api.cpp 27.4 KB
Newer Older
H
hanbuhe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhangyang 已提交
15 16
#include "fpga/V1/api.h"
#include "fpga/V1/bias_scale.h"
Z
zhangyang 已提交
17
#include "fpga/V1/deconv_filter.h"
Z
zhangyang 已提交
18 19
#include "fpga/V1/filter.h"
#include "fpga/V1/image.h"
Z
zhangyang 已提交
20

Z
zhangyang 已提交
21
namespace paddle_mobile {
H
hanbuhe 已提交
22 23
namespace fpga {

24 25 26
#define USE_RELU 1
#define USE_BIAS 2

Z
zhangyang 已提交
27 28
void format_image(framework::Tensor *image_tensor) {
  auto dims = image_tensor->dims();
Z
zhangyang 已提交
29
  auto channel = dims[1], height = dims[2], width = dims[3];
30
  auto data_ptr = image_tensor->data<float>();
Z
zhangyang 已提交
31
  size_t memory_size = channel * height * width * sizeof(float);
32
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
Z
zhangyang 已提交
33 34 35 36 37
  fpga_copy(new_data, data_ptr, memory_size);
  image::format_image(&new_data, channel, height, width);
  image_tensor->reset_data_ptr(new_data);
}

38
void format_fp16_ofm(framework::Tensor *ofm_tensor) {
Z
zhangyang 已提交
39
  auto dims = ofm_tensor->dims();
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(half);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(half);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
}

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
void format_fp16_ofm(framework::Tensor *ofm_tensor, framework::DDim dims) {
  // auto dims = ofm_tensor->dims();
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(half);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(half);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
}
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
void format_fp32_ofm(framework::Tensor *ofm_tensor) {
  auto dims = ofm_tensor->dims();
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(float);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(float);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
Z
zhangyang 已提交
86 87
}

Z
zhangyang 已提交
88 89 90 91
float filter_find_max(framework::Tensor *filter_tensor) {
  auto filter_ptr = filter_tensor->data<float>();
  return filter::find_max(filter_ptr, filter_tensor->numel());
}
Z
zhangyang 已提交
92 93 94

int get_plit_num(framework::Tensor *filter_tensor) {
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
95 96
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
97 98 99
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_split_num(num, div_capacity);
}
Z
zhangyang 已提交
100 101 102 103 104 105 106
int get_deconv_plit_num(framework::Tensor *filter_tensor, int stride) {
  auto dims = filter_tensor->dims();
  auto chw = dims[1] * dims[2] / stride * dims[3] / stride;
  auto num = dims[0] * stride;
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_split_num(num, div_capacity);
}
Z
zhangyang 已提交
107

108
int get_filter_num_per_div(framework::Tensor *filter_tensor, int group_num) {
Z
zhangyang 已提交
109
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
110 111
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
112 113 114 115
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
}

Z
zhangyang 已提交
116 117 118 119 120 121 122 123 124
int get_deconv_filter_num_per_div(framework::Tensor *filter_tensor,
                                  int group_num, int stride) {
  auto dims = filter_tensor->dims();
  auto chw = dims[1] * dims[2] / stride * dims[3] / stride;
  auto num = dims[0] * stride;
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
}

Z
zhangyang 已提交
125 126 127 128
int get_aligned_filter_element_num(int chw) {
  return align_to_x(chw, FILTER_ELEMENT_ALIGNMENT);
}

Z
zhangyang 已提交
129 130
void format_filter(framework::Tensor *filter_tensor, float max_value,
                   int group_num) {
131 132
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
Z
zhangyang 已提交
133
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
134
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
135
  auto data_ptr = filter_tensor->data<float>();
Z
zhangyang 已提交
136
  size_t memory_size = num * channel * height * width * sizeof(float);
137
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
Z
zhangyang 已提交
138 139 140 141 142 143
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_filter(&new_data, num, channel, height, width, group_num,
                        max_value);
  filter_tensor->reset_data_ptr(new_data);
}

