api.cpp 33.6 KB
Newer Older
H
hanbuhe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhangyang 已提交
15 16
#include "fpga/V1/api.h"
#include "fpga/V1/bias_scale.h"
Z
zhangyang 已提交
17
#include "fpga/V1/deconv_filter.h"
Z
zhangyang 已提交
18 19
#include "fpga/V1/filter.h"
#include "fpga/V1/image.h"
Z
zhangyang 已提交
20

Z
zhangyang 已提交
21
namespace paddle_mobile {
H
hanbuhe 已提交
22 23
namespace fpga {

24 25 26
#define USE_RELU 1
#define USE_BIAS 2

Z
zhangyang 已提交
27 28
void format_image(framework::Tensor *image_tensor) {
  auto dims = image_tensor->dims();
Z
zhangyang 已提交
29
  auto channel = dims[1], height = dims[2], width = dims[3];
30
  auto data_ptr = image_tensor->data<float>();
Z
zhangyang 已提交
31
  size_t memory_size = channel * height * width * sizeof(float);
32
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
Z
zhangyang 已提交
33 34 35 36 37
  fpga_copy(new_data, data_ptr, memory_size);
  image::format_image(&new_data, channel, height, width);
  image_tensor->reset_data_ptr(new_data);
}

38
void format_fp16_ofm(framework::Tensor *ofm_tensor) {
Z
zhangyang 已提交
39
  auto dims = ofm_tensor->dims();
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(half);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(half);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
}

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
void format_fp16_ofm(framework::Tensor *ofm_tensor, framework::DDim dims) {
  // auto dims = ofm_tensor->dims();
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(half);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(half);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
}
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
void format_fp32_ofm(framework::Tensor *ofm_tensor) {
  auto dims = ofm_tensor->dims();
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(float);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(float);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
Z
zhangyang 已提交
86 87
}

Z
zhangyang 已提交
88 89 90 91
float filter_find_max(framework::Tensor *filter_tensor) {
  auto filter_ptr = filter_tensor->data<float>();
  return filter::find_max(filter_ptr, filter_tensor->numel());
}
Z
zhangyang 已提交
92 93 94

int get_plit_num(framework::Tensor *filter_tensor) {
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
95 96
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
97 98 99
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_split_num(num, div_capacity);
}
Z
zhangyang 已提交
100 101 102 103 104 105 106
int get_deconv_plit_num(framework::Tensor *filter_tensor, int stride) {
  auto dims = filter_tensor->dims();
  auto chw = dims[1] * dims[2] / stride * dims[3] / stride;
  auto num = dims[0] * stride;
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_split_num(num, div_capacity);
}
Z
zhangyang 已提交
107

108
int get_filter_num_per_div(framework::Tensor *filter_tensor, int group_num) {
Z
zhangyang 已提交
109
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
110 111
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
112 113 114 115
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
}

Z
zhangyang 已提交
116 117 118 119 120 121 122 123 124
int get_deconv_filter_num_per_div(framework::Tensor *filter_tensor,
                                  int group_num, int stride) {
  auto dims = filter_tensor->dims();
  auto chw = dims[1] * dims[2] / stride * dims[3] / stride;
  auto num = dims[0] * stride;
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
}

Z
zhangyang 已提交
125 126 127 128
int get_aligned_filter_element_num(int chw) {
  return align_to_x(chw, FILTER_ELEMENT_ALIGNMENT);
}

Z
zhangyang 已提交
129 130
void format_filter(framework::Tensor *filter_tensor, float max_value,
                   int group_num) {
131 132
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
Z
zhangyang 已提交
133
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
134
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
135
  auto data_ptr = filter_tensor->data<float>();
Z
zhangyang 已提交
136
  size_t memory_size = num * channel * height * width * sizeof(float);
137
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
Z
zhangyang 已提交
138 139 140 141 142
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_filter(&new_data, num, channel, height, width, group_num,
                        max_value);
  filter_tensor->reset_data_ptr(new_data);
}
143 144 145 146 147 148 149 150 151 152
void format_dwconv_filter(framework::Tensor *filter_tensor, float *scale_ptr) {
  auto dims = filter_tensor->dims();
  auto num = dims[0], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_dwconv_filter(&new_data, num, height, width, scale_ptr);
  filter_tensor->reset_data_ptr(new_data);
}
Z
zhangyang 已提交
153

Z
zhangyang 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166
void format_fc_filter(framework::Tensor *filter_tensor, float max_value) {
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
  auto dims = filter_tensor->dims();
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * channel * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_fc_filter(&new_data, num, channel, height, width, 1,
                           max_value);
  filter_tensor->reset_data_ptr(new_data);
}
Z
zhangyang 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
void format_deconv_filter(framework::Tensor *filter_tensor, float max_value,
                          int group_num, int stride) {
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
  auto dims = filter_tensor->dims();
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * channel * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  memcpy(new_data, data_ptr, memory_size);

  int hw = height * width;
  deconv_filter::deconv_NC_convert(&new_data, num, channel, hw);

  num = dims[1];
  channel = dims[0];
  deconv_filter::deconv_format_filter(
      &new_data, (int)num, (int)channel,          // NOLINT
      (int)height,                                // NOLINT
      (int)width, group_num, max_value, stride);  // NOLINT

  framework::DDim dims_new =
      framework::make_ddim({num, channel, height, width});
  filter_tensor->Resize(dims_new);
  filter_tensor->reset_data_ptr(new_data);
}
Z
zhangyang 已提交
193

