset(p, 0, memory_size);
94
  ofm_tensor->reset_data_ptr(p);
95
  ofm_tensor->set_type(typeid(half));
96
  ofm_tensor->fpga_data_num = memory_size / sizeof(half);
97
  fpga::fpga_flush(p, memory_size);
98
}
99

100 101 102 103 104 105 106 107 108 109 110 111 112
void format_fp32_ofm(framework::Tensor *ofm_tensor) {
  auto dims = ofm_tensor->dims();
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(float);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(float);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
113
  // memset(p, 0, memory_size);
114
  ofm_tensor->reset_data_ptr(p);
115
  ofm_tensor->set_type(typeid(float));
116
  ofm_tensor->fpga_data_num = memory_size / sizeof(float);
117
  fpga::fpga_flush(p, memory_size);
Z
zhangyang 已提交
118 119
}

Z
zhangyang 已提交
120 121 122 123
float filter_find_max(framework::Tensor *filter_tensor) {
  auto filter_ptr = filter_tensor->data<float>();
  return filter::find_max(filter_ptr, filter_tensor->numel());
}
Z
zhangyang 已提交
124 125 126

int get_plit_num(framework::Tensor *filter_tensor) {
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
127 128
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
129 130 131
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_split_num(num, div_capacity);
}
Z
zhangyang 已提交
132 133 134 135 136 137 138
int get_deconv_plit_num(framework::Tensor *filter_tensor, int stride) {
  auto dims = filter_tensor->dims();
  auto chw = dims[1] * dims[2] / stride * dims[3] / stride;
  auto num = dims[0] * stride;
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_split_num(num, div_capacity);
}
Z
zhangyang 已提交
139

140
int get_filter_num_per_div(framework::Tensor *filter_tensor, int group_num) {
Z
zhangyang 已提交
141
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
142 143
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
144 145 146 147
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
}

Z
zhangyang 已提交
148 149 150 151 152 153 154 155 156
int get_deconv_filter_num_per_div(framework::Tensor *filter_tensor,
                                  int group_num, int stride) {
  auto dims = filter_tensor->dims();
  auto chw = dims[1] * dims[2] / stride * dims[3] / stride;
  auto num = dims[0] * stride;
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
}

Z
zhangyang 已提交
157 158 159 160
int get_aligned_filter_element_num(int chw) {
  return align_to_x(chw, FILTER_ELEMENT_ALIGNMENT);
}

Z
zhangyang 已提交
161 162
void format_filter(framework::Tensor *filter_tensor, float max_value,
                   int group_num) {
163 164
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
Z
zhangyang 已提交
165
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
166
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
167
  auto data_ptr = filter_tensor->data<float>();
Z
zhangyang 已提交
168
  size_t memory_size = num * channel * height * width * sizeof(float);
169
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
Z
zhangyang 已提交
170 171 172 173
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_filter(&new_data, num, channel, height, width, group_num,
                        max_value);
  filter_tensor->reset_data_ptr(new_data);
174
  filter_tensor->set_type(typeid(int8_t));
Z
zhangyang 已提交
175
}
176 177 178 179 180 181 182 183 184
void format_dwconv_filter(framework::Tensor *filter_tensor, float *scale_ptr) {
  auto dims = filter_tensor->dims();
  auto num = dims[0], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_dwconv_filter(&new_data, num, height, width, scale_ptr);
  filter_tensor->reset_data_ptr(new_data);
qnqinan's avatar
update  
qnqinan 已提交
185
  filter_tensor->set_type(typeid(int16_t));
186
}
Z
zhangyang 已提交
187

qnqinan's avatar
qnqinan 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
void format_DWDconv_filter(framework::Tensor *filter_tensor, float *scale_ptr,
                           int stride) {
  auto dims = filter_tensor->dims();
  auto num = dims[0], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  fpga_copy(new_data, data_ptr, memory_size);

  int hw = height * width;
  deconv_filter::deconv_NC_convert(&new_data, num, 1, hw);

  num = dims[1];
  int channel = dims[0];

  deconv_filter::DWDconv_format_filter(&new_data, num, channel, height, width,
                                       scale_ptr, stride);

  //  framework::DDim dims_new =
  //      framework::make_ddim({num, 1, height, width});
  //  filter_tensor->Resize(dims_new);
  filter_tensor->reset_data_ptr(new_data);
J
jameswu2014 已提交
210
  filter_tensor->set_type(typeid(int16_t));
qnqinan's avatar
qnqinan 已提交
211 212
}

Z
zhangyang 已提交
213 214 215 216 217 218 219 220 221 222 223 224
void format_fc_filter(framework::Tensor *filter_tensor, float max_value) {
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
  auto dims = filter_tensor->dims();
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * channel * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_fc_filter(&new_data, num, channel, height, width, 1,
                           max_value);
  filter_tensor->reset_data_ptr(new_data);
225
  filter_tensor->set_type(typeid(int8_t));
Z
zhangyang 已提交
226
}
Z
zhangyang 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
void format_deconv_filter(framework::Tensor *filter_tensor, float max_value,
                          int group_num, int stride) {
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
  auto dims = filter_tensor->dims();
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * channel * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  memcpy(new_data, data_ptr, memory_size);

  int hw = height * width;
  deconv_filter::deconv_NC_convert(&new_data, num, channel, hw);

  num = dims[1];
  channel = dims[0];
  deconv_filter::deconv_format_filter(
      &new_data, (int)num, (int)channel,          // NOLINT
      (int)height,                                // NOLINT
      (int)width, group_num, max_value, stride);  // NOLINT

  framework::DDim dims_new =
      framework::make_ddim({num, channel, height, width});
  filter_tensor->Resize(dims_new);
  filter_tensor->reset_data_ptr(new_data);
252
  filter_tensor->set_type(typeid(int8_t));
Z
zhangyang 已提交
253
}
Z
zhangyang 已提交
254

Z
zhangyang 已提交
255 256 257 258 259
void format_bias_scale_array(float **bias_scale_array,
                             int element_num_per_division, int num) {
  bias_scale::format_bias_scale_array(bias_scale_array,
                                      element_num_per_division, num);
}
260 261 262
void format_bias_array(float **bias_array, int num) {
  bias_scale::format_bias_array(bias_array, num);
}
Z
zhangyang 已提交
263