Z
zhangyang 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156
void format_fc_filter(framework::Tensor *filter_tensor, float max_value) {
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
  auto dims = filter_tensor->dims();
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * channel * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_fc_filter(&new_data, num, channel, height, width, 1,
                           max_value);
  filter_tensor->reset_data_ptr(new_data);
}
Z
zhangyang 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
void format_deconv_filter(framework::Tensor *filter_tensor, float max_value,
                          int group_num, int stride) {
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
  auto dims = filter_tensor->dims();
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * channel * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  memcpy(new_data, data_ptr, memory_size);

  int hw = height * width;
  deconv_filter::deconv_NC_convert(&new_data, num, channel, hw);

  num = dims[1];
  channel = dims[0];
  deconv_filter::deconv_format_filter(
      &new_data, (int)num, (int)channel,          // NOLINT
      (int)height,                                // NOLINT
      (int)width, group_num, max_value, stride);  // NOLINT

  framework::DDim dims_new =
      framework::make_ddim({num, channel, height, width});
  filter_tensor->Resize(dims_new);
  filter_tensor->reset_data_ptr(new_data);
}
Z
zhangyang 已提交
183

Z
zhangyang 已提交
184 185 186 187 188 189
void format_bias_scale_array(float **bias_scale_array,
                             int element_num_per_division, int num) {
  bias_scale::format_bias_scale_array(bias_scale_array,
                                      element_num_per_division, num);
}

Z
zhangyang 已提交
190 191 192 193 194 195 196 197 198
void format_concat_output(framework::Tensor *out, int height, int width,
                          int image_num, uint32_t *channel_num) {
  int sum_channel = 0, sum_cw = 0;
  for (int i = 0; i < image_num; i++) {
    sum_channel += channel_num[i];
  }

  sum_cw = align_to_x(width * sum_channel, IMAGE_ALIGNMENT);
  auto data_ptr = fpga_malloc(height * sum_cw * sizeof(half));
199
  auto ddim = framework::make_ddim({1, sum_channel, height, width});
Z
zhangyang 已提交
200 201 202 203
  out->Resize(ddim);
  out->reset_data_ptr(data_ptr);
}

204 205
void expand_conv_arg(ConvArgs *arg) {
  ConvArgs args = *arg;
206 207

  auto fpga_bias_scale_len =
208 209
      align_to_x(args.filter_num / args.group_num, 8) * args.group_num;

210
  auto output_height =
211 212 213
      (args.image.height + args.image.pad_height * 2 - args.kernel.height) /
          args.kernel.stride_h +
      1;
214
  auto output_width =
215 216 217
      (args.image.width + args.image.pad_width * 2 - args.kernel.width) /
          args.kernel.stride_w +
      1;
218 219 220 221 222 223 224 225 226 227

  auto filter_per_group = args.filter_num / args.group_num;
  auto channel_per_group = args.image.channels / args.group_num;

  auto image_row_count = args.image.width * args.image.channels;
  auto image_amount_per_row = align_to_x(image_row_count, IMAGE_ALIGNMENT);
  auto image_one_pad_per_row = align_to_x(image_row_count, IMAGE_ALIGNMENT) +
                               args.image.pad_width * args.image.channels;
  auto filter_amount_all =
      align_to_x(args.kernel.height * args.kernel.width * channel_per_group,
228 229
                 FILTER_ELEMENT_ALIGNMENT);

230 231 232
  auto output_amount_per_row = align_to_x(
      (output_width - (args.deconv_tx_param.omit_size) * 2) * args.filter_num,
      IMAGE_ALIGNMENT);
233 234 235 236

  // find the opt partition strategy
  uint64_t res_win;
  uint64_t res_fit = 0;
237
  for (res_win = 1; res_win <= output_width; res_win++) {
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
    if ((align_to_x(
             (args.image.channels *
              (args.kernel.width + (res_win - 1) * args.kernel.stride_w)),
             IMAGE_ALIGNMENT) /
             16 +
         1) *
            args.kernel.height >
        2048) {
      break;
    }
  }

  if (res_win != output_width) {
    res_win -= 1;
  }

  if (((res_win % 2) != 0) && (res_win != 1)) {
    res_win = res_win - 1;
  }
  res_fit = res_win;

