api.cpp 30.8 KB
Newer Older
H
hanbuhe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhangyang 已提交
15 16
#include "fpga/V1/api.h"
#include "fpga/V1/bias_scale.h"
Z
zhangyang 已提交
17
#include "fpga/V1/deconv_filter.h"
Z
zhangyang 已提交
18 19
#include "fpga/V1/filter.h"
#include "fpga/V1/image.h"
Z
zhangyang 已提交
20

Z
zhangyang 已提交
21
namespace paddle_mobile {
H
hanbuhe 已提交
22 23
namespace fpga {

24 25 26
#define USE_RELU 1
#define USE_BIAS 2

Z
zhangyang 已提交
27 28
void format_image(framework::Tensor *image_tensor) {
  auto dims = image_tensor->dims();
Z
zhangyang 已提交
29
  auto channel = dims[1], height = dims[2], width = dims[3];
30
  auto data_ptr = image_tensor->data<float>();
Z
zhangyang 已提交
31
  size_t memory_size = channel * height * width * sizeof(float);
32
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
Z
zhangyang 已提交
33 34 35 36 37
  fpga_copy(new_data, data_ptr, memory_size);
  image::format_image(&new_data, channel, height, width);
  image_tensor->reset_data_ptr(new_data);
}

38
void format_fp16_ofm(framework::Tensor *ofm_tensor) {
Z
zhangyang 已提交
39
  auto dims = ofm_tensor->dims();
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(half);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(half);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
}

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
void format_fp16_ofm(framework::Tensor *ofm_tensor, framework::DDim dims) {
  // auto dims = ofm_tensor->dims();
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(half);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(half);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
}
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
void format_fp32_ofm(framework::Tensor *ofm_tensor) {
  auto dims = ofm_tensor->dims();
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(float);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(float);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
Z
zhangyang 已提交
86 87
}

Z
zhangyang 已提交
88 89 90 91
float filter_find_max(framework::Tensor *filter_tensor) {
  auto filter_ptr = filter_tensor->data<float>();
  return filter::find_max(filter_ptr, filter_tensor->numel());
}
Z
zhangyang 已提交
92 93 94

int get_plit_num(framework::Tensor *filter_tensor) {
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
95 96
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
97 98 99
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_split_num(num, div_capacity);
}
Z
zhangyang 已提交
100 101 102 103 104 105 106
int get_deconv_plit_num(framework::Tensor *filter_tensor, int stride) {
  auto dims = filter_tensor->dims();
  auto chw = dims[1] * dims[2] / stride * dims[3] / stride;
  auto num = dims[0] * stride;
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_split_num(num, div_capacity);
}
Z
zhangyang 已提交
107

108
int get_filter_num_per_div(framework::Tensor *filter_tensor, int group_num) {
Z
zhangyang 已提交
109
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
110 111
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
112 113 114 115
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
}

Z
zhangyang 已提交
116 117 118 119 120 121 122 123 124
int get_deconv_filter_num_per_div(framework::Tensor *filter_tensor,
                                  int group_num, int stride) {
  auto dims = filter_tensor->dims();
  auto chw = dims[1] * dims[2] / stride * dims[3] / stride;
  auto num = dims[0] * stride;
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
}

Z
zhangyang 已提交
125 126 127 128
int get_aligned_filter_element_num(int chw) {
  return align_to_x(chw, FILTER_ELEMENT_ALIGNMENT);
}

Z
zhangyang 已提交
129 130
void format_filter(framework::Tensor *filter_tensor, float max_value,
                   int group_num) {
131 132
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
Z
zhangyang 已提交
133
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
134
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
135
  auto data_ptr = filter_tensor->data<float>();
Z
zhangyang 已提交
136
  size_t memory_size = num * channel * height * width * sizeof(float);
137
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
Z
zhangyang 已提交
138 139 140 141 142
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_filter(&new_data, num, channel, height, width, group_num,
                        max_value);
  filter_tensor->reset_data_ptr(new_data);
}
143 144 145 146 147 148 149 150 151 152
void format_dwconv_filter(framework::Tensor *filter_tensor, float *scale_ptr) {
  auto dims = filter_tensor->dims();
  auto num = dims[0], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_dwconv_filter(&new_data, num, height, width, scale_ptr);
  filter_tensor->reset_data_ptr(new_data);
}
Z
zhangyang 已提交
153