Z
zhangyang 已提交
194 195 196 197 198
void format_bias_scale_array(float **bias_scale_array,
                             int element_num_per_division, int num) {
  bias_scale::format_bias_scale_array(bias_scale_array,
                                      element_num_per_division, num);
}
199 200 201
void format_bias_array(float **bias_array, int num) {
  bias_scale::format_bias_array(bias_array, num);
}
Z
zhangyang 已提交
202

Z
zhangyang 已提交
203 204 205 206 207 208 209 210 211
void format_concat_output(framework::Tensor *out, int height, int width,
                          int image_num, uint32_t *channel_num) {
  int sum_channel = 0, sum_cw = 0;
  for (int i = 0; i < image_num; i++) {
    sum_channel += channel_num[i];
  }

  sum_cw = align_to_x(width * sum_channel, IMAGE_ALIGNMENT);
  auto data_ptr = fpga_malloc(height * sum_cw * sizeof(half));
212
  auto ddim = framework::make_ddim({1, sum_channel, height, width});
Z
zhangyang 已提交
213 214 215
  out->Resize(ddim);
  out->reset_data_ptr(data_ptr);
}
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
void format_conv_data(framework::Tensor *filter_tensor,
                      framework::Tensor *ofm_tensor, float **bs_ptr,
                      int group) {
  float max_value = fpga::filter_find_max(filter_tensor);
  fpga::format_filter(filter_tensor, max_value, group);
  int element_num_per_div = fpga::get_filter_num_per_div(filter_tensor, group);
  fpga::format_bias_scale_array(bs_ptr, element_num_per_div,
                                ofm_tensor->dims()[1]);
  fpga::format_fp16_ofm(ofm_tensor);
}
void format_deconv_data(framework::Tensor *filter_tensor,
                        framework::Tensor *ofm_tensor, float **bs_ptr,
                        int group, int sub_conv_n) {
  int channel = ofm_tensor->dims()[1];
  float max_value = filter_find_max(filter_tensor);
  format_deconv_filter(filter_tensor, max_value, group, sub_conv_n);
  int element_num_per_div =
      get_deconv_filter_num_per_div(filter_tensor, group, sub_conv_n);
  format_bias_scale_array(bs_ptr, element_num_per_div, channel * sub_conv_n);
  format_fp16_ofm(ofm_tensor);
}
Z
zhangyang 已提交
237

238 239 240 241 242 243 244 245
void format_dwconv_data(framework::Tensor *filter_tensor,
                        framework::Tensor *ofm_tensor, float *scale_ptr,
                        float **bias_ptr) {
  auto channel = ofm_tensor->dims()[1];
  format_dwconv_filter(filter_tensor, scale_ptr);
  format_bias_array(bias_ptr, channel);
  format_fp16_ofm(ofm_tensor);
}
246 247
void expand_conv_arg(ConvArgs *arg) {
  ConvArgs args = *arg;
248 249

  auto fpga_bias_scale_len =
250 251
      align_to_x(args.filter_num / args.group_num, 8) * args.group_num;

252
  auto output_height =
253 254 255
      (args.image.height + args.image.pad_height * 2 - args.kernel.height) /
          args.kernel.stride_h +
      1;
256
  auto output_width =
257 258 259
      (args.image.width + args.image.pad_width * 2 - args.kernel.width) /
          args.kernel.stride_w +
      1;
260 261 262 263 264 265 266 267 268 269

  auto filter_per_group = args.filter_num / args.group_num;
  auto channel_per_group = args.image.channels / args.group_num;

  auto image_row_count = args.image.width * args.image.channels;
  auto image_amount_per_row = align_to_x(image_row_count, IMAGE_ALIGNMENT);
  auto image_one_pad_per_row = align_to_x(image_row_count, IMAGE_ALIGNMENT) +
                               args.image.pad_width * args.image.channels;
  auto filter_amount_all =
      align_to_x(args.kernel.height * args.kernel.width * channel_per_group,
270 271
                 FILTER_ELEMENT_ALIGNMENT);

272 273 274
  auto output_amount_per_row = align_to_x(
      (output_width - (args.deconv_tx_param.omit_size) * 2) * args.filter_num,
      IMAGE_ALIGNMENT);
275 276 277 278

  // find the opt partition strategy
  uint64_t res_win;
  uint64_t res_fit = 0;
279
  for (res_win = 1; res_win <= output_width; res_win++) {
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    if ((align_to_x(
             (args.image.channels *
              (args.kernel.width + (res_win - 1) * args.kernel.stride_w)),
             IMAGE_ALIGNMENT) /
             16 +
         1) *
            args.kernel.height >
        2048) {
      break;
    }
  }

  if (res_win != output_width) {
    res_win -= 1;
  }

  if (((res_win % 2) != 0) && (res_win != 1)) {
    res_win = res_win - 1;
  }
  res_fit = res_win;