Z
zhangyang 已提交
264 265 266 267 268 269 270 271 272
void format_concat_output(framework::Tensor *out, int height, int width,
                          int image_num, uint32_t *channel_num) {
  int sum_channel = 0, sum_cw = 0;
  for (int i = 0; i < image_num; i++) {
    sum_channel += channel_num[i];
  }

  sum_cw = align_to_x(width * sum_channel, IMAGE_ALIGNMENT);
  auto data_ptr = fpga_malloc(height * sum_cw * sizeof(half));
273
  auto ddim = framework::make_ddim({1, sum_channel, height, width});
Z
zhangyang 已提交
274 275
  out->Resize(ddim);
  out->reset_data_ptr(data_ptr);
276
  out->set_type(typeid(half));
Z
zhangyang 已提交
277
}
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
void format_conv_data(framework::Tensor *filter_tensor,
                      framework::Tensor *ofm_tensor, float **bs_ptr,
                      int group) {
  float max_value = fpga::filter_find_max(filter_tensor);
  fpga::format_filter(filter_tensor, max_value, group);
  int element_num_per_div = fpga::get_filter_num_per_div(filter_tensor, group);
  fpga::format_bias_scale_array(bs_ptr, element_num_per_div,
                                ofm_tensor->dims()[1]);
  fpga::format_fp16_ofm(ofm_tensor);
}
void format_deconv_data(framework::Tensor *filter_tensor,
                        framework::Tensor *ofm_tensor, float **bs_ptr,
                        int group, int sub_conv_n) {
  int channel = ofm_tensor->dims()[1];
  float max_value = filter_find_max(filter_tensor);
  format_deconv_filter(filter_tensor, max_value, group, sub_conv_n);
  int element_num_per_div =
      get_deconv_filter_num_per_div(filter_tensor, group, sub_conv_n);
  format_bias_scale_array(bs_ptr, element_num_per_div, channel * sub_conv_n);
  format_fp16_ofm(ofm_tensor);
}
Z
zhangyang 已提交
299

300 301 302 303 304 305 306 307
void format_dwconv_data(framework::Tensor *filter_tensor,
                        framework::Tensor *ofm_tensor, float *scale_ptr,
                        float **bias_ptr) {
  auto channel = ofm_tensor->dims()[1];
  format_dwconv_filter(filter_tensor, scale_ptr);
  format_bias_array(bias_ptr, channel);
  format_fp16_ofm(ofm_tensor);
}
qnqinan's avatar
qnqinan 已提交
308 309 310 311 312 313 314 315 316 317 318
void format_DWDeconv_data(framework::Tensor *filter_tensor,
                          framework::Tensor *ofm_tensor, float **bs_ptr,
                          int group, int sub_conv_n) {
  int channel = ofm_tensor->dims()[1];
  // dw-deconv
  format_DWDconv_filter(
      filter_tensor,
      (reinterpret_cast<float *>(*bs_ptr) + sub_conv_n * channel), sub_conv_n);
  format_bias_array(bs_ptr, channel);
  format_fp16_ofm(ofm_tensor);
}
319 320
void expand_conv_arg(ConvArgs *arg) {
  ConvArgs args = *arg;
321 322

  auto fpga_bias_scale_len =
323 324
      align_to_x(args.filter_num / args.group_num, 8) * args.group_num;

325
  auto output_height =
326 327 328
      (args.image.height + args.image.pad_height * 2 - args.kernel.height) /
          args.kernel.stride_h +
      1;
329
  auto output_width =
330 331 332
      (args.image.width + args.image.pad_width * 2 - args.kernel.width) /
          args.kernel.stride_w +
      1;
333 334 335 336 337 338 339 340 341 342

  auto filter_per_group = args.filter_num / args.group_num;
  auto channel_per_group = args.image.channels / args.group_num;

  auto image_row_count = args.image.width * args.image.channels;
  auto image_amount_per_row = align_to_x(image_row_count, IMAGE_ALIGNMENT);
  auto image_one_pad_per_row = align_to_x(image_row_count, IMAGE_ALIGNMENT) +
                               args.image.pad_width * args.image.channels;
  auto filter_amount_all =
      align_to_x(args.kernel.height * args.kernel.width * channel_per_group,
343 344
                 FILTER_ELEMENT_ALIGNMENT);

345 346 347
  auto output_amount_per_row = align_to_x(
      (output_width - (args.deconv_tx_param.omit_size) * 2) * args.filter_num,
      IMAGE_ALIGNMENT);
348 349 350 351

  // find the opt partition strategy
  uint64_t res_win;
  uint64_t res_fit = 0;
352
  for (res_win = 1; res_win <= output_width; res_win++) {
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
    if ((align_to_x(
             (args.image.channels *
              (args.kernel.width + (res_win - 1) * args.kernel.stride_w)),
             IMAGE_ALIGNMENT) /
             16 +
         1) *
            args.kernel.height >
        2048) {
      break;
    }
  }

  if (res_win != output_width) {
    res_win -= 1;
  }

  if (((res_win % 2) != 0) && (res_win != 1)) {
    res_win = res_win - 1;
  }
  res_fit = res_win;

374 375 376
  auto block_num = (output_width + res_fit - 1) / res_fit;
  auto block_len = res_fit;
  auto block_last = output_width - res_fit * (block_num - 1);
377

378 379
  auto res_amount_per_row =
      (output_width - (args.deconv_tx_param.omit_size) * 2) * args.filter_num;
380
  auto res_amount_per_row_pad = output_amount_per_row - res_amount_per_row;
381

382 383 384
  auto image_block_amount_per_row =
      args.kernel.stride_w * res_fit * args.image.channels;
  auto filter_pad_width_mul_channel =
385
      args.image.pad_width * args.image.channels;
386
  auto image_amount_per_row_multi_win_first =
J
jameswu2014 已提交
387 388
      image_amount_per_row *
      (ROW_PARALLEL_NUM * args.kernel.stride_h - args.image.pad_height);
389
  auto image_amount_per_row_multi_win =
390
      image_amount_per_row * (ROW_PARALLEL_NUM * args.kernel.stride_h);
391