Z
zhangyang 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166
void format_fc_filter(framework::Tensor *filter_tensor, float max_value) {
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
  auto dims = filter_tensor->dims();
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * channel * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_fc_filter(&new_data, num, channel, height, width, 1,
                           max_value);
  filter_tensor->reset_data_ptr(new_data);
}
Z
zhangyang 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
void format_deconv_filter(framework::Tensor *filter_tensor, float max_value,
                          int group_num, int stride) {
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
  auto dims = filter_tensor->dims();
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * channel * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  memcpy(new_data, data_ptr, memory_size);

  int hw = height * width;
  deconv_filter::deconv_NC_convert(&new_data, num, channel, hw);

  num = dims[1];
  channel = dims[0];
  deconv_filter::deconv_format_filter(
      &new_data, (int)num, (int)channel,          // NOLINT
      (int)height,                                // NOLINT
      (int)width, group_num, max_value, stride);  // NOLINT

  framework::DDim dims_new =
      framework::make_ddim({num, channel, height, width});
  filter_tensor->Resize(dims_new);
  filter_tensor->reset_data_ptr(new_data);
}
Z
zhangyang 已提交
193

Z
zhangyang 已提交
194 195 196 197 198
void format_bias_scale_array(float **bias_scale_array,
                             int element_num_per_division, int num) {
  bias_scale::format_bias_scale_array(bias_scale_array,
                                      element_num_per_division, num);
}
199 200 201
void format_bias_array(float **bias_array, int num) {
  bias_scale::format_bias_array(bias_array, num);
}
Z
zhangyang 已提交
202

Z
zhangyang 已提交
203 204 205 206 207 208 209 210 211
void format_concat_output(framework::Tensor *out, int height, int width,
                          int image_num, uint32_t *channel_num) {
  int sum_channel = 0, sum_cw = 0;
  for (int i = 0; i < image_num; i++) {
    sum_channel += channel_num[i];
  }

  sum_cw = align_to_x(width * sum_channel, IMAGE_ALIGNMENT);
  auto data_ptr = fpga_malloc(height * sum_cw * sizeof(half));
212
  auto ddim = framework::make_ddim({1, sum_channel, height, width});
Z
zhangyang 已提交
213 214 215
  out->Resize(ddim);
  out->reset_data_ptr(data_ptr);
}
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
void format_conv_data(framework::Tensor *filter_tensor,
                      framework::Tensor *ofm_tensor, float **bs_ptr,
                      int group) {
  float max_value = fpga::filter_find_max(filter_tensor);
  fpga::format_filter(filter_tensor, max_value, group);
  int element_num_per_div = fpga::get_filter_num_per_div(filter_tensor, group);
  fpga::format_bias_scale_array(bs_ptr, element_num_per_div,
                                ofm_tensor->dims()[1]);
  fpga::format_fp16_ofm(ofm_tensor);
}
void format_deconv_data(framework::Tensor *filter_tensor,
                        framework::Tensor *ofm_tensor, float **bs_ptr,
                        int group, int sub_conv_n) {
  int channel = ofm_tensor->dims()[1];
  float max_value = filter_find_max(filter_tensor);
  format_deconv_filter(filter_tensor, max_value, group, sub_conv_n);
  int element_num_per_div =
      get_deconv_filter_num_per_div(filter_tensor, group, sub_conv_n);
  format_bias_scale_array(bs_ptr, element_num_per_div, channel * sub_conv_n);
  format_fp16_ofm(ofm_tensor);
}
Z
zhangyang 已提交
237

238 239 240 241 242 243 244 245
void format_dwconv_data(framework::Tensor *filter_tensor,
                        framework::Tensor *ofm_tensor, float *scale_ptr,
                        float **bias_ptr) {
  auto channel = ofm_tensor->dims()[1];
  format_dwconv_filter(filter_tensor, scale_ptr);
  format_bias_array(bias_ptr, channel);
  format_fp16_ofm(ofm_tensor);
}
246 247
void expand_conv_arg(ConvArgs *arg) {
  ConvArgs args = *arg;
248 249

  auto fpga_bias_scale_len =
250 251
      align_to_x(args.filter_num / args.group_num, 8) * args.group_num;

252
  auto output_height =
253 254 255
      (args.image.height + args.image.pad_height * 2 - args.kernel.height) /
          args.kernel.stride_h +
      1;
256
  auto output_width =
257 258 259
      (args.image.width + args.image.pad_width * 2 - args.kernel.width) /
          args.kernel.stride_w +
      1;
260 261 262 263 264 265 266 267 268 269

  auto filter_per_group = args.filter_num / args.group_num;
  auto channel_per_group = args.image.channels / args.group_num;

  auto image_row_count = args.image.width * args.image.channels;
  auto image_amount_per_row = align_to_x(image_row_count, IMAGE_ALIGNMENT);
  auto image_one_pad_per_row = align_to_x(image_row_count, IMAGE_ALIGNMENT) +
                               args.image.pad_width * args.image.channels;
  auto filter_amount_all =
      align_to_x(args.kernel.height * args.kernel.width * channel_per_group,
270 271
                 FILTER_ELEMENT_ALIGNMENT);