301 302 303
  auto block_num = (output_width + res_fit - 1) / res_fit;
  auto block_len = res_fit;
  auto block_last = output_width - res_fit * (block_num - 1);
304

305 306
  auto res_amount_per_row =
      (output_width - (args.deconv_tx_param.omit_size) * 2) * args.filter_num;
307
  auto res_amount_per_row_pad = output_amount_per_row - res_amount_per_row;
308

309 310 311
  auto image_block_amount_per_row =
      args.kernel.stride_w * res_fit * args.image.channels;
  auto filter_pad_width_mul_channel =
312
      args.image.pad_width * args.image.channels;
313
  auto image_amount_per_row_multi_win_first =
314
      image_amount_per_row * (4 * args.kernel.stride_h - args.image.pad_height);
315
  auto image_amount_per_row_multi_win =
316 317
      image_amount_per_row * (4 * args.kernel.stride_h);

318 319
  auto image_block_num = block_num;
  auto image_block_len =
320 321 322 323 324
      align_to_x((args.image.channels *
                  (args.kernel.width + (block_len - 1) * args.kernel.stride_w)),
                 IMAGE_ALIGNMENT) /
          16 +
      1;
325
  auto image_block_len_last =
326 327 328 329 330 331
      align_to_x(
          (args.image.channels *
           (args.kernel.width + (block_last - 1) * args.kernel.stride_w)),
          IMAGE_ALIGNMENT) /
          16 +
      1;
332 333 334 335
  auto image_win_cnt = block_len;
  auto image_win_cnt_last = block_last;
  auto res_row_data_align4_pad = res_amount_per_row_pad / 8;
  auto prog_full_cnt = 2048 / (filter_amount_all / 16 * 2) - 1;
336 337 338
  if (prog_full_cnt == 1023) {
    prog_full_cnt--;
  }
339
  auto post_prog_full_cnt =
340 341 342
      (512 / (align_to_x(args.filter_num, 4) / 4 * 2) > 2)
          ? (512 / (align_to_x(args.filter_num, 4) / 4 * 2) - 2)
          : 0;
343
  auto cmd = 0UL | (args.relu_enabled ? USE_RELU : 0) | USE_BIAS;
344

345 346 347
  auto deconv_param = ((args.deconv_tx_param.deconv_en) << 24) |
                      ((args.deconv_tx_param.sub_conv_num) << 16) |
                      ((args.deconv_tx_param.omit_size) << 0);
348 349 350
  (*arg).driver.image_address_phy = vaddr_to_paddr(args.image.address);
  (*arg).driver.sb_address_phy = vaddr_to_paddr(args.sb_address);
  (*arg).driver.filter_address_phy = vaddr_to_paddr(args.filter_address);
351 352
  (*arg).driver.output_address_phy = vaddr_to_paddr(args.output.address) +
                                     args.deconv_tx_param.out_addr_offset;
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
  (*arg).driver.output_height = output_height;
  (*arg).driver.output_width = output_width;
  (*arg).driver.filter_per_group = filter_per_group;
  (*arg).driver.channel_per_group = channel_per_group;
  (*arg).driver.image_amount_per_row = image_amount_per_row;
  (*arg).driver.image_one_pad_per_row = image_one_pad_per_row;
  (*arg).driver.filter_amount_all = filter_amount_all;
  (*arg).driver.output_amount_per_row = output_amount_per_row;
  (*arg).driver.image_block_amount_per_row = image_block_amount_per_row;
  (*arg).driver.filter_pad_width_mul_channel = filter_pad_width_mul_channel;
  (*arg).driver.image_amount_per_row_multi_win_first =
      image_amount_per_row_multi_win_first;
  (*arg).driver.image_amount_per_row_multi_win = image_amount_per_row_multi_win;
  (*arg).driver.image_block_num = image_block_num;
  (*arg).driver.image_block_len = image_block_len;
  (*arg).driver.image_block_len_last = image_block_len_last;
  (*arg).driver.image_win_cnt = image_win_cnt;
  (*arg).driver.image_win_cnt_last = image_win_cnt_last;
  (*arg).driver.res_row_data_align4_pad = res_row_data_align4_pad;
  (*arg).driver.prog_full_cnt = prog_full_cnt;
  (*arg).driver.post_prog_full_cnt = post_prog_full_cnt;
  (*arg).driver.fpga_bias_scale_len = fpga_bias_scale_len;
  (*arg).driver.cmd = cmd;
376
  (*arg).driver.deconv_param = deconv_param;
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
}  // expand_conv_arg()

void expand_EW_arg(EWAddArgs *arg) {
  EWAddArgs args = *arg;
  uint64_t cmd = args.relu_enabled ? USE_RELU : 0;
  uint64_t datalen = (uint64_t)args.image0.width *
                     (uint64_t)args.image0.height *
                     (uint64_t)args.image0.channels;
  uint64_t coefficient = (uint64_t)args.const0 << 32 | (uint64_t)args.const1;
  uint64_t image0_address_phy = vaddr_to_paddr(args.image0.address);
  uint64_t image1_address_phy = vaddr_to_paddr(args.image1.address);
  uint64_t output_address_phy = vaddr_to_paddr(args.output.address);

  uint64_t image_amount_per_row =
      align_to_x((uint64_t)args.image0.width * (uint64_t)args.image0.channels,
                 IMAGE_ALIGNMENT);
  uint64_t image_image_pixel = ((uint64_t)args.image0.channels << 32) |
                               ((uint64_t)args.image0.width << 16) |
                               (uint64_t)args.image0.height;