392 393
  auto image_block_num = block_num;
  auto image_block_len =
394 395 396 397 398
      align_to_x((args.image.channels *
                  (args.kernel.width + (block_len - 1) * args.kernel.stride_w)),
                 IMAGE_ALIGNMENT) /
          16 +
      1;
399
  auto image_block_len_last =
400 401 402 403 404 405
      align_to_x(
          (args.image.channels *
           (args.kernel.width + (block_last - 1) * args.kernel.stride_w)),
          IMAGE_ALIGNMENT) /
          16 +
      1;
406 407 408
  auto image_win_cnt = block_len;
  auto image_win_cnt_last = block_last;
  auto res_row_data_align4_pad = res_amount_per_row_pad / 8;
409 410
  auto prog_full_cnt = 1024 / (filter_amount_all / 16 * 2) - 1;
  if (prog_full_cnt == 511) {
411 412
    prog_full_cnt--;
  }
413
  auto post_prog_full_cnt =
414 415 416
      (512 / (align_to_x(args.filter_num, 4) / 4 * 2) > 2)
          ? (512 / (align_to_x(args.filter_num, 4) / 4 * 2) - 2)
          : 0;
qnqinan's avatar
qnqinan 已提交
417 418
  // auto cmd = 0UL | (args.relu_enabled ? USE_RELU : 0) | USE_BIAS;
  auto cmd = 0UL | USE_BIAS;
419

qnqinan's avatar
update  
qnqinan 已提交
420 421
  auto deconv_param = ((args.deconv_tx_param.deconv_en) << 16) |
                      ((args.deconv_tx_param.sub_conv_num) << 8) |
422
                      ((args.deconv_tx_param.omit_size) << 0);
423 424 425
  (*arg).driver.image_address_phy = vaddr_to_paddr(args.image.address);
  (*arg).driver.sb_address_phy = vaddr_to_paddr(args.sb_address);
  (*arg).driver.filter_address_phy = vaddr_to_paddr(args.filter_address);
426 427
  (*arg).driver.output_address_phy = vaddr_to_paddr(args.output.address) +
                                     args.deconv_tx_param.out_addr_offset;
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
  (*arg).driver.output_height = output_height;
  (*arg).driver.output_width = output_width;
  (*arg).driver.filter_per_group = filter_per_group;
  (*arg).driver.channel_per_group = channel_per_group;
  (*arg).driver.image_amount_per_row = image_amount_per_row;
  (*arg).driver.image_one_pad_per_row = image_one_pad_per_row;
  (*arg).driver.filter_amount_all = filter_amount_all;
  (*arg).driver.output_amount_per_row = output_amount_per_row;
  (*arg).driver.image_block_amount_per_row = image_block_amount_per_row;
  (*arg).driver.filter_pad_width_mul_channel = filter_pad_width_mul_channel;
  (*arg).driver.image_amount_per_row_multi_win_first =
      image_amount_per_row_multi_win_first;
  (*arg).driver.image_amount_per_row_multi_win = image_amount_per_row_multi_win;
  (*arg).driver.image_block_num = image_block_num;
  (*arg).driver.image_block_len = image_block_len;
  (*arg).driver.image_block_len_last = image_block_len_last;
  (*arg).driver.image_win_cnt = image_win_cnt;
  (*arg).driver.image_win_cnt_last = image_win_cnt_last;
  (*arg).driver.res_row_data_align4_pad = res_row_data_align4_pad;
  (*arg).driver.prog_full_cnt = prog_full_cnt;
  (*arg).driver.post_prog_full_cnt = post_prog_full_cnt;
  (*arg).driver.fpga_bias_scale_len = fpga_bias_scale_len;
  (*arg).driver.cmd = cmd;
451
  (*arg).driver.deconv_param = deconv_param;
452 453 454 455
}  // expand_conv_arg()

void expand_EW_arg(EWAddArgs *arg) {
  EWAddArgs args = *arg;
qnqinan's avatar
qnqinan 已提交
456 457
  // uint64_t cmd = args.relu_enabled ? USE_RELU : 0;
  uint64_t cmd = 0;
458 459 460 461 462 463 464 465 466 467 468
  uint64_t datalen = (uint64_t)args.image0.width *
                     (uint64_t)args.image0.height *
                     (uint64_t)args.image0.channels;
  uint64_t coefficient = (uint64_t)args.const0 << 32 | (uint64_t)args.const1;
  uint64_t image0_address_phy = vaddr_to_paddr(args.image0.address);
  uint64_t image1_address_phy = vaddr_to_paddr(args.image1.address);
  uint64_t output_address_phy = vaddr_to_paddr(args.output.address);

  uint64_t image_amount_per_row =
      align_to_x((uint64_t)args.image0.width * (uint64_t)args.image0.channels,
                 IMAGE_ALIGNMENT);
qnqinan's avatar
update  
qnqinan 已提交
469 470 471
  uint64_t image_image_pixel = ((uint64_t)args.image0.channels << 32) |
                               ((uint64_t)args.image0.width << 16) |
                               (uint64_t)args.image0.height;
472 473 474 475 476 477 478 479 480 481 482

  (*arg).driver.image0_address_phy = image0_address_phy;
  (*arg).driver.image1_address_phy = image1_address_phy;
  (*arg).driver.datalen = datalen;
  (*arg).driver.image_image_pixel = image_image_pixel;
  (*arg).driver.image_amount_per_row = image_amount_per_row;
  (*arg).driver.output_address_phy = output_address_phy;
  (*arg).driver.coefficient = coefficient;
  (*arg).driver.cmd = cmd;
}  // expand_EW_arg

Z
zhangyang 已提交
483 484
void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
                    framework::Tensor *out, framework::Tensor *filter,
qnqinan's avatar
qnqinan 已提交
485 486 487 488
                    ActivationType activation_enable,
                    int16_t leaky_relu_negative_slope, int group_num,
                    int stride_h, int stride_w, int padding_h, int padding_w,
                    float *bs_ptr) {
489 490 491
  auto input_ptr = input->data<half>();
  auto filter_ptr = filter->data<int8_t>();
  auto out_ptr = out->data<half>();
Z
zhangyang 已提交
492
  auto deleter = [](void *p) { fpga_free(p); };
493 494

  arg->group_num = (uint32_t)group_num;
495 496
  // Either group_num or split_num = 1;
  arg->split_num = group_num == 1 ? (uint32_t)get_plit_num(filter) : 1;
497 498 499
  arg->filter_num = (uint32_t)filter->dims()[0];
  arg->output.address = out_ptr;
  arg->output.scale_address = out->scale;
Z
zhangyang 已提交
500
  arg->conv_arg =
501
      (ConvArgs *)fpga_malloc(arg->split_num * sizeof(ConvArgs));  // NOLINT
502