272 273 274
  auto output_amount_per_row = align_to_x(
      (output_width - (args.deconv_tx_param.omit_size) * 2) * args.filter_num,
      IMAGE_ALIGNMENT);
275 276 277 278

  // find the opt partition strategy
  uint64_t res_win;
  uint64_t res_fit = 0;
279
  for (res_win = 1; res_win <= output_width; res_win++) {
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    if ((align_to_x(
             (args.image.channels *
              (args.kernel.width + (res_win - 1) * args.kernel.stride_w)),
             IMAGE_ALIGNMENT) /
             16 +
         1) *
            args.kernel.height >
        2048) {
      break;
    }
  }

  if (res_win != output_width) {
    res_win -= 1;
  }

  if (((res_win % 2) != 0) && (res_win != 1)) {
    res_win = res_win - 1;
  }
  res_fit = res_win;

301 302 303
  auto block_num = (output_width + res_fit - 1) / res_fit;
  auto block_len = res_fit;
  auto block_last = output_width - res_fit * (block_num - 1);
304

305 306
  auto res_amount_per_row =
      (output_width - (args.deconv_tx_param.omit_size) * 2) * args.filter_num;
307
  auto res_amount_per_row_pad = output_amount_per_row - res_amount_per_row;
308

309 310 311
  auto image_block_amount_per_row =
      args.kernel.stride_w * res_fit * args.image.channels;
  auto filter_pad_width_mul_channel =
312
      args.image.pad_width * args.image.channels;
313
  auto image_amount_per_row_multi_win_first =
314
      image_amount_per_row * (4 * args.kernel.stride_h - args.image.pad_height);
315
  auto image_amount_per_row_multi_win =
316 317
      image_amount_per_row * (4 * args.kernel.stride_h);

318 319
  auto image_block_num = block_num;
  auto image_block_len =
320 321 322 323 324
      align_to_x((args.image.channels *
                  (args.kernel.width + (block_len - 1) * args.kernel.stride_w)),
                 IMAGE_ALIGNMENT) /
          16 +
      1;
325
  auto image_block_len_last =
326 327 328 329 330 331
      align_to_x(
          (args.image.channels *
           (args.kernel.width + (block_last - 1) * args.kernel.stride_w)),
          IMAGE_ALIGNMENT) /
          16 +
      1;
332 333 334 335
  auto image_win_cnt = block_len;
  auto image_win_cnt_last = block_last;
  auto res_row_data_align4_pad = res_amount_per_row_pad / 8;
  auto prog_full_cnt = 2048 / (filter_amount_all / 16 * 2) - 1;
336 337 338
  if (prog_full_cnt == 1023) {
    prog_full_cnt--;
  }
339
  auto post_prog_full_cnt =
340 341 342
      (512 / (align_to_x(args.filter_num, 4) / 4 * 2) > 2)
          ? (512 / (align_to_x(args.filter_num, 4) / 4 * 2) - 2)
          : 0;
343
  auto cmd = 0UL | (args.relu_enabled ? USE_RELU : 0) | USE_BIAS;
344