259 260 261
  auto block_num = (output_width + res_fit - 1) / res_fit;
  auto block_len = res_fit;
  auto block_last = output_width - res_fit * (block_num - 1);
262

263 264
  auto res_amount_per_row =
      (output_width - (args.deconv_tx_param.omit_size) * 2) * args.filter_num;
265
  auto res_amount_per_row_pad = output_amount_per_row - res_amount_per_row;
266

267 268 269
  auto image_block_amount_per_row =
      args.kernel.stride_w * res_fit * args.image.channels;
  auto filter_pad_width_mul_channel =
270
      args.image.pad_width * args.image.channels;
271
  auto image_amount_per_row_multi_win_first =
272
      image_amount_per_row * (4 * args.kernel.stride_h - args.image.pad_height);
273
  auto image_amount_per_row_multi_win =
274 275
      image_amount_per_row * (4 * args.kernel.stride_h);

276 277
  auto image_block_num = block_num;
  auto image_block_len =
278 279 280 281 282
      align_to_x((args.image.channels *
                  (args.kernel.width + (block_len - 1) * args.kernel.stride_w)),
                 IMAGE_ALIGNMENT) /
          16 +
      1;
283
  auto image_block_len_last =
284 285 286 287 288 289
      align_to_x(
          (args.image.channels *
           (args.kernel.width + (block_last - 1) * args.kernel.stride_w)),
          IMAGE_ALIGNMENT) /
          16 +
      1;
290 291 292 293
  auto image_win_cnt = block_len;
  auto image_win_cnt_last = block_last;
  auto res_row_data_align4_pad = res_amount_per_row_pad / 8;
  auto prog_full_cnt = 2048 / (filter_amount_all / 16 * 2) - 1;
294 295 296
  if (prog_full_cnt == 1023) {
    prog_full_cnt--;
  }
297
  auto post_prog_full_cnt =
298 299 300
      (512 / (align_to_x(args.filter_num, 4) / 4 * 2) > 2)
          ? (512 / (align_to_x(args.filter_num, 4) / 4 * 2) - 2)
          : 0;
301
  auto cmd = 0UL | (args.relu_enabled ? USE_RELU : 0) | USE_BIAS;
302

303 304 305
  auto deconv_param = ((args.deconv_tx_param.deconv_en) << 24) |
                      ((args.deconv_tx_param.sub_conv_num) << 16) |
                      ((args.deconv_tx_param.omit_size) << 0);
306 307 308
  (*arg).driver.image_address_phy = vaddr_to_paddr(args.image.address);
  (*arg).driver.sb_address_phy = vaddr_to_paddr(args.sb_address);
  (*arg).driver.filter_address_phy = vaddr_to_paddr(args.filter_address);
309 310
  (*arg).driver.output_address_phy = vaddr_to_paddr(args.output.address) +
                                     args.deconv_tx_param.out_addr_offset;
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
  (*arg).driver.output_height = output_height;
  (*arg).driver.output_width = output_width;
  (*arg).driver.filter_per_group = filter_per_group;
  (*arg).driver.channel_per_group = channel_per_group;
  (*arg).driver.image_amount_per_row = image_amount_per_row;
  (*arg).driver.image_one_pad_per_row = image_one_pad_per_row;
  (*arg).driver.filter_amount_all = filter_amount_all;
  (*arg).driver.output_amount_per_row = output_amount_per_row;
  (*arg).driver.image_block_amount_per_row = image_block_amount_per_row;
  (*arg).driver.filter_pad_width_mul_channel = filter_pad_width_mul_channel;
  (*arg).driver.image_amount_per_row_multi_win_first =
      image_amount_per_row_multi_win_first;
  (*arg).driver.image_amount_per_row_multi_win = image_amount_per_row_multi_win;
  (*arg).driver.image_block_num = image_block_num;
  (*arg).driver.image_block_len = image_block_len;
  (*arg).driver.image_block_len_last = image_block_len_last;
  (*arg).driver.image_win_cnt = image_win_cnt;
  (*arg).driver.image_win_cnt_last = image_win_cnt_last;
  (*arg).driver.res_row_data_align4_pad = res_row_data_align4_pad;
  (*arg).driver.prog_full_cnt = prog_full_cnt;
  (*arg).driver.post_prog_full_cnt = post_prog_full_cnt;
  (*arg).driver.fpga_bias_scale_len = fpga_bias_scale_len;
  (*arg).driver.cmd = cmd;
334
  (*arg).driver.deconv_param = deconv_param;
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
}  // expand_conv_arg()