Z
zhangyang 已提交
503 504
  arg->shared_conv_arg = std::shared_ptr<ConvArgs>(arg->conv_arg, deleter);

505 506
  memset(arg->conv_arg, 0, arg->split_num * sizeof(struct ConvArgs));

507 508 509
  arg->concat_arg.image_num = arg->split_num;
  arg->concat_arg.image_out = out_ptr;
  arg->concat_arg.scale_out = out->scale;
510 511
  arg->concat_arg.height = (uint32_t)out->dims()[2];
  arg->concat_arg.width = (uint32_t)out->dims()[3];
512 513

  int n = arg->split_num;
514
  arg->concat_arg.images_in =
Z
zhangyang 已提交
515
      static_cast<int16_t **>(fpga_malloc(n * sizeof(int *)));
516
  arg->concat_arg.scales_in =
Z
zhangyang 已提交
517
      static_cast<float **>(fpga_malloc(n * sizeof(float *)));
518
  arg->concat_arg.channel_num =
Z
zhangyang 已提交
519 520 521 522 523 524 525
      static_cast<uint32_t *>(fpga_malloc(n * sizeof(uint32_t)));
  arg->vector_concat_space.push_back(std::shared_ptr<char>(
      reinterpret_cast<char *>(arg->concat_arg.images_in), deleter));
  arg->vector_concat_space.push_back(std::shared_ptr<char>(
      reinterpret_cast<char *>(arg->concat_arg.scales_in), deleter));
  arg->vector_concat_space.push_back(std::shared_ptr<char>(
      reinterpret_cast<char *>(arg->concat_arg.channel_num), deleter));
526

527 528 529
  auto channel = (int)out->dims()[1];  // NOLINT
  int filter_num_per_div = get_filter_num_per_div(filter, group_num);
  int element_num = get_aligned_filter_element_num(
530 531
      (int)(filter->dims()[1] * filter->dims()[2] *  // NOLINT
            filter->dims()[3]));
532 533

  for (int i = 0; i < n; i++) {
qnqinan's avatar
qnqinan 已提交
534 535 536 537
    // arg->conv_arg[i].relu_enabled = relu_enabled;
    arg->conv_arg[i].output.activation.activation_type = activation_enable;
    arg->conv_arg[i].output.activation.leaky_relu_negative_slope =
        leaky_relu_negative_slope;
Z
zhangyang 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551
    arg->conv_arg[i].group_num = (uint32_t)group_num;
    arg->conv_arg[i].kernel.stride_h = (uint32_t)stride_h;
    arg->conv_arg[i].kernel.stride_w = (uint32_t)stride_w;
    arg->conv_arg[i].kernel.height = (uint32_t)filter->dims()[2];
    arg->conv_arg[i].kernel.width = (uint32_t)filter->dims()[3];
    arg->conv_arg[i].image.address = input_ptr;
    arg->conv_arg[i].image.channels = (uint32_t)input->dims()[1];
    arg->conv_arg[i].image.height = (uint32_t)input->dims()[2];
    arg->conv_arg[i].image.width = (uint32_t)input->dims()[3];
    arg->conv_arg[i].image.scale_address = input->scale;
    arg->conv_arg[i].image.pad_height = (uint32_t)padding_h;
    arg->conv_arg[i].image.pad_width = (uint32_t)padding_w;
    arg->conv_arg[i].filter_scale_address = filter->scale;
    arg->conv_arg[i].filter_num = (uint32_t)(
552 553
        i == n - 1 ? channel - (n - 1) * filter_num_per_div  // NOLINT
                   : filter_num_per_div);
554

Z
zhangyang 已提交
555
    size_t filter_size =
556 557 558
        element_num *
        align_to_x(arg->conv_arg[i].filter_num, FILTER_NUM_ALIGNMENT) *
        sizeof(int8_t);
559 560
    auto filter_head = &(
        (int8_t *)filter_ptr)[i * element_num * filter_num_per_div];  // NOLINT
Z
zhangyang 已提交
561
    arg->conv_arg[i].filter_address = fpga_malloc(filter_size);
Z
zhangyang 已提交
562 563
    arg->vector_conv_space.push_back(std::shared_ptr<char>(
        reinterpret_cast<char *>(arg->conv_arg[i].filter_address), deleter));
Z
zhangyang 已提交
564 565
    memcpy(arg->conv_arg[i].filter_address, filter_head, filter_size);
    fpga_flush(arg->conv_arg[i].filter_address, filter_size);
566 567 568 569 570 571 572 573 574 575 576 577
    // for test
    //    {
    //    static int cnt = 0;
    //    if(cnt == 4){
    //        int8_t result = 0;
    //        std::string str = "fc_filter";
    //      fpga::savefile<int8_t>(str, arg->conv_arg[i].filter_address,
    //      filter_size, result);
    //
    //    }
    //    cnt++;
    //}
Z
zhangyang 已提交
578

579 580 581
    size_t bs_size = 2 *
                     align_to_x(arg->conv_arg[i].filter_num, BS_NUM_ALIGNMENT) *
                     sizeof(float);
Z
zhangyang 已提交
582 583
    auto bs_head = &bs_ptr[i * filter_num_per_div * 2];
    arg->conv_arg[i].sb_address = fpga_malloc(bs_size);
Z
zhangyang 已提交
584 585
    arg->vector_conv_space.push_back(std::shared_ptr<char>(
        reinterpret_cast<char *>(arg->conv_arg[i].sb_address), deleter));
Z
zhangyang 已提交
586 587
    memcpy(arg->conv_arg[i].sb_address, bs_head, bs_size);
    fpga_flush(arg->conv_arg[i].sb_address, bs_size);
588 589 590 591 592 593 594 595 596 597 598 599
    // for test
    /*{
    static int cnt = 0;
    if(cnt == 4){
        float result = 0;
        std::string str = "fc_bs";
      fpga::savefile<float>(str, arg->conv_arg[i].sb_address, bs_size/4,
result);

