api.cpp 43.1 KB
Newer Older
H
hanbuhe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhangyang 已提交
15
#include "fpga/V1/api.h"
J
jameswu2014 已提交
16
#include <memory>
Z
zhangyang 已提交
17
#include "fpga/V1/bias_scale.h"
Z
zhangyang 已提交
18
#include "fpga/V1/deconv_filter.h"
Z
zhangyang 已提交
19 20
#include "fpga/V1/filter.h"
#include "fpga/V1/image.h"
Z
zhangyang 已提交
21

Z
zhangyang 已提交
22
namespace paddle_mobile {
H
hanbuhe 已提交
23 24
namespace fpga {

25 26 27
#define USE_RELU 1
#define USE_BIAS 2

Z
zhangyang 已提交
28 29
void format_image(framework::Tensor *image_tensor) {
  auto dims = image_tensor->dims();
Z
zhangyang 已提交
30
  auto channel = dims[1], height = dims[2], width = dims[3];
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
  std::type_index input_type = image_tensor->type();
  if (input_type == typeid(float)) {
    auto data_ptr = image_tensor->data<float>();
    auto external_ptr = reinterpret_cast<float *>(image_tensor->external_data);
    float *p_data = external_ptr == nullptr ? data_ptr : external_ptr;

    image::format_image<float>(&p_data, channel, height, width);
    if (p_data != data_ptr && external_ptr == nullptr) {
      image_tensor->reset_data_ptr(p_data);
    }
  } else {
    auto data_ptr = image_tensor->data<int8_t>();
    auto external_ptr = reinterpret_cast<int8_t *>(image_tensor->external_data);
    int8_t *p_data = external_ptr == nullptr ? data_ptr : external_ptr;

    image::format_image<int8_t>(&p_data, channel, height, width);
    if (p_data != data_ptr && external_ptr == nullptr) {
      image_tensor->reset_data_ptr(p_data);
    }
50
  }
Z
zhangyang 已提交
51 52
}

Z
zhangyang0701 已提交
53 54 55 56 57 58 59
void format_ofm(framework::Tensor *ofm_tensor) {
  if (ofm_tensor->type() == typeid(float)) {
    format_fp32_ofm(ofm_tensor);
  } else {
    format_fp16_ofm(ofm_tensor);
  }
}
60
void format_fp16_ofm(framework::Tensor *ofm_tensor) {
Z
zhangyang 已提交
61
  auto dims = ofm_tensor->dims();
62 63
  size_t memory_size = 0;
  if (dims.size() == 4) {
J
jameswu2014 已提交
64 65 66
    auto channel = dims[1], height = dims[2], width = dims[3], num = dims[0];
    memory_size = num * height * align_to_x(channel * width, IMAGE_ALIGNMENT) *
                  sizeof(half);
67 68 69 70 71 72
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(half);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
73
  // memset(p, 0, memory_size);
74
  ofm_tensor->reset_data_ptr(p);
75
  ofm_tensor->set_type(typeid(half));
76
  ofm_tensor->fpga_data_num = memory_size / sizeof(half);
77
  fpga::fpga_flush(p, memory_size);
78 79
}

80 81 82 83 84 85 86 87 88 89 90 91 92
void format_fp16_ofm(framework::Tensor *ofm_tensor, framework::DDim dims) {
  // auto dims = ofm_tensor->dims();
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(half);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(half);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
93
  // memset(p, 0, memory_size);
94
  ofm_tensor->reset_data_ptr(p);
95
  ofm_tensor->set_type(typeid(half));
96
  ofm_tensor->fpga_data_num = memory_size / sizeof