void expand_EW_arg(EWAddArgs *arg) {
  EWAddArgs args = *arg;
  uint64_t cmd = args.relu_enabled ? USE_RELU : 0;
  uint64_t datalen = (uint64_t)args.image0.width *
                     (uint64_t)args.image0.height *
                     (uint64_t)args.image0.channels;
  uint64_t coefficient = (uint64_t)args.const0 << 32 | (uint64_t)args.const1;
  uint64_t image0_address_phy = vaddr_to_paddr(args.image0.address);
  uint64_t image1_address_phy = vaddr_to_paddr(args.image1.address);
  uint64_t output_address_phy = vaddr_to_paddr(args.output.address);

  uint64_t image_amount_per_row =
      align_to_x((uint64_t)args.image0.width * (uint64_t)args.image0.channels,
                 IMAGE_ALIGNMENT);
  uint64_t image_image_pixel = ((uint64_t)args.image0.channels << 32) |
                               ((uint64_t)args.image0.width << 16) |
                               (uint64_t)args.image0.height;

  (*arg).driver.image0_address_phy = image0_address_phy;
  (*arg).driver.image1_address_phy = image1_address_phy;
  (*arg).driver.datalen = datalen;
  (*arg).driver.image_image_pixel = image_image_pixel;
  (*arg).driver.image_amount_per_row = image_amount_per_row;
  (*arg).driver.output_address_phy = output_address_phy;
  (*arg).driver.coefficient = coefficient;
  (*arg).driver.cmd = cmd;

}  // expand_EW_arg

Z
zhangyang 已提交
366 367 368 369
void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
                    framework::Tensor *out, framework::Tensor *filter,
                    bool relu_enabled, int group_num, int stride_h,
                    int stride_w, int padding_h, int padding_w, float *bs_ptr) {
370 371
  auto input_ptr = input->data<float>();
  auto filter_ptr = filter->data<float>();
372
  auto out_ptr = out->data<float>();
373 374

  arg->group_num = (uint32_t)group_num;
375 376
  // Either group_num or split_num = 1;
  arg->split_num = group_num == 1 ? (uint32_t)get_plit_num(filter) : 1;
377 378 379
  arg->filter_num = (uint32_t)filter->dims()[0];
  arg->output.address = out_ptr;
  arg->output.scale_address = out->scale;
Z
zhangyang 已提交
380
  arg->conv_arg =
381
      (ConvArgs *)fpga_malloc(arg->split_num * sizeof(ConvArgs));  // NOLINT
382

383 384
  memset(arg->conv_arg, 0, arg->split_num * sizeof(struct ConvArgs));

385 386 387
  arg->concat_arg.image_num = arg->split_num;
  arg->concat_arg.image_out = out_ptr;
  arg->concat_arg.scale_out = out->scale;
388 389
  arg->concat_arg.height = (uint32_t)out->dims()[2];
  arg->concat_arg.width = (uint32_t)out->dims()[3];
390 391

  int n = arg->split_num;
392 393 394 395
  arg->concat_arg.images_in =
      (half **)fpga_malloc(n * sizeof(int *));  // NOLINT
  arg->concat_arg.scales_in =
      (float **)fpga_malloc(n * sizeof(float *));  // NOLINT
396
  arg->concat_arg.channel_num =
397
      (uint32_t *)fpga_malloc(n * sizeof(uint32_t));  // NOLINT
398