    }
    cnt++;
}*/
Z
zhangyang 已提交
600

601
    if (n > 1) {
Z
zhangyang 已提交
602
      arg->conv_arg[i].output.scale_address =
Z
zhangyang 已提交
603
          static_cast<float *>(fpga_malloc(2 * sizeof(float)));
604 605 606 607 608 609
      arg->conv_arg[i].output.address =
          fpga_malloc(out->dims()[2] *
                      align_to_x((int)(out->dims()[3] *  // NOLINT
                                       arg->conv_arg[i].filter_num),
                                 IMAGE_ALIGNMENT) *
                      sizeof(half));
Z
zhangyang 已提交
610 611 612 613 614
      arg->vector_conv_space.push_back(std::shared_ptr<char>(
          reinterpret_cast<char *>(arg->conv_arg[i].output.scale_address),
          deleter));
      arg->vector_conv_space.push_back(std::shared_ptr<char>(
          reinterpret_cast<char *>(arg->conv_arg[i].output.address), deleter));
615
    } else {
Z
zhangyang 已提交
616 617
      arg->conv_arg[i].output.scale_address = out->scale;
      arg->conv_arg[i].output.address = out_ptr;
618 619
    }

620
    arg->concat_arg.images_in[i] =
Z
zhangyang 已提交
621 622 623
        (half *)arg->conv_arg[i].output.address;  // NOLINT
    arg->concat_arg.scales_in[i] = arg->conv_arg[i].output.scale_address;
    arg->concat_arg.channel_num[i] = arg->conv_arg[i].filter_num;
624 625

    expand_conv_arg(&arg->conv_arg[i]);
626
  }
Z
zhangyang 已提交
627 628
  filter->reset_data_ptr(nullptr);
  fpga_free(bs_ptr);
629 630
}  // fill_split_arg

Z
zhangyang 已提交
631 632
void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
                     framework::Tensor *out, framework::Tensor *filter,
qnqinan's avatar
qnqinan 已提交
633 634 635
                     ActivationType activation_enable,
                     int16_t leaky_relu_negative_slope, int group_num,
                     int stride_h, int stride_w, int padding_h, int padding_w,
Z
zhangyang 已提交
636
                     float *bs_ptr) {
637 638
  auto input_ptr = input->data<half>();
  auto filter_ptr = filter->data<int8_t>();
Z
zhangyang 已提交
639
  auto deleter = [](void *p) { fpga_free(p); };
Z
zhangyang 已提交
640 641

  arg->group_num = (uint32_t)group_num;
642
  arg->sub_conv_num = (uint32_t)stride_h;
Z
zhangyang 已提交
643
  arg->filter_num = (uint32_t)filter->dims()[0];
644
  uint32_t sub_conv_num = arg->sub_conv_num;
645 646 647
  int sub_pad =
      deconv_filter::deconv_calc_sub_pad((int)filter->dims()[3],  // NOLINT
                                         padding_w, stride_w);
648
  auto sub_filter_width = (uint32_t)deconv_filter::deconv_get_sub_filter_axis(
649
      (int)filter->dims()[3], stride_w);  // NOLINT
650

651
  auto sub_output_width = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
652
      (int)input->dims()[3], sub_pad, sub_filter_width);  // NOLINT
653
  auto sub_output_height = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
654
      (int)input->dims()[2], sub_pad, sub_filter_width);  // NOLINT
Z
zhangyang 已提交
655

656 657 658
  arg->sub_output_width = (uint32_t)sub_output_width;
  arg->sub_output_height = (uint32_t)sub_output_height;
  arg->omit_size = (uint32_t)deconv_filter::deconv_get_omit(
659
      stride_w, (int)filter->dims()[3], padding_w);  // NOLINT
Z
zhangyang 已提交
660

661
  auto sub_channels = (int)input->dims()[1];  // NOLINT
662
  uint32_t omit_size = arg->omit_size;
Z
zhangyang 已提交
663
  int real_out_width = sub_output_width * sub_conv_num - 2 * omit_size;
Z
zhangyang 已提交
664 665
  int sub_filter_num = sub_conv_num * (arg->filter_num);

666 667 668
  framework::DDim dims_out_new = framework::make_ddim(
      {1, arg->filter_num, sub_output_height * sub_conv_num, real_out_width});
  fpga::format_fp16_ofm(out, dims_out_new);
669
  auto out_ptr = out->data<half>();
670
  arg->output.address =
qnqinan's avatar
update  
qnqinan 已提交
671
      (half *)out_ptr +  // NOLINT
672 673 674 675 676
      omit_size * sizeof(half) *
          (align_to_x(real_out_width * arg->filter_num, IMAGE_ALIGNMENT));
  arg->output.scale_address = out->scale;

  uint32_t conv_output_size =
Z
zhangyang 已提交
677 678
      (align_to_x(sub_output_width * sub_filter_num, IMAGE_ALIGNMENT)) *
      sub_output_height;
679
  uint32_t split_num =
Z
zhangyang 已提交
680 681
      group_num == 1 ? (uint32_t)get_deconv_plit_num(filter, sub_conv_num) : 1;

Z
zhangyang 已提交
682
  for (int i = 0; i < sub_conv_num; ++i) {
Z
zhangyang 已提交
683 684
    arg->split_conv_args.push_back(std::make_shared<SplitConvArgs>());
    arg->split_conv_args[i]->filter_num =
Z
zhangyang 已提交
685
        (arg->sub_conv_num) * (arg->filter_num);
Z
zhangyang 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
    arg->split_conv_args[i]->group_num = (uint32_t)group_num;
    arg->split_conv_args[i]->split_num = split_num;
    arg->split_conv_args[i]->concat_arg.height = sub_output_height;
    arg->split_conv_args[i]->concat_arg.width = sub_output_width;
    arg->split_conv_args[i]->concat_arg.image_num = split_num;

    arg->split_conv_args[i]->conv_arg =
        static_cast<ConvArgs *>(fpga_malloc(split_num * sizeof(ConvArgs)));
    arg->split_conv_args[i]->concat_arg.images_in =
        static_cast<int16_t **>(fpga_malloc(split_num * sizeof(int16_t *)));
    arg->split_conv_args[i]->concat_arg.scales_in =
        static_cast<float **>(fpga_malloc(split_num * sizeof(float *)));
    arg->split_conv_args[i]->concat_arg.channel_num =
        static_cast<uint32_t *>(fpga_malloc(split_num * sizeof(uint32_t)));
    arg->split_conv_args[i]->shared_conv_arg =
        std::shared_ptr<ConvArgs>(arg->split_conv_args[i]->conv_arg, deleter);
    arg->split_conv_args[i]->vector_concat_space.push_back(
        std::shared_ptr<char>(
            reinterpret_cast<char *>(
                arg->split_conv_args[i]->concat_arg.images_in),
            deleter));
    arg->split_conv_args[i]->vector_concat_space.push_back(
        std::shared_ptr<char>(
            reinterpret_cast<char *>(
                arg->split_conv_args[i]->concat_arg.scales_in),
            deleter));
    arg->split_conv_args[i]->vector_concat_space.push_back(
        std::shared_ptr<char>(
            reinterpret_cast<char *>(
                arg->split_conv_args[i]->concat_arg.channel_num),
            deleter));
Z
zhangyang 已提交
717
  }
Z
zhangyang 已提交
718