345 346 347
  auto deconv_param = ((args.deconv_tx_param.deconv_en) << 24) |
                      ((args.deconv_tx_param.sub_conv_num) << 16) |
                      ((args.deconv_tx_param.omit_size) << 0);
348 349 350
  (*arg).driver.image_address_phy = vaddr_to_paddr(args.image.address);
  (*arg).driver.sb_address_phy = vaddr_to_paddr(args.sb_address);
  (*arg).driver.filter_address_phy = vaddr_to_paddr(args.filter_address);
351 352
  (*arg).driver.output_address_phy = vaddr_to_paddr(args.output.address) +
                                     args.deconv_tx_param.out_addr_offset;
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
  (*arg).driver.output_height = output_height;
  (*arg).driver.output_width = output_width;
  (*arg).driver.filter_per_group = filter_per_group;
  (*arg).driver.channel_per_group = channel_per_group;
  (*arg).driver.image_amount_per_row = image_amount_per_row;
  (*arg).driver.image_one_pad_per_row = image_one_pad_per_row;
  (*arg).driver.filter_amount_all = filter_amount_all;
  (*arg).driver.output_amount_per_row = output_amount_per_row;
  (*arg).driver.image_block_amount_per_row = image_block_amount_per_row;
  (*arg).driver.filter_pad_width_mul_channel = filter_pad_width_mul_channel;
  (*arg).driver.image_amount_per_row_multi_win_first =
      image_amount_per_row_multi_win_first;
  (*arg).driver.image_amount_per_row_multi_win = image_amount_per_row_multi_win;
  (*arg).driver.image_block_num = image_block_num;
  (*arg).driver.image_block_len = image_block_len;
  (*arg).driver.image_block_len_last = image_block_len_last;
  (*arg).driver.image_win_cnt = image_win_cnt;
  (*arg).driver.image_win_cnt_last = image_win_cnt_last;
  (*arg).driver.res_row_data_align4_pad = res_row_data_align4_pad;
  (*arg).driver.prog_full_cnt = prog_full_cnt;
  (*arg).driver.post_prog_full_cnt = post_prog_full_cnt;
  (*arg).driver.fpga_bias_scale_len = fpga_bias_scale_len;
  (*arg).driver.cmd = cmd;
376
  (*arg).driver.deconv_param = deconv_param;
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
}  // expand_conv_arg()

void expand_EW_arg(EWAddArgs *arg) {
  EWAddArgs args = *arg;
  uint64_t cmd = args.relu_enabled ? USE_RELU : 0;
  uint64_t datalen = (uint64_t)args.image0.width *
                     (uint64_t)args.image0.height *
                     (uint64_t)args.image0.channels;
  uint64_t coefficient = (uint64_t)args.const0 << 32 | (uint64_t)args.const1;
  uint64_t image0_address_phy = vaddr_to_paddr(args.image0.address);
  uint64_t image1_address_phy = vaddr_to_paddr(args.image1.address);
  uint64_t output_address_phy = vaddr_to_paddr(args.output.address);

  uint64_t image_amount_per_row =
      align_to_x((uint64_t)args.image0.width * (uint64_t)args.image0.channels,
                 IMAGE_ALIGNMENT);
  uint64_t image_image_pixel = ((uint64_t)args.image0.channels << 32) |
                               ((uint64_t)args.image0.width << 16) |
                               (uint64_t)args.image0.height;

  (*arg).driver.image0_address_phy = image0_address_phy;
  (*arg).driver.image1_address_phy = image1_address_phy;
  (*arg).driver.datalen = datalen;
  (*arg).driver.image_image_pixel = image_image_pixel;
  (*arg).driver.image_amount_per_row = image_amount_per_row;
  (*arg).driver.output_address_phy = output_address_phy;
  (*arg).driver.coefficient = coefficient;
  (*arg).driver.cmd = cmd;
}  // expand_EW_arg

Z
zhangyang 已提交
407 408 409 410
void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
                    framework::Tensor *out, framework::Tensor *filter,
                    bool relu_enabled, int group_num, int stride_h,
                    int stride_w, int padding_h, int padding_w, float *bs_ptr) {
411 412
  auto input_ptr = input->data<float>();
  auto filter_ptr = filter->data<float>();
413
  auto out_ptr = out->data<float>();
414 415

  arg->group_num = (uint32_t)group_num;
416 417
  // Either group_num or split_num = 1;
  arg->split_num = group_num == 1 ? (uint32_t)get_plit_num(filter) : 1;
418 419 420
  arg->filter_num = (uint32_t)filter->dims()[0];
  arg->output.address = out_ptr;
  arg->output.scale_address = out->scale;
Z
zhangyang 已提交
421
  arg->conv_arg =
422
      (ConvArgs *)fpga_malloc(arg->split_num * sizeof(ConvArgs));  // NOLINT
423

424 425
  memset(arg->conv_arg, 0, arg->split_num * sizeof(struct ConvArgs));

426 427 428
  arg->concat_arg.image_num = arg->split_num;
  arg->concat_arg.image_out = out_ptr;
  arg->concat_arg.scale_out = out->scale;
429 430
  arg->concat_arg.height = (uint32_t)out->dims()[2];
  arg->concat_arg.width = (uint32_t)out->dims()[3];
431 432

  int n = arg->split_num;
433 434 435 436
  arg->concat_arg.images_in =
      (half **)fpga_malloc(n * sizeof(int *));  // NOLINT
  arg->concat_arg.scales_in =
      (float **)fpga_malloc(n * sizeof(float *));  // NOLINT
437
  arg->concat_arg.channel_num =
438
      (uint32_t *)fpga_malloc(n * sizeof(uint32_t));  // NOLINT
439