  (*arg).driver.image0_address_phy = image0_address_phy;
  (*arg).driver.image1_address_phy = image1_address_phy;
  (*arg).driver.datalen = datalen;
  (*arg).driver.image_image_pixel = image_image_pixel;
  (*arg).driver.image_amount_per_row = image_amount_per_row;
  (*arg).driver.output_address_phy = output_address_phy;
  (*arg).driver.coefficient = coefficient;
  (*arg).driver.cmd = cmd;
}  // expand_EW_arg

Z
zhangyang 已提交
407 408 409 410
void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
                    framework::Tensor *out, framework::Tensor *filter,
                    bool relu_enabled, int group_num, int stride_h,
                    int stride_w, int padding_h, int padding_w, float *bs_ptr) {
411 412
  auto input_ptr = input->data<float>();
  auto filter_ptr = filter->data<float>();
413
  auto out_ptr = out->data<float>();
Z
zhangyang 已提交
414
  auto deleter = [](void *p) { fpga_free(p); };
415 416

  arg->group_num = (uint32_t)group_num;
417 418
  // Either group_num or split_num = 1;
  arg->split_num = group_num == 1 ? (uint32_t)get_plit_num(filter) : 1;
419 420 421
  arg->filter_num = (uint32_t)filter->dims()[0];
  arg->output.address = out_ptr;
  arg->output.scale_address = out->scale;
Z
zhangyang 已提交
422
  arg->conv_arg =
423
      (ConvArgs *)fpga_malloc(arg->split_num * sizeof(ConvArgs));  // NOLINT
424

Z
zhangyang 已提交
425 426
  arg->shared_conv_arg = std::shared_ptr<ConvArgs>(arg->conv_arg, deleter);

427 428
  memset(arg->conv_arg, 0, arg->split_num * sizeof(struct ConvArgs));

429 430 431
  arg->concat_arg.image_num = arg->split_num;
  arg->concat_arg.image_out = out_ptr;
  arg->concat_arg.scale_out = out->scale;
432 433
  arg->concat_arg.height = (uint32_t)out->dims()[2];
  arg->concat_arg.width = (uint32_t)out->dims()[3];
434 435

  int n = arg->split_num;
436
  arg->concat_arg.images_in =
Z
zhangyang 已提交
437
      static_cast<int16_t **>(fpga_malloc(n * sizeof(int *)));
438
  arg->concat_arg.scales_in =
Z
zhangyang 已提交
439
      static_cast<float **>(fpga_malloc(n * sizeof(float *)));
440
  arg->concat_arg.channel_num =
Z
zhangyang 已提交
441 442 443 444 445 446 447
      static_cast<uint32_t *>(fpga_malloc(n * sizeof(uint32_t)));
  arg->vector_concat_space.push_back(std::shared_ptr<char>(
      reinterpret_cast<char *>(arg->concat_arg.images_in), deleter));
  arg->vector_concat_space.push_back(std::shared_ptr<char>(
      reinterpret_cast<char *>(arg->concat_arg.scales_in), deleter));
  arg->vector_concat_space.push_back(std::shared_ptr<char>(
      reinterpret_cast<char *>(arg->concat_arg.channel_num), deleter));
448

449 450 451
  auto channel = (int)out->dims()[1];  // NOLINT
  int filter_num_per_div = get_filter_num_per_div(filter, group_num);
  int element_num = get_aligned_filter_element_num(
452 453
      (int)(filter->dims()[1] * filter->dims()[2] *  // NOLINT
            filter->dims()[3]));
454 455

  for (int i = 0; i < n; i++) {
Z
zhangyang 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
    arg->conv_arg[i].relu_enabled = relu_enabled;
    arg->conv_arg[i].group_num = (uint32_t)group_num;
    arg->conv_arg[i].kernel.stride_h = (uint32_t)stride_h;
    arg->conv_arg[i].kernel.stride_w = (uint32_t)stride_w;
    arg->conv_arg[i].kernel.height = (uint32_t)filter->dims()[2];
    arg->conv_arg[i].kernel.width = (uint32_t)filter->dims()[3];
    arg->conv_arg[i].image.address = input_ptr;
    arg->conv_arg[i].image.channels = (uint32_t)input->dims()[1];
    arg->conv_arg[i].image.height = (uint32_t)input->dims()[2];
    arg->conv_arg[i].image.width = (uint32_t)input->dims()[3];
    arg->conv_arg[i].image.scale_address = input->scale;
    arg->conv_arg[i].image.pad_height = (uint32_t)padding_h;
    arg->conv_arg[i].image.pad_width = (uint32_t)padding_w;
    arg->conv_arg[i].filter_scale_address = filter->scale;
    arg->conv_arg[i].filter_num = (uint32_t)(
471 472
        i == n - 1 ? channel - (n - 1) * filter_num_per_div  // NOLINT
                   : filter_num_per_div);
473