719 720
  auto filter_num_per_div =
      (uint32_t)get_deconv_filter_num_per_div(filter, group_num, stride_w);
Z
zhangyang 已提交
721
  int element_num = get_aligned_filter_element_num(
722
      (int)(sub_channels * sub_filter_width * sub_filter_width));  // NOLINT
Z
zhangyang 已提交
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737

  int chw = sub_channels * sub_filter_width * sub_filter_width;
  int division_capacity = filter::calc_division_capacity(chw);
  int num_per_div_before_alignment =
      filter::calc_num_per_div(sub_filter_num, group_num, division_capacity);
  int num_per_div_after_alignment =
      align_to_x(num_per_div_before_alignment, FILTER_NUM_ALIGNMENT);
  int div_num = (sub_filter_num + num_per_div_before_alignment - 1) /
                num_per_div_before_alignment;
  int residual = sub_filter_num % num_per_div_before_alignment;
  int num_after_alignment = num_per_div_after_alignment *
                                ((residual == 0) ? div_num : (div_num - 1)) +
                            align_to_x(residual, FILTER_NUM_ALIGNMENT);

  int filter_sub_conv_offset = element_num * num_after_alignment;
738
  uint32_t out_addr_offset = 0;
Z
zhangyang 已提交
739
  for (int i = 0; i < sub_conv_num; ++i) {
Z
zhangyang 已提交
740
    if (sub_conv_num == 1) {
Z
zhangyang 已提交
741 742
      arg->split_conv_args[i]->output.address = arg->output.address;
      arg->split_conv_args[i]->output.scale_address = arg->output.scale_address;
743
      out_addr_offset = 0;
Z
zhangyang 已提交
744

Z
zhangyang 已提交
745
    } else {
746
      out_addr_offset =
Z
zhangyang 已提交
747
          sizeof(int16_t) * (sub_conv_num - 1 - i) *
748 749
          (align_to_x(real_out_width * arg->filter_num, IMAGE_ALIGNMENT));

Z
zhangyang 已提交
750 751 752 753 754 755 756 757
      arg->split_conv_args[i]->output.address = out_ptr;
      arg->split_conv_args[i]->output.scale_address =
          static_cast<float *>(fpga_malloc(2 * sizeof(float)));
      arg->split_conv_args[i]->vector_conv_space.push_back(
          std::shared_ptr<char>(
              reinterpret_cast<char *>(
                  arg->split_conv_args[i]->output.scale_address),
              deleter));
Z
zhangyang 已提交
758 759
    }

Z
zhangyang 已提交
760
    for (int j = 0; j < split_num; ++j) {
qnqinan's avatar
qnqinan 已提交
761 762 763 764 765 766
      arg->split_conv_args[i]->conv_arg[j].output.activation.activation_type =
          activation_enable;
      arg->split_conv_args[i]
          ->conv_arg[j]
          .output.activation.leaky_relu_negative_slope =
          leaky_relu_negative_slope;
Z
zhangyang 已提交
767
      arg->split_conv_args[i]->conv_arg[j].group_num = (uint32_t)group_num;
Z
zhangyang 已提交
768

Z
zhangyang 已提交
769
      arg->split_conv_args[i]->conv_arg[j].kernel.width =
Z
zhangyang 已提交
770
          (uint32_t)sub_filter_width;
Z
zhangyang 已提交
771
      arg->split_conv_args[i]->conv_arg[j].kernel.height =
Z
zhangyang 已提交
772
          (uint32_t)sub_filter_width;
Z
zhangyang 已提交
773 774
      arg->split_conv_args[i]->conv_arg[j].kernel.stride_w = 1;
      arg->split_conv_args[i]->conv_arg[j].kernel.stride_h = 1;
Z
zhangyang 已提交
775

Z
zhangyang 已提交
776 777
      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.deconv_en = 1;
      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.sub_conv_num =
778
          sub_conv_num;
Z
zhangyang 已提交
779 780 781
      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.omit_size =
          omit_size;
      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.out_addr_offset =
782 783
          out_addr_offset;

Z
zhangyang 已提交
784 785
      arg->split_conv_args[i]->conv_arg[j].image.scale_address = input->scale;
      arg->split_conv_args[i]->conv_arg[j].image.channels =
Z
zhangyang 已提交
786
          (uint32_t)sub_channels;
Z
zhangyang 已提交
787
      arg->split_conv_args[i]->conv_arg[j].image.width =
Z
zhangyang 已提交
788
          (uint32_t)input->dims()[3];
Z
zhangyang 已提交
789
      arg->split_conv_args[i]->conv_arg[j].image.height =
Z
zhangyang 已提交
790
          (uint32_t)input->dims()[2];
Z
zhangyang 已提交
791 792 793
      arg->split_conv_args[i]->conv_arg[j].image.pad_width = (uint32_t)sub_pad;
      arg->split_conv_args[i]->conv_arg[j].image.pad_height = (uint32_t)sub_pad;
      arg->split_conv_args[i]->conv_arg[j].image.address = input_ptr;
Z
zhangyang 已提交
794