440 441 442
  auto channel = (int)out->dims()[1];  // NOLINT
  int filter_num_per_div = get_filter_num_per_div(filter, group_num);
  int element_num = get_aligned_filter_element_num(
443 444
      (int)(filter->dims()[1] * filter->dims()[2] *  // NOLINT
            filter->dims()[3]));
445 446

  for (int i = 0; i < n; i++) {
Z
zhangyang 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
    arg->conv_arg[i].relu_enabled = relu_enabled;
    arg->conv_arg[i].group_num = (uint32_t)group_num;
    arg->conv_arg[i].kernel.stride_h = (uint32_t)stride_h;
    arg->conv_arg[i].kernel.stride_w = (uint32_t)stride_w;
    arg->conv_arg[i].kernel.height = (uint32_t)filter->dims()[2];
    arg->conv_arg[i].kernel.width = (uint32_t)filter->dims()[3];
    arg->conv_arg[i].image.address = input_ptr;
    arg->conv_arg[i].image.channels = (uint32_t)input->dims()[1];
    arg->conv_arg[i].image.height = (uint32_t)input->dims()[2];
    arg->conv_arg[i].image.width = (uint32_t)input->dims()[3];
    arg->conv_arg[i].image.scale_address = input->scale;
    arg->conv_arg[i].image.pad_height = (uint32_t)padding_h;
    arg->conv_arg[i].image.pad_width = (uint32_t)padding_w;
    arg->conv_arg[i].filter_scale_address = filter->scale;
    arg->conv_arg[i].filter_num = (uint32_t)(
462 463
        i == n - 1 ? channel - (n - 1) * filter_num_per_div  // NOLINT
                   : filter_num_per_div);
464

Z
zhangyang 已提交
465
    size_t filter_size =
466 467 468
        element_num *
        align_to_x(arg->conv_arg[i].filter_num, FILTER_NUM_ALIGNMENT) *
        sizeof(int8_t);
469 470
    auto filter_head = &(
        (int8_t *)filter_ptr)[i * element_num * filter_num_per_div];  // NOLINT
Z
zhangyang 已提交
471 472 473 474
    arg->conv_arg[i].filter_address = fpga_malloc(filter_size);
    memcpy(arg->conv_arg[i].filter_address, filter_head, filter_size);
    fpga_flush(arg->conv_arg[i].filter_address, filter_size);

475 476 477
    size_t bs_size = 2 *
                     align_to_x(arg->conv_arg[i].filter_num, BS_NUM_ALIGNMENT) *
                     sizeof(float);
Z
zhangyang 已提交
478 479 480 481 482
    auto bs_head = &bs_ptr[i * filter_num_per_div * 2];
    arg->conv_arg[i].sb_address = fpga_malloc(bs_size);
    memcpy(arg->conv_arg[i].sb_address, bs_head, bs_size);
    fpga_flush(arg->conv_arg[i].sb_address, bs_size);

483
    if (n > 1) {
Z
zhangyang 已提交
484
      arg->conv_arg[i].output.scale_address =
485
          (float *)fpga_malloc(2 * sizeof(float));  // NOLINT
486 487 488 489 490 491
      arg->conv_arg[i].output.address =
          fpga_malloc(out->dims()[2] *
                      align_to_x((int)(out->dims()[3] *  // NOLINT
                                       arg->conv_arg[i].filter_num),
                                 IMAGE_ALIGNMENT) *
                      sizeof(half));
492
    } else {
Z
zhangyang 已提交
493 494
      arg->conv_arg[i].output.scale_address = out->scale;
      arg->conv_arg[i].output.address = out_ptr;
495 496
    }

497
    arg->concat_arg.images_in[i] =
Z
zhangyang 已提交
498 499 500
        (half *)arg->conv_arg[i].output.address;  // NOLINT
    arg->concat_arg.scales_in[i] = arg->conv_arg[i].output.scale_address;
    arg->concat_arg.channel_num[i] = arg->conv_arg[i].filter_num;
501 502

    expand_conv_arg(&arg->conv_arg[i]);
503
  }
Z
zhangyang 已提交
504 505
  filter->reset_data_ptr(nullptr);
  fpga_free(bs_ptr);
506 507
}  // fill_split_arg