Z
zhangyang 已提交
474
    size_t filter_size =
475 476 477
        element_num *
        align_to_x(arg->conv_arg[i].filter_num, FILTER_NUM_ALIGNMENT) *
        sizeof(int8_t);
478 479
    auto filter_head = &(
        (int8_t *)filter_ptr)[i * element_num * filter_num_per_div];  // NOLINT
Z
zhangyang 已提交
480
    arg->conv_arg[i].filter_address = fpga_malloc(filter_size);
Z
zhangyang 已提交
481 482
    arg->vector_conv_space.push_back(std::shared_ptr<char>(
        reinterpret_cast<char *>(arg->conv_arg[i].filter_address), deleter));
Z
zhangyang 已提交
483 484 485
    memcpy(arg->conv_arg[i].filter_address, filter_head, filter_size);
    fpga_flush(arg->conv_arg[i].filter_address, filter_size);

486 487 488
    size_t bs_size = 2 *
                     align_to_x(arg->conv_arg[i].filter_num, BS_NUM_ALIGNMENT) *
                     sizeof(float);
Z
zhangyang 已提交
489 490
    auto bs_head = &bs_ptr[i * filter_num_per_div * 2];
    arg->conv_arg[i].sb_address = fpga_malloc(bs_size);
Z
zhangyang 已提交
491 492
    arg->vector_conv_space.push_back(std::shared_ptr<char>(
        reinterpret_cast<char *>(arg->conv_arg[i].sb_address), deleter));
Z
zhangyang 已提交
493 494 495
    memcpy(arg->conv_arg[i].sb_address, bs_head, bs_size);
    fpga_flush(arg->conv_arg[i].sb_address, bs_size);

496
    if (n > 1) {
Z
zhangyang 已提交
497
      arg->conv_arg[i].output.scale_address =
Z
zhangyang 已提交
498
          static_cast<float *>(fpga_malloc(2 * sizeof(float)));
499 500 501 502 503 504
      arg->conv_arg[i].output.address =
          fpga_malloc(out->dims()[2] *
                      align_to_x((int)(out->dims()[3] *  // NOLINT
                                       arg->conv_arg[i].filter_num),
                                 IMAGE_ALIGNMENT) *
                      sizeof(half));
Z
zhangyang 已提交
505 506 507 508 509
      arg->vector_conv_space.push_back(std::shared_ptr<char>(
          reinterpret_cast<char *>(arg->conv_arg[i].output.scale_address),
          deleter));
      arg->vector_conv_space.push_back(std::shared_ptr<char>(
          reinterpret_cast<char *>(arg->conv_arg[i].output.address), deleter));
510
    } else {
Z
zhangyang 已提交
511 512
      arg->conv_arg[i].output.scale_address = out->scale;
      arg->conv_arg[i].output.address = out_ptr;
513 514
    }

515
    arg->concat_arg.images_in[i] =
Z
zhangyang 已提交
516 517 518
        (half *)arg->conv_arg[i].output.address;  // NOLINT
    arg->concat_arg.scales_in[i] = arg->conv_arg[i].output.scale_address;
    arg->concat_arg.channel_num[i] = arg->conv_arg[i].filter_num;
519 520

    expand_conv_arg(&arg->conv_arg[i]);
521
  }
Z
zhangyang 已提交
522 523
  filter->reset_data_ptr(nullptr);
  fpga_free(bs_ptr);
524 525
}  // fill_split_arg

Z
zhangyang 已提交
526 527 528 529 530 531 532
void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
                     framework::Tensor *out, framework::Tensor *filter,
                     bool relu_enabled, int group_num, int stride_h,
                     int stride_w, int padding_h, int padding_w,
                     float *bs_ptr) {
  auto input_ptr = input->data<float>();
  auto filter_ptr = filter->data<float>();
Z
zhangyang 已提交
533
  auto deleter = [](void *p) { fpga_free(p); };
Z
zhangyang 已提交
534 535

  arg->group_num = (uint32_t)group_num;
536
  arg->sub_conv_num = (uint32_t)stride_h;
Z
zhangyang 已提交
537
  arg->filter_num = (uint32_t)filter->dims()[0];
538
  uint32_t sub_conv_num = arg->sub_conv_num;
539 540 541
  int sub_pad =
      deconv_filter::deconv_calc_sub_pad((int)filter->dims()[3],  // NOLINT
                                         padding_w, stride_w);
542
  auto sub_filter_width = (uint32_t)deconv_filter::deconv_get_sub_filter_axis(
543
      (int)filter->dims()[3], stride_w);  // NOLINT
544

545
  auto sub_output_width = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
546
      (int)input->dims()[3], sub_pad, sub_filter_width);  // NOLINT
547
  auto sub_output_height = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
548
      (int)input->dims()[2], sub_pad, sub_filter_width);  // NOLINT
Z
zhangyang 已提交
549