Z
zhangyang 已提交
795 796
      arg->split_conv_args[i]->conv_arg[j].filter_scale_address = filter->scale;
      arg->split_conv_args[i]->conv_arg[j].filter_num =
797 798 799
          (uint32_t)(j == split_num - 1
                         ? sub_filter_num - (split_num - 1) * filter_num_per_div
                         : filter_num_per_div);
Z
zhangyang 已提交
800 801 802

      size_t filter_size =
          element_num *
Z
zhangyang 已提交
803
          align_to_x(arg->split_conv_args[i]->conv_arg[j].filter_num,
Z
zhangyang 已提交
804 805
                     FILTER_NUM_ALIGNMENT) *
          sizeof(int8_t);
qnqinan's avatar
update  
qnqinan 已提交
806 807 808
      auto filter_head = &((
          int8_t *)filter_ptr)[j * element_num * filter_num_per_div +  // NOLINT
                               i * filter_sub_conv_offset];
Z
zhangyang 已提交
809
      arg->split_conv_args[i]->conv_arg[j].filter_address =
Z
zhangyang 已提交
810
          fpga_malloc(filter_size);
Z
zhangyang 已提交
811 812 813 814 815 816 817
      arg->split_conv_args[i]->vector_conv_space.push_back(
          std::shared_ptr<char>(
              reinterpret_cast<char *>(
                  arg->split_conv_args[i]->conv_arg[j].filter_address),
              deleter));

      memcpy(arg->split_conv_args[i]->conv_arg[j].filter_address, filter_head,
Z
zhangyang 已提交
818
             filter_size);
Z
zhangyang 已提交
819
      fpga_flush(arg->split_conv_args[i]->conv_arg[j].filter_address,
Z
zhangyang 已提交
820 821 822
                 filter_size);

      size_t bs_align_num = align_to_x(
Z
zhangyang 已提交
823
          arg->split_conv_args[i]->conv_arg[j].filter_num, BS_NUM_ALIGNMENT);
Z
zhangyang 已提交
824 825 826
      size_t bs_size = 2 * bs_align_num * sizeof(float);
      auto bs_head = &bs_ptr[j * filter_num_per_div * 2];

Z
zhangyang 已提交
827 828 829 830 831 832 833 834 835
      arg->split_conv_args[i]->conv_arg[j].sb_address = fpga_malloc(bs_size);
      arg->split_conv_args[i]->vector_conv_space.push_back(
          std::shared_ptr<char>(
              reinterpret_cast<char *>(
                  arg->split_conv_args[i]->conv_arg[j].sb_address),
              deleter));

      memcpy(arg->split_conv_args[i]->conv_arg[j].sb_address, bs_head, bs_size);
      fpga_flush(arg->split_conv_args[i]->conv_arg[j].sb_address, bs_size);
Z
zhangyang 已提交
836 837

      if (split_num == 1) {
Z
zhangyang 已提交
838 839 840 841
        arg->split_conv_args[i]->conv_arg[j].output.address =
            arg->split_conv_args[i]->output.address;
        arg->split_conv_args[i]->conv_arg[j].output.scale_address =
            arg->split_conv_args[i]->output.scale_address;
Z
zhangyang 已提交
842
      } else {
Z
zhangyang 已提交
843 844 845 846 847 848 849 850 851 852 853 854 855 856
        arg->split_conv_args[i]->conv_arg[j].output.address =
            fpga_malloc(conv_output_size * sizeof(int16_t));
        arg->split_conv_args[i]->conv_arg[j].output.scale_address =
            static_cast<float *>(fpga_malloc(2 * sizeof(float)));
        arg->split_conv_args[i]->vector_conv_space.push_back(
            std::shared_ptr<char>(
                reinterpret_cast<char *>(
                    arg->split_conv_args[i]->conv_arg[j].output.address),
                deleter));
        arg->split_conv_args[i]->vector_conv_space.push_back(
            std::shared_ptr<char>(
                reinterpret_cast<char *>(
                    arg->split_conv_args[i]->conv_arg[j].output.scale_address),
                deleter));
Z
zhangyang 已提交
857
      }
858
      arg->split_conv_args[i]->concat_arg.images_in[j] = static_cast<half *>(
Z
zhangyang 已提交
859 860 861 862 863 864 865
          arg->split_conv_args[i]->conv_arg[j].output.address);
      arg->split_conv_args[i]->concat_arg.scales_in[j] =
          arg->split_conv_args[i]->conv_arg[j].output.scale_address;
      arg->split_conv_args[i]->concat_arg.channel_num[j] =
          arg->split_conv_args[i]->conv_arg[j].filter_num;

      expand_conv_arg(&(arg->split_conv_args[i]->conv_arg[j]));
Z
zhangyang 已提交
866 867
    }

Z
zhangyang 已提交
868 869 870 871
    arg->split_conv_args[i]->concat_arg.image_out =
        arg->split_conv_args[i]->output.address;
    arg->split_conv_args[i]->concat_arg.scale_out =
        arg->split_conv_args[i]->output.scale_address;
Z
zhangyang 已提交
872
  }
873
  filter->reset_data_ptr(nullptr);
Z
zhangyang 已提交
874
  fpga_free(bs_ptr);
875 876
}  // fill_deconv_arg

877 878
void fill_dwconv_arg(struct DWconvArgs *arg, framework::Tensor *input,
                     framework::Tensor *out, framework::Tensor *filter,
qnqinan's avatar
qnqinan 已提交
879 880 881 882
                     ActivationType activation_enable,
                     int16_t leaky_relu_negative_slope, int stride_h,
                     int stride_w, int padding_h, int padding_w,
                     float *bias_ptr) {
J
jameswu2014 已提交
883 884 885 886
  auto deleter = [](void *p) { fpga_free(p); };
  arg->vector_dwconv_space.push_back(
      std::shared_ptr<char>(reinterpret_cast<char *>(bias_ptr), deleter));

qnqinan's avatar
update  
qnqinan 已提交
887
  auto filter_ptr = filter->data<int16_t>();
888
  auto input_ptr = input->data<half>();
J
jameswu2014 已提交
889
  auto output_ptr = out->mutable_data<half>();
890
  arg->sub_conv_num = 1;
qnqinan's avatar
qnqinan 已提交
891 892 893
  // arg->relu_enabled = relu_enabled;
  arg->output.activation.activation_type = activation_enable;
  arg->output.activation.leaky_relu_negative_slope = leaky_relu_negative_slope;
894 895
  arg->bias_address = bias_ptr;
  arg->filter_address = filter_ptr;
Z
zhangyang 已提交
896 897 898 899
  arg->kernel.height = (uint32_t)filter->dims()[2];
  arg->kernel.width = (uint32_t)filter->dims()[3];
  arg->kernel.stride_h = (uint32_t)stride_h;
  arg->kernel.stride_w = (uint32_t)stride_w;
900 901 902 903
  arg->image.address = input_ptr;
  arg->image.channels = (uint32_t)input->dims()[1];
  arg->image.height = (uint32_t)input->dims()[2];
  arg->image.width = (uint32_t)input->dims()[3];
Z
zhangyang 已提交
904 905
  arg->image.pad_height = (uint32_t)padding_h;
  arg->image.pad_width = (uint32_t)padding_w;
906 907 908 909 910
  arg->image.scale_address = input->scale;
  arg->output.address = output_ptr;
  arg->output.scale_address = out->scale;
}  // end dwconv arg fill