399 400 401
  auto channel = (int)out->dims()[1];  // NOLINT
  int filter_num_per_div = get_filter_num_per_div(filter, group_num);
  int element_num = get_aligned_filter_element_num(
402
      (int)(filter->dims()[1] * filter->dims()[2] * filter->dims()[3]));
403 404

  for (int i = 0; i < n; i++) {
Z
zhangyang 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
    arg->conv_arg[i].relu_enabled = relu_enabled;
    arg->conv_arg[i].group_num = (uint32_t)group_num;
    arg->conv_arg[i].kernel.stride_h = (uint32_t)stride_h;
    arg->conv_arg[i].kernel.stride_w = (uint32_t)stride_w;
    arg->conv_arg[i].kernel.height = (uint32_t)filter->dims()[2];
    arg->conv_arg[i].kernel.width = (uint32_t)filter->dims()[3];
    arg->conv_arg[i].image.address = input_ptr;
    arg->conv_arg[i].image.channels = (uint32_t)input->dims()[1];
    arg->conv_arg[i].image.height = (uint32_t)input->dims()[2];
    arg->conv_arg[i].image.width = (uint32_t)input->dims()[3];
    arg->conv_arg[i].image.scale_address = input->scale;
    arg->conv_arg[i].image.pad_height = (uint32_t)padding_h;
    arg->conv_arg[i].image.pad_width = (uint32_t)padding_w;
    arg->conv_arg[i].filter_scale_address = filter->scale;
    arg->conv_arg[i].filter_num = (uint32_t)(
420 421
        i == n - 1 ? channel - (n - 1) * filter_num_per_div  // NOLINT
                   : filter_num_per_div);
422

Z
zhangyang 已提交
423
    size_t filter_size =
424 425 426
        element_num *
        align_to_x(arg->conv_arg[i].filter_num, FILTER_NUM_ALIGNMENT) *
        sizeof(int8_t);
Z
zhangyang 已提交
427 428 429 430 431 432
    auto filter_head =
        &((int8_t *)filter_ptr)[i * element_num * filter_num_per_div];
    arg->conv_arg[i].filter_address = fpga_malloc(filter_size);
    memcpy(arg->conv_arg[i].filter_address, filter_head, filter_size);
    fpga_flush(arg->conv_arg[i].filter_address, filter_size);

433 434 435
    size_t bs_size = 2 *
                     align_to_x(arg->conv_arg[i].filter_num, BS_NUM_ALIGNMENT) *
                     sizeof(float);
Z
zhangyang 已提交
436 437 438 439 440
    auto bs_head = &bs_ptr[i * filter_num_per_div * 2];
    arg->conv_arg[i].sb_address = fpga_malloc(bs_size);
    memcpy(arg->conv_arg[i].sb_address, bs_head, bs_size);
    fpga_flush(arg->conv_arg[i].sb_address, bs_size);

441
    if (n > 1) {
Z
zhangyang 已提交
442
      arg->conv_arg[i].output.scale_address =
443
          (float *)fpga_malloc(2 * sizeof(float));  // NOLINT
444 445 446 447 448
      arg->conv_arg[i].output.address = fpga_malloc(
          out->dims()[2] *
          align_to_x((int)(out->dims()[3] * arg->conv_arg[i].filter_num),
                     IMAGE_ALIGNMENT) *
          sizeof(half));
449
    } else {
Z
zhangyang 已提交
450 451
      arg->conv_arg[i].output.scale_address = out->scale;
      arg->conv_arg[i].output.address = out_ptr;
452 453
    }

454
    arg->concat_arg.images_in[i] =
Z
zhangyang 已提交
455 456 457
        (half *)arg->conv_arg[i].output.address;  // NOLINT
    arg->concat_arg.scales_in[i] = arg->conv_arg[i].output.scale_address;
    arg->concat_arg.channel_num[i] = arg->conv_arg[i].filter_num;
458 459

    expand_conv_arg(&arg->conv_arg[i]);
460
  }
Z
zhangyang 已提交
461 462
  filter->reset_data_ptr(nullptr);
  fpga_free(bs_ptr);
463 464
}  // fill_split_arg