550 551 552
  arg->sub_output_width = (uint32_t)sub_output_width;
  arg->sub_output_height = (uint32_t)sub_output_height;
  arg->omit_size = (uint32_t)deconv_filter::deconv_get_omit(
553
      stride_w, (int)filter->dims()[3], padding_w);  // NOLINT
Z
zhangyang 已提交
554

555
  auto sub_channels = (int)input->dims()[1];  // NOLINT
556
  uint32_t omit_size = arg->omit_size;
Z
zhangyang 已提交
557
  int real_out_width = sub_output_width * sub_conv_num - 2 * omit_size;
Z
zhangyang 已提交
558 559
  int sub_filter_num = sub_conv_num * (arg->filter_num);

560 561 562 563 564
  framework::DDim dims_out_new = framework::make_ddim(
      {1, arg->filter_num, sub_output_height * sub_conv_num, real_out_width});
  fpga::format_fp16_ofm(out, dims_out_new);
  auto out_ptr = out->data<float>();
  arg->output.address =
565
      (half *)out_ptr +  // NOLINT
566 567 568 569 570
      omit_size * sizeof(half) *
          (align_to_x(real_out_width * arg->filter_num, IMAGE_ALIGNMENT));
  arg->output.scale_address = out->scale;

  uint32_t conv_output_size =
Z
zhangyang 已提交
571 572
      (align_to_x(sub_output_width * sub_filter_num, IMAGE_ALIGNMENT)) *
      sub_output_height;
573
  uint32_t split_num =
Z
zhangyang 已提交
574 575
      group_num == 1 ? (uint32_t)get_deconv_plit_num(filter, sub_conv_num) : 1;

Z
zhangyang 已提交
576
  for (int i = 0; i < sub_conv_num; ++i) {
Z
zhangyang 已提交
577 578
    arg->split_conv_args.push_back(std::make_shared<SplitConvArgs>());
    arg->split_conv_args[i]->filter_num =
Z
zhangyang 已提交
579
        (arg->sub_conv_num) * (arg->filter_num);
Z
zhangyang 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
    arg->split_conv_args[i]->group_num = (uint32_t)group_num;
    arg->split_conv_args[i]->split_num = split_num;
    arg->split_conv_args[i]->concat_arg.height = sub_output_height;
    arg->split_conv_args[i]->concat_arg.width = sub_output_width;
    arg->split_conv_args[i]->concat_arg.image_num = split_num;

    arg->split_conv_args[i]->conv_arg =
        static_cast<ConvArgs *>(fpga_malloc(split_num * sizeof(ConvArgs)));
    arg->split_conv_args[i]->concat_arg.images_in =
        static_cast<int16_t **>(fpga_malloc(split_num * sizeof(int16_t *)));
    arg->split_conv_args[i]->concat_arg.scales_in =
        static_cast<float **>(fpga_malloc(split_num * sizeof(float *)));
    arg->split_conv_args[i]->concat_arg.channel_num =
        static_cast<uint32_t *>(fpga_malloc(split_num * sizeof(uint32_t)));
    arg->split_conv_args[i]->shared_conv_arg =
        std::shared_ptr<ConvArgs>(arg->split_conv_args[i]->conv_arg, deleter);
    arg->split_conv_args[i]->vector_concat_space.push_back(
        std::shared_ptr<char>(
            reinterpret_cast<char *>(
                arg->split_conv_args[i]->concat_arg.images_in),
            deleter));
    arg->split_conv_args[i]->vector_concat_space.push_back(
        std::shared_ptr<char>(
            reinterpret_cast<char *>(
                arg->split_conv_args[i]->concat_arg.scales_in),
            deleter));
    arg->split_conv_args[i]->vector_concat_space.push_back(
        std::shared_ptr<char>(
            reinterpret_cast<char *>(
                arg->split_conv_args[i]->concat_arg.channel_num),
            deleter));
Z
zhangyang 已提交
611
  }
Z
zhangyang 已提交
612

613 614
  auto filter_num_per_div =
      (uint32_t)get_deconv_filter_num_per_div(filter, group_num, stride_w);
Z
zhangyang 已提交
615
  int element_num = get_aligned_filter_element_num(
616
      (int)(sub_channels * sub_filter_width * sub_filter_width));  // NOLINT
Z
zhangyang 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631

  int chw = sub_channels * sub_filter_width * sub_filter_width;
  int division_capacity = filter::calc_division_capacity(chw);
  int num_per_div_before_alignment =
      filter::calc_num_per_div(sub_filter_num, group_num, division_capacity);
  int num_per_div_after_alignment =
      align_to_x(num_per_div_before_alignment, FILTER_NUM_ALIGNMENT);
  int div_num = (sub_filter_num + num_per_div_before_alignment - 1) /
                num_per_div_before_alignment;
  int residual = sub_filter_num % num_per_div_before_alignment;
  int num_after_alignment = num_per_div_after_alignment *
                                ((residual == 0) ? div_num : (div_num - 1)) +
                            align_to_x(residual, FILTER_NUM_ALIGNMENT);

  int filter_sub_conv_offset = element_num * num_after_alignment;
632
  uint32_t out_addr_offset = 0;
Z
zhangyang 已提交
633
  for (int i = 0; i < sub_conv_num; ++i) {
Z
zhangyang 已提交
634
    if (sub_conv_num == 1) {
Z
zhangyang 已提交
635 636
      arg->split_conv_args[i]->output.address = arg->output.address;
      arg->split_conv_args[i]->output.scale_address = arg->output.scale_address;
637
      out_addr_offset = 0;
Z
zhangyang 已提交
638