Z
zhangyang 已提交
508 509 510 511 512 513 514 515 516
void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
                     framework::Tensor *out, framework::Tensor *filter,
                     bool relu_enabled, int group_num, int stride_h,
                     int stride_w, int padding_h, int padding_w,
                     float *bs_ptr) {
  auto input_ptr = input->data<float>();
  auto filter_ptr = filter->data<float>();

  arg->group_num = (uint32_t)group_num;
517
  arg->sub_conv_num = (uint32_t)stride_h;
Z
zhangyang 已提交
518
  arg->filter_num = (uint32_t)filter->dims()[0];
519
  uint32_t sub_conv_num = arg->sub_conv_num;
520 521 522
  int sub_pad =
      deconv_filter::deconv_calc_sub_pad((int)filter->dims()[3],  // NOLINT
                                         padding_w, stride_w);
523
  auto sub_filter_width = (uint32_t)deconv_filter::deconv_get_sub_filter_axis(
524
      (int)filter->dims()[3], stride_w);  // NOLINT
525

526
  auto sub_output_width = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
527
      (int)input->dims()[3], sub_pad, sub_filter_width);  // NOLINT
528
  auto sub_output_height = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
529
      (int)input->dims()[2], sub_pad, sub_filter_width);  // NOLINT
Z
zhangyang 已提交
530

531 532 533
  arg->sub_output_width = (uint32_t)sub_output_width;
  arg->sub_output_height = (uint32_t)sub_output_height;
  arg->omit_size = (uint32_t)deconv_filter::deconv_get_omit(
534
      stride_w, (int)filter->dims()[3], padding_w);  // NOLINT
Z
zhangyang 已提交
535

536
  auto sub_channels = (int)input->dims()[1];  // NOLINT
537
  uint32_t omit_size = arg->omit_size;
Z
zhangyang 已提交
538
  int real_out_width = sub_output_width * sub_conv_num - 2 * omit_size;
Z
zhangyang 已提交
539 540
  int sub_filter_num = sub_conv_num * (arg->filter_num);

541 542 543 544 545
  framework::DDim dims_out_new = framework::make_ddim(
      {1, arg->filter_num, sub_output_height * sub_conv_num, real_out_width});
  fpga::format_fp16_ofm(out, dims_out_new);
  auto out_ptr = out->data<float>();
  arg->output.address =
546
      (half *)out_ptr +  // NOLINT
547 548 549 550 551
      omit_size * sizeof(half) *
          (align_to_x(real_out_width * arg->filter_num, IMAGE_ALIGNMENT));
  arg->output.scale_address = out->scale;

  uint32_t conv_output_size =
Z
zhangyang 已提交
552 553
      (align_to_x(sub_output_width * sub_filter_num, IMAGE_ALIGNMENT)) *
      sub_output_height;
554
  uint32_t split_num =
Z
zhangyang 已提交
555 556
      group_num == 1 ? (uint32_t)get_deconv_plit_num(filter, sub_conv_num) : 1;

557 558
  arg->split_conv_args = (SplitConvArgs *)fpga_malloc(  // NOLINT
      sub_conv_num * sizeof(SplitConvArgs));            // NOLINT
Z
zhangyang 已提交
559
  for (int i = 0; i < sub_conv_num; ++i) {
Z
zhangyang 已提交
560 561 562 563 564
    arg->split_conv_args[i].filter_num =
        (arg->sub_conv_num) * (arg->filter_num);
    arg->split_conv_args[i].group_num = (uint32_t)group_num;
    arg->split_conv_args[i].split_num = split_num;
    arg->split_conv_args[i].conv_arg =
565
        (ConvArgs *)fpga_malloc(split_num * sizeof(ConvArgs));  // NOLINT
Z
zhangyang 已提交
566 567 568 569 570

    arg->split_conv_args[i].concat_arg.height = sub_output_height;
    arg->split_conv_args[i].concat_arg.width = sub_output_width;
    arg->split_conv_args[i].concat_arg.image_num = split_num;
    arg->split_conv_args[i].concat_arg.images_in =
571
        (half **)fpga_malloc(split_num * sizeof(half *));  // NOLINT
Z
zhangyang 已提交
572
    arg->split_conv_args[i].concat_arg.scales_in =
573
        (float **)fpga_malloc(split_num * sizeof(float *));  // NOLINT
Z
zhangyang 已提交
574
    arg->split_conv_args[i].concat_arg.channel_num =
575
        (uint32_t *)fpga_malloc(split_num * sizeof(uint32_t));  // NOLINT
Z
zhangyang 已提交
576
  }
Z
zhangyang 已提交
577