Z
zhangyang 已提交
465 466 467 468 469 470 471 472 473
void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
                     framework::Tensor *out, framework::Tensor *filter,
                     bool relu_enabled, int group_num, int stride_h,
                     int stride_w, int padding_h, int padding_w,
                     float *bs_ptr) {
  auto input_ptr = input->data<float>();
  auto filter_ptr = filter->data<float>();

  arg->group_num = (uint32_t)group_num;
474
  arg->sub_conv_num = (uint32_t)stride_h;
Z
zhangyang 已提交
475
  arg->filter_num = (uint32_t)filter->dims()[0];
476
  uint32_t sub_conv_num = arg->sub_conv_num;
477 478
  int sub_pad = deconv_filter::deconv_calc_sub_pad((int)filter->dims()[3],
                                                   padding_w, stride_w);
479
  auto sub_filter_width = (uint32_t)deconv_filter::deconv_get_sub_filter_axis(
480
      (int)filter->dims()[3], stride_w);
481

482
  auto sub_output_width = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
483
      (int)input->dims()[3], sub_pad, sub_filter_width);
484
  auto sub_output_height = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
485
      (int)input->dims()[2], sub_pad, sub_filter_width);
Z
zhangyang 已提交
486

487 488 489 490
  arg->sub_output_width = (uint32_t)sub_output_width;
  arg->sub_output_height = (uint32_t)sub_output_height;
  arg->omit_size = (uint32_t)deconv_filter::deconv_get_omit(
      stride_w, (int)filter->dims()[3], padding_w);
Z
zhangyang 已提交
491

492 493
  auto sub_channels = (int)input->dims()[1];
  uint32_t omit_size = arg->omit_size;
Z
zhangyang 已提交
494
  int real_out_width = sub_output_width * sub_conv_num - 2 * omit_size;
Z
zhangyang 已提交
495 496
  int sub_filter_num = sub_conv_num * (arg->filter_num);

497 498 499 500 501 502 503 504 505 506 507
  framework::DDim dims_out_new = framework::make_ddim(
      {1, arg->filter_num, sub_output_height * sub_conv_num, real_out_width});
  fpga::format_fp16_ofm(out, dims_out_new);
  auto out_ptr = out->data<float>();
  arg->output.address =
      (half *)out_ptr +
      omit_size * sizeof(half) *
          (align_to_x(real_out_width * arg->filter_num, IMAGE_ALIGNMENT));
  arg->output.scale_address = out->scale;

  uint32_t conv_output_size =
Z
zhangyang 已提交
508 509
      (align_to_x(sub_output_width * sub_filter_num, IMAGE_ALIGNMENT)) *
      sub_output_height;
510
  uint32_t split_num =
Z
zhangyang 已提交
511 512 513 514
      group_num == 1 ? (uint32_t)get_deconv_plit_num(filter, sub_conv_num) : 1;

  arg->split_conv_args =
      (SplitConvArgs *)fpga_malloc(sub_conv_num * sizeof(SplitConvArgs));
Z
zhangyang 已提交
515
  for (int i = 0; i < sub_conv_num; ++i) {
Z
zhangyang 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
    arg->split_conv_args[i].filter_num =
        (arg->sub_conv_num) * (arg->filter_num);
    arg->split_conv_args[i].group_num = (uint32_t)group_num;
    arg->split_conv_args[i].split_num = split_num;
    arg->split_conv_args[i].conv_arg =
        (ConvArgs *)fpga_malloc(split_num * sizeof(ConvArgs));

    arg->split_conv_args[i].concat_arg.height = sub_output_height;
    arg->split_conv_args[i].concat_arg.width = sub_output_width;
    arg->split_conv_args[i].concat_arg.image_num = split_num;
    arg->split_conv_args[i].concat_arg.images_in =
        (half **)fpga_malloc(split_num * sizeof(half *));
    arg->split_conv_args[i].concat_arg.scales_in =
        (float **)fpga_malloc(split_num * sizeof(float *));
    arg->split_conv_args[i].concat_arg.channel_num =
        (uint32_t *)fpga_malloc(split_num * sizeof(uint32_t));
  }
Z
zhangyang 已提交
533