Z
zhangyang 已提交
639
    } else {
640
      out_addr_offset =
Z
zhangyang 已提交
641
          sizeof(int16_t) * (sub_conv_num - 1 - i) *
642 643
          (align_to_x(real_out_width * arg->filter_num, IMAGE_ALIGNMENT));

Z
zhangyang 已提交
644 645 646 647 648 649 650 651
      arg->split_conv_args[i]->output.address = out_ptr;
      arg->split_conv_args[i]->output.scale_address =
          static_cast<float *>(fpga_malloc(2 * sizeof(float)));
      arg->split_conv_args[i]->vector_conv_space.push_back(
          std::shared_ptr<char>(
              reinterpret_cast<char *>(
                  arg->split_conv_args[i]->output.scale_address),
              deleter));
Z
zhangyang 已提交
652 653
    }

Z
zhangyang 已提交
654
    for (int j = 0; j < split_num; ++j) {
Z
zhangyang 已提交
655 656
      arg->split_conv_args[i]->conv_arg[j].relu_enabled = relu_enabled;
      arg->split_conv_args[i]->conv_arg[j].group_num = (uint32_t)group_num;
Z
zhangyang 已提交
657

Z
zhangyang 已提交
658
      arg->split_conv_args[i]->conv_arg[j].kernel.width =
Z
zhangyang 已提交
659
          (uint32_t)sub_filter_width;
Z
zhangyang 已提交
660
      arg->split_conv_args[i]->conv_arg[j].kernel.height =
Z
zhangyang 已提交
661
          (uint32_t)sub_filter_width;
Z
zhangyang 已提交
662 663
      arg->split_conv_args[i]->conv_arg[j].kernel.stride_w = 1;
      arg->split_conv_args[i]->conv_arg[j].kernel.stride_h = 1;
Z
zhangyang 已提交
664

Z
zhangyang 已提交
665 666
      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.deconv_en = 1;
      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.sub_conv_num =
667
          sub_conv_num;
Z
zhangyang 已提交
668 669 670
      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.omit_size =
          omit_size;
      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.out_addr_offset =
671 672
          out_addr_offset;

Z
zhangyang 已提交
673 674
      arg->split_conv_args[i]->conv_arg[j].image.scale_address = input->scale;
      arg->split_conv_args[i]->conv_arg[j].image.channels =
Z
zhangyang 已提交
675
          (uint32_t)sub_channels;
Z
zhangyang 已提交
676
      arg->split_conv_args[i]->conv_arg[j].image.width =
Z
zhangyang 已提交
677
          (uint32_t)input->dims()[3];
Z
zhangyang 已提交
678
      arg->split_conv_args[i]->conv_arg[j].image.height =
Z
zhangyang 已提交
679
          (uint32_t)input->dims()[2];
Z
zhangyang 已提交
680 681 682
      arg->split_conv_args[i]->conv_arg[j].image.pad_width = (uint32_t)sub_pad;
      arg->split_conv_args[i]->conv_arg[j].image.pad_height = (uint32_t)sub_pad;
      arg->split_conv_args[i]->conv_arg[j].image.address = input_ptr;
Z
zhangyang 已提交
683

Z
zhangyang 已提交
684 685
      arg->split_conv_args[i]->conv_arg[j].filter_scale_address = filter->scale;
      arg->split_conv_args[i]->conv_arg[j].filter_num =
686 687 688
          (uint32_t)(j == split_num - 1
                         ? sub_filter_num - (split_num - 1) * filter_num_per_div
                         : filter_num_per_div);
Z
zhangyang 已提交
689 690 691

      size_t filter_size =
          element_num *
Z
zhangyang 已提交
692
          align_to_x(arg->split_conv_args[i]->conv_arg[j].filter_num,
Z
zhangyang 已提交
693 694
                     FILTER_NUM_ALIGNMENT) *
          sizeof(int8_t);
695 696 697
      auto filter_head = &((
          int8_t *)filter_ptr)[j * element_num * filter_num_per_div +  // NOLINT
                               i * filter_sub_conv_offset];
Z
zhangyang 已提交
698
      arg->split_conv_args[i]->conv_arg[j].filter_address =
Z
zhangyang 已提交
699
          fpga_malloc(filter_size);
Z
zhangyang 已提交
700 701 702 703 704 705 706
      arg->split_conv_args[i]->vector_conv_space.push_back(
          std::shared_ptr<char>(
              reinterpret_cast<char *>(
                  arg->split_conv_args[i]->conv_arg[j].filter_address),
              deleter));

      memcpy(arg->split_conv_args[i]->conv_arg[j].filter_address, filter_head,
Z
zhangyang 已提交
707
             filter_size);
Z
zhangyang 已提交
708
      fpga_flush(arg->split_conv_args[i]->conv_arg[j].filter_address,
Z
zhangyang 已提交
709 710 711
                 filter_size);

      size_t bs_align_num = align_to_x(
Z
zhangyang 已提交
712
          arg->split_conv_args[i]->conv_arg[j].filter_num, BS_NUM_ALIGNMENT);
Z
zhangyang 已提交
713 714 715
      size_t bs_size = 2 * bs_align_num * sizeof(float);
      auto bs_head = &bs_ptr[j * filter_num_per_div * 2];