578 579
  auto filter_num_per_div =
      (uint32_t)get_deconv_filter_num_per_div(filter, group_num, stride_w);
Z
zhangyang 已提交
580
  int element_num = get_aligned_filter_element_num(
581
      (int)(sub_channels * sub_filter_width * sub_filter_width));  // NOLINT
Z
zhangyang 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596

  int chw = sub_channels * sub_filter_width * sub_filter_width;
  int division_capacity = filter::calc_division_capacity(chw);
  int num_per_div_before_alignment =
      filter::calc_num_per_div(sub_filter_num, group_num, division_capacity);
  int num_per_div_after_alignment =
      align_to_x(num_per_div_before_alignment, FILTER_NUM_ALIGNMENT);
  int div_num = (sub_filter_num + num_per_div_before_alignment - 1) /
                num_per_div_before_alignment;
  int residual = sub_filter_num % num_per_div_before_alignment;
  int num_after_alignment = num_per_div_after_alignment *
                                ((residual == 0) ? div_num : (div_num - 1)) +
                            align_to_x(residual, FILTER_NUM_ALIGNMENT);

  int filter_sub_conv_offset = element_num * num_after_alignment;
597
  uint32_t out_addr_offset = 0;
Z
zhangyang 已提交
598
  for (int i = 0; i < sub_conv_num; ++i) {
Z
zhangyang 已提交
599
    if (sub_conv_num == 1) {
Z
zhangyang 已提交
600 601
      arg->split_conv_args[i].output.address = arg->output.address;
      arg->split_conv_args[i].output.scale_address = arg->output.scale_address;
602
      out_addr_offset = 0;
Z
zhangyang 已提交
603

Z
zhangyang 已提交
604
    } else {
605
      auto ptr_output = (half *)out_ptr;  // NOLINT
606 607 608 609
      out_addr_offset =
          sizeof(half) * (sub_conv_num - 1 - i) *
          (align_to_x(real_out_width * arg->filter_num, IMAGE_ALIGNMENT));

610
      arg->split_conv_args[i].output.address = (void *)(ptr_output);  // NOLINT
611

612 613
      auto ptr_output_scale =
          (float *)fpga_malloc(2 * sizeof(float));  // NOLINT
Z
zhangyang 已提交
614
      arg->split_conv_args[i].output.scale_address = ptr_output_scale;
Z
zhangyang 已提交
615 616
    }

Z
zhangyang 已提交
617 618 619 620 621 622 623 624 625 626 627
    for (int j = 0; j < split_num; ++j) {
      arg->split_conv_args[i].conv_arg[j].relu_enabled = relu_enabled;
      arg->split_conv_args[i].conv_arg[j].group_num = (uint32_t)group_num;

      arg->split_conv_args[i].conv_arg[j].kernel.width =
          (uint32_t)sub_filter_width;
      arg->split_conv_args[i].conv_arg[j].kernel.height =
          (uint32_t)sub_filter_width;
      arg->split_conv_args[i].conv_arg[j].kernel.stride_w = 1;
      arg->split_conv_args[i].conv_arg[j].kernel.stride_h = 1;

628 629 630 631 632 633 634
      arg->split_conv_args[i].conv_arg[j].deconv_tx_param.deconv_en = 1;
      arg->split_conv_args[i].conv_arg[j].deconv_tx_param.sub_conv_num =
          sub_conv_num;
      arg->split_conv_args[i].conv_arg[j].deconv_tx_param.omit_size = omit_size;
      arg->split_conv_args[i].conv_arg[j].deconv_tx_param.out_addr_offset =
          out_addr_offset;

Z
zhangyang 已提交
635 636 637 638 639 640 641 642 643 644 645 646
      arg->split_conv_args[i].conv_arg[j].image.scale_address = input->scale;
      arg->split_conv_args[i].conv_arg[j].image.channels =
          (uint32_t)sub_channels;
      arg->split_conv_args[i].conv_arg[j].image.width =
          (uint32_t)input->dims()[3];
      arg->split_conv_args[i].conv_arg[j].image.height =
          (uint32_t)input->dims()[2];
      arg->split_conv_args[i].conv_arg[j].image.pad_width = (uint32_t)sub_pad;
      arg->split_conv_args[i].conv_arg[j].image.pad_height = (uint32_t)sub_pad;
      arg->split_conv_args[i].conv_arg[j].image.address = input_ptr;

      arg->split_conv_args[i].conv_arg[j].filter_scale_address = filter->scale;
647 648 649 650
      arg->split_conv_args[i].conv_arg[j].filter_num =
          (uint32_t)(j == split_num - 1
                         ? sub_filter_num - (split_num - 1) * filter_num_per_div
                         : filter_num_per_div);
Z
zhangyang 已提交
651 652 653 654 655 656