534 535
  auto filter_num_per_div =
      (uint32_t)get_deconv_filter_num_per_div(filter, group_num, stride_w);
Z
zhangyang 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
  int element_num = get_aligned_filter_element_num(
      (int)(sub_channels * sub_filter_width * sub_filter_width));

  int chw = sub_channels * sub_filter_width * sub_filter_width;
  int division_capacity = filter::calc_division_capacity(chw);
  int num_per_div_before_alignment =
      filter::calc_num_per_div(sub_filter_num, group_num, division_capacity);
  int num_per_div_after_alignment =
      align_to_x(num_per_div_before_alignment, FILTER_NUM_ALIGNMENT);
  int div_num = (sub_filter_num + num_per_div_before_alignment - 1) /
                num_per_div_before_alignment;
  int residual = sub_filter_num % num_per_div_before_alignment;
  int num_after_alignment = num_per_div_after_alignment *
                                ((residual == 0) ? div_num : (div_num - 1)) +
                            align_to_x(residual, FILTER_NUM_ALIGNMENT);

  int filter_sub_conv_offset = element_num * num_after_alignment;
553
  uint32_t out_addr_offset = 0;
Z
zhangyang 已提交
554
  for (int i = 0; i < sub_conv_num; ++i) {
Z
zhangyang 已提交
555
    if (sub_conv_num == 1) {
Z
zhangyang 已提交
556 557
      arg->split_conv_args[i].output.address = arg->output.address;
      arg->split_conv_args[i].output.scale_address = arg->output.scale_address;
558
      out_addr_offset = 0;
Z
zhangyang 已提交
559

Z
zhangyang 已提交
560
    } else {
561 562 563 564 565 566 567
      auto ptr_output = (half *)out_ptr;
      out_addr_offset =
          sizeof(half) * (sub_conv_num - 1 - i) *
          (align_to_x(real_out_width * arg->filter_num, IMAGE_ALIGNMENT));

      arg->split_conv_args[i].output.address = (void *)(ptr_output);

568
      auto ptr_output_scale = (float *)fpga_malloc(2 * sizeof(float));
Z
zhangyang 已提交
569
      arg->split_conv_args[i].output.scale_address = ptr_output_scale;
Z
zhangyang 已提交
570 571
    }

Z
zhangyang 已提交
572 573 574 575 576 577 578 579 580 581 582
    for (int j = 0; j < split_num; ++j) {
      arg->split_conv_args[i].conv_arg[j].relu_enabled = relu_enabled;
      arg->split_conv_args[i].conv_arg[j].group_num = (uint32_t)group_num;

      arg->split_conv_args[i].conv_arg[j].kernel.width =
          (uint32_t)sub_filter_width;
      arg->split_conv_args[i].conv_arg[j].kernel.height =
          (uint32_t)sub_filter_width;
      arg->split_conv_args[i].conv_arg[j].kernel.stride_w = 1;
      arg->split_conv_args[i].conv_arg[j].kernel.stride_h = 1;

583 584 585 586 587 588 589
      arg->split_conv_args[i].conv_arg[j].deconv_tx_param.deconv_en = 1;
      arg->split_conv_args[i].conv_arg[j].deconv_tx_param.sub_conv_num =
          sub_conv_num;
      arg->split_conv_args[i].conv_arg[j].deconv_tx_param.omit_size = omit_size;
      arg->split_conv_args[i].conv_arg[j].deconv_tx_param.out_addr_offset =
          out_addr_offset;