Z
zhangyang 已提交
716 717 718 719 720 721 722 723 724
      arg->split_conv_args[i]->conv_arg[j].sb_address = fpga_malloc(bs_size);
      arg->split_conv_args[i]->vector_conv_space.push_back(
          std::shared_ptr<char>(
              reinterpret_cast<char *>(
                  arg->split_conv_args[i]->conv_arg[j].sb_address),
              deleter));

      memcpy(arg->split_conv_args[i]->conv_arg[j].sb_address, bs_head, bs_size);
      fpga_flush(arg->split_conv_args[i]->conv_arg[j].sb_address, bs_size);
Z
zhangyang 已提交
725 726

      if (split_num == 1) {
Z
zhangyang 已提交
727 728 729 730
        arg->split_conv_args[i]->conv_arg[j].output.address =
            arg->split_conv_args[i]->output.address;
        arg->split_conv_args[i]->conv_arg[j].output.scale_address =
            arg->split_conv_args[i]->output.scale_address;
Z
zhangyang 已提交
731
      } else {
Z
zhangyang 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745
        arg->split_conv_args[i]->conv_arg[j].output.address =
            fpga_malloc(conv_output_size * sizeof(int16_t));
        arg->split_conv_args[i]->conv_arg[j].output.scale_address =
            static_cast<float *>(fpga_malloc(2 * sizeof(float)));
        arg->split_conv_args[i]->vector_conv_space.push_back(
            std::shared_ptr<char>(
                reinterpret_cast<char *>(
                    arg->split_conv_args[i]->conv_arg[j].output.address),
                deleter));
        arg->split_conv_args[i]->vector_conv_space.push_back(
            std::shared_ptr<char>(
                reinterpret_cast<char *>(
                    arg->split_conv_args[i]->conv_arg[j].output.scale_address),
                deleter));
Z
zhangyang 已提交
746
      }
Z
zhangyang 已提交
747 748 749 750 751 752 753 754
      arg->split_conv_args[i]->concat_arg.images_in[j] = static_cast<int16_t *>(
          arg->split_conv_args[i]->conv_arg[j].output.address);
      arg->split_conv_args[i]->concat_arg.scales_in[j] =
          arg->split_conv_args[i]->conv_arg[j].output.scale_address;
      arg->split_conv_args[i]->concat_arg.channel_num[j] =
          arg->split_conv_args[i]->conv_arg[j].filter_num;

      expand_conv_arg(&(arg->split_conv_args[i]->conv_arg[j]));
Z
zhangyang 已提交
755 756
    }

Z
zhangyang 已提交
757 758 759 760
    arg->split_conv_args[i]->concat_arg.image_out =
        arg->split_conv_args[i]->output.address;
    arg->split_conv_args[i]->concat_arg.scale_out =
        arg->split_conv_args[i]->output.scale_address;
Z
zhangyang 已提交
761
  }
762
  filter->reset_data_ptr(nullptr);
Z
zhangyang 已提交
763
  fpga_free(bs_ptr);
764 765
}  // fill_deconv_arg

766 767 768 769 770 771 772 773 774 775
void fill_dwconv_arg(struct DWconvArgs *arg, framework::Tensor *input,
                     framework::Tensor *out, framework::Tensor *filter,
                     bool relu_enabled, int stride_h, int stride_w,
                     int padding_h, int padding_w, float *bias_ptr) {
  auto filter_ptr = filter->data<float>();
  auto input_ptr = input->data<float>();
  auto output_ptr = out->mutable_data<float>();
  arg->relu_enabled = relu_enabled;
  arg->bias_address = bias_ptr;
  arg->filter_address = filter_ptr;
Z
zhangyang 已提交
776 777 778 779
  arg->kernel.height = (uint32_t)filter->dims()[2];
  arg->kernel.width = (uint32_t)filter->dims()[3];
  arg->kernel.stride_h = (uint32_t)stride_h;
  arg->kernel.stride_w = (uint32_t)stride_w;
780 781 782 783
  arg->image.address = input_ptr;
  arg->image.channels = (uint32_t)input->dims()[1];
  arg->image.height = (uint32_t)input->dims()[2];
  arg->image.width = (uint32_t)input->dims()[3];
Z
zhangyang 已提交
784 785
  arg->image.pad_height = (uint32_t)padding_h;
  arg->image.pad_width = (uint32_t)padding_w;
786 787 788 789 790
  arg->image.scale_address = input->scale;
  arg->output.address = output_ptr;
  arg->output.scale_address = out->scale;
}  // end dwconv arg fill

H
hanbuhe 已提交
791
}  // namespace fpga
Z
zhangyang 已提交
792
}  // namespace paddle_mobile