      size_t filter_size =
          element_num *
          align_to_x(arg->split_conv_args[i].conv_arg[j].filter_num,
                     FILTER_NUM_ALIGNMENT) *
          sizeof(int8_t);
657 658 659
      auto filter_head = &((
          int8_t *)filter_ptr)[j * element_num * filter_num_per_div +  // NOLINT
                               i * filter_sub_conv_offset];
Z
zhangyang 已提交
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
      arg->split_conv_args[i].conv_arg[j].filter_address =
          fpga_malloc(filter_size);
      memcpy(arg->split_conv_args[i].conv_arg[j].filter_address, filter_head,
             filter_size);
      fpga_flush(arg->split_conv_args[i].conv_arg[j].filter_address,
                 filter_size);

      size_t bs_align_num = align_to_x(
          arg->split_conv_args[i].conv_arg[j].filter_num, BS_NUM_ALIGNMENT);
      size_t bs_size = 2 * bs_align_num * sizeof(float);
      auto bs_head = &bs_ptr[j * filter_num_per_div * 2];

      arg->split_conv_args[i].conv_arg[j].sb_address = fpga_malloc(bs_size);
      memcpy(arg->split_conv_args[i].conv_arg[j].sb_address, bs_head, bs_size);
      fpga_flush(arg->split_conv_args[i].conv_arg[j].sb_address, bs_size);

      if (split_num == 1) {
        arg->split_conv_args[i].conv_arg[j].output.address =
            arg->split_conv_args[i].output.address;
        arg->split_conv_args[i].conv_arg[j].output.scale_address =
            arg->split_conv_args[i].output.scale_address;
      } else {
682 683
        auto ptr_output =
            (half *)fpga_malloc(conv_output_size * sizeof(half));  // NOLINT
Z
zhangyang 已提交
684
        arg->split_conv_args[i].conv_arg[j].output.address =
685 686 687
            (void *)((half *)ptr_output);  // NOLINT
        auto ptr_output_scale =
            (float *)fpga_malloc(2 * sizeof(float));  // NOLINT
Z
zhangyang 已提交
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
        arg->split_conv_args[i].conv_arg[j].output.scale_address =
            ptr_output_scale;
      }
      arg->split_conv_args[i].concat_arg.images_in[j] =
          (half *)arg->split_conv_args[i].conv_arg[j].output.address;  // NOLINT
      arg->split_conv_args[i].concat_arg.scales_in[j] =
          arg->split_conv_args[i].conv_arg[j].output.scale_address;
      arg->split_conv_args[i].concat_arg.channel_num[j] =
          arg->split_conv_args[i].conv_arg[j].filter_num;

      expand_conv_arg(&(arg->split_conv_args[i].conv_arg[j]));
    }

    arg->split_conv_args[i].concat_arg.image_out =
        arg->split_conv_args[i].output.address;
    arg->split_conv_args[i].concat_arg.scale_out =
        arg->split_conv_args[i].output.scale_address;
  }
706
  filter->reset_data_ptr(nullptr);
Z
zhangyang 已提交
707
  fpga_free(bs_ptr);
708 709
}  // fill_deconv_arg

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
void fill_dwconv_arg(struct DWconvArgs *arg, framework::Tensor *input,
                     framework::Tensor *out, framework::Tensor *filter,
                     bool relu_enabled, int stride_h, int stride_w,
                     int padding_h, int padding_w, float *bias_ptr) {
  auto filter_ptr = filter->data<float>();
  auto input_ptr = input->data<float>();
  auto output_ptr = out->mutable_data<float>();
  arg->relu_enabled = relu_enabled;
  arg->bias_address = bias_ptr;
  arg->filter_address = filter_ptr;
  arg->kernel.height = filter->dims()[2];
  arg->kernel.width = filter->dims()[3];
  arg->kernel.stride_h = stride_h;
  arg->kernel.stride_w = stride_w;
  arg->image.address = input_ptr;
  arg->image.channels = (uint32_t)input->dims()[1];
  arg->image.height = (uint32_t)input->dims()[2];
  arg->image.width = (uint32_t)input->dims()[3];
  arg->image.pad_height = padding_h;
  arg->image.pad_width = padding_w;
  arg->image.scale_address = input->scale;
  arg->output.address = output_ptr;
  arg->output.scale_address = out->scale;
}  // end dwconv arg fill

H
hanbuhe 已提交
735
}  // namespace fpga
Z
zhangyang 已提交
736
}  // namespace paddle_mobile