Z
zhangyang 已提交
590 591 592 593 594 595 596 597 598 599 600 601
      arg->split_conv_args[i].conv_arg[j].image.scale_address = input->scale;
      arg->split_conv_args[i].conv_arg[j].image.channels =
          (uint32_t)sub_channels;
      arg->split_conv_args[i].conv_arg[j].image.width =
          (uint32_t)input->dims()[3];
      arg->split_conv_args[i].conv_arg[j].image.height =
          (uint32_t)input->dims()[2];
      arg->split_conv_args[i].conv_arg[j].image.pad_width = (uint32_t)sub_pad;
      arg->split_conv_args[i].conv_arg[j].image.pad_height = (uint32_t)sub_pad;
      arg->split_conv_args[i].conv_arg[j].image.address = input_ptr;

      arg->split_conv_args[i].conv_arg[j].filter_scale_address = filter->scale;
602 603 604 605
      arg->split_conv_args[i].conv_arg[j].filter_num =
          (uint32_t)(j == split_num - 1
                         ? sub_filter_num - (split_num - 1) * filter_num_per_div
                         : filter_num_per_div);
Z
zhangyang 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658

      size_t filter_size =
          element_num *
          align_to_x(arg->split_conv_args[i].conv_arg[j].filter_num,
                     FILTER_NUM_ALIGNMENT) *
          sizeof(int8_t);
      auto filter_head =
          &((int8_t *)filter_ptr)[j * element_num * filter_num_per_div +
                                  i * filter_sub_conv_offset];
      arg->split_conv_args[i].conv_arg[j].filter_address =
          fpga_malloc(filter_size);
      memcpy(arg->split_conv_args[i].conv_arg[j].filter_address, filter_head,
             filter_size);
      fpga_flush(arg->split_conv_args[i].conv_arg[j].filter_address,
                 filter_size);

      size_t bs_align_num = align_to_x(
          arg->split_conv_args[i].conv_arg[j].filter_num, BS_NUM_ALIGNMENT);
      size_t bs_size = 2 * bs_align_num * sizeof(float);
      auto bs_head = &bs_ptr[j * filter_num_per_div * 2];

      arg->split_conv_args[i].conv_arg[j].sb_address = fpga_malloc(bs_size);
      memcpy(arg->split_conv_args[i].conv_arg[j].sb_address, bs_head, bs_size);
      fpga_flush(arg->split_conv_args[i].conv_arg[j].sb_address, bs_size);

      if (split_num == 1) {
        arg->split_conv_args[i].conv_arg[j].output.address =
            arg->split_conv_args[i].output.address;
        arg->split_conv_args[i].conv_arg[j].output.scale_address =
            arg->split_conv_args[i].output.scale_address;
      } else {
        auto ptr_output = (half *)fpga_malloc(conv_output_size * sizeof(half));
        arg->split_conv_args[i].conv_arg[j].output.address =
            (void *)((half *)ptr_output);
        auto ptr_output_scale = (float *)fpga_malloc(2 * sizeof(float));
        arg->split_conv_args[i].conv_arg[j].output.scale_address =
            ptr_output_scale;
      }
      arg->split_conv_args[i].concat_arg.images_in[j] =
          (half *)arg->split_conv_args[i].conv_arg[j].output.address;  // NOLINT
      arg->split_conv_args[i].concat_arg.scales_in[j] =
          arg->split_conv_args[i].conv_arg[j].output.scale_address;
      arg->split_conv_args[i].concat_arg.channel_num[j] =
          arg->split_conv_args[i].conv_arg[j].filter_num;

      expand_conv_arg(&(arg->split_conv_args[i].conv_arg[j]));
    }

    arg->split_conv_args[i].concat_arg.image_out =
        arg->split_conv_args[i].output.address;
    arg->split_conv_args[i].concat_arg.scale_out =
        arg->split_conv_args[i].output.scale_address;
  }
659
  filter->reset_data_ptr(nullptr);
Z
zhangyang 已提交
660
  fpga_free(bs_ptr);
661 662
}  // fill_deconv_arg

H
hanbuhe 已提交
663
}  // namespace fpga
Z
zhangyang 已提交
664
}  // namespace paddle_mobile