qnqinan's avatar
qnqinan 已提交
911 912
void fill_DWDeconv_arg(struct DWDeconvArgs *arg, framework::Tensor *input,
                       framework::Tensor *out, framework::Tensor *filter,
qnqinan's avatar
qnqinan 已提交
913 914 915 916
                       ActivationType activation_enable,
                       int16_t leaky_relu_negative_slope, int stride_h,
                       int stride_w, int padding_h, int padding_w,
                       float *bias_ptr) {
917 918
  auto filter_ptr = filter->data<int8_t>();
  auto input_ptr = input->data<half>();
qnqinan's avatar
qnqinan 已提交
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952

  auto deleter = [](void *p) { fpga_free(p); };

  arg->group_num = (uint32_t)filter->dims()[0];
  arg->sub_conv_num = (uint32_t)stride_w;
  arg->filter_num = (uint32_t)filter->dims()[0];

  int sub_conv_num = stride_w;

  int sub_pad =
      deconv_filter::deconv_calc_sub_pad((int)filter->dims()[3],  // NOLINT
                                         padding_w, stride_w);
  auto sub_filter_width = (uint32_t)deconv_filter::deconv_get_sub_filter_axis(
      (int)filter->dims()[3], stride_w);  // NOLINT

  auto sub_output_width = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
      (int)input->dims()[3], sub_pad, sub_filter_width);  // NOLINT
  auto sub_output_height = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
      (int)input->dims()[2], sub_pad, sub_filter_width);  // NOLINT

  arg->sub_output_width = (uint32_t)sub_output_width;
  arg->sub_output_height = (uint32_t)sub_output_height;
  arg->omit_size = (uint32_t)deconv_filter::deconv_get_omit(
      stride_w, (int)filter->dims()[3], padding_w);  // NOLINT

  auto sub_channels = (int)input->dims()[1];  // NOLINT
  uint32_t omit_size = arg->omit_size;
  int real_out_width = sub_output_width * sub_conv_num - 2 * omit_size;
  int real_out_height = sub_output_height * sub_conv_num - 2 * omit_size;
  int sub_filter_num = sub_conv_num * (arg->filter_num);

  framework::DDim dims_out_new = framework::make_ddim(
      {1, arg->filter_num, real_out_height, real_out_width});
  fpga::format_fp16_ofm(out, dims_out_new);
953
  auto out_ptr = out->data<half>();
qnqinan's avatar
qnqinan 已提交
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971

  /*====For Addition
  arg->output.address =
      (half *)out_ptr +  // NOLINT
      omit_size * sizeof(half) *
          (align_to_x(real_out_width * arg->filter_num, IMAGE_ALIGNMENT));
          */
  arg->output.address = out_ptr;
  arg->output.scale_address = out->scale;

  int filter_offset = sub_filter_width * sub_filter_width *
                      align_to_x(sub_channels, FILTER_ELEMENT_ALIGNMENT) *
                      arg->sub_conv_num;

  for (int i = 0; i < sub_conv_num; ++i) {
    arg->dw_conv_args.push_back(std::make_shared<DWconvArgs>());

    arg->dw_conv_args[i]->sub_conv_num = sub_conv_num;
qnqinan's avatar
qnqinan 已提交
972 973 974 975
    // arg->dw_conv_args[i]->relu_enabled = relu_enabled;
    arg->dw_conv_args[i]->output.activation.activation_type = activation_enable;
    arg->dw_conv_args[i]->output.activation.leaky_relu_negative_slope =
        leaky_relu_negative_slope;
qnqinan's avatar
qnqinan 已提交
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
    arg->dw_conv_args[i]->bias_address = bias_ptr;

    arg->dw_conv_args[i]->filter_address =
        fpga_malloc(filter_offset * sizeof(int16_t));
    memcpy(arg->dw_conv_args[i]->filter_address,
           (reinterpret_cast<half *>(filter_ptr) + i * filter_offset),
           filter_offset * sizeof(int16_t));
    arg->vector_dw_conv_space.push_back(std::shared_ptr<char>(
        reinterpret_cast<char *>(arg->dw_conv_args[i]->filter_address),
        deleter));

    arg->dw_conv_args[i]->kernel.height = (uint32_t)sub_filter_width;
    arg->dw_conv_args[i]->kernel.width = (uint32_t)sub_filter_width;

    arg->dw_conv_args[i]->kernel.stride_h = (uint32_t)1;
    arg->dw_conv_args[i]->kernel.stride_w = (uint32_t)1;
    arg->dw_conv_args[i]->image.address = input_ptr;
    arg->dw_conv_args[i]->image.channels = (uint32_t)input->dims()[1];
    arg->dw_conv_args[i]->image.height = (uint32_t)input->dims()[2];
    arg->dw_conv_args[i]->image.width = (uint32_t)input->dims()[3];

    arg->dw_conv_args[i]->image.pad_height = sub_pad;
    arg->dw_conv_args[i]->image.pad_width = sub_pad;
    arg->dw_conv_args[i]->image.scale_address = input->scale;

    arg->dw_conv_args[i]->output.address =
        fpga_malloc(sub_output_height *
                    align_to_x(sub_output_width * sub_channels * sub_conv_num,
                               IMAGE_ALIGNMENT) *
                    sizeof(int16_t));
    arg->dw_conv_args[i]->output.scale_address =
        static_cast<float *>(fpga_malloc(2 * sizeof(float)));
qnqinan's avatar
update  
qnqinan 已提交
1008
    arg->vector_dw_conv_space.push_back(std::shared_ptr<char>(
qnqinan's avatar
qnqinan 已提交
1009 1010
        reinterpret_cast<char *>(arg->dw_conv_args[i]->output.address),
        deleter));
qnqinan's avatar
update  
qnqinan 已提交
1011
    arg->vector_dw_conv_space.push_back(std::shared_ptr<char>(
qnqinan's avatar
qnqinan 已提交
1012 1013 1014 1015 1016 1017 1018
        reinterpret_cast<char *>(arg->dw_conv_args[i]->output.scale_address),
        deleter));
  }

  // arg->output.scale_address = out->scale;
}  // end dwconv arg fill

H
hanbuhe 已提交
1019
}  // namespace fpga
Z
zhangyang 已提交
1020
}  // namespace paddle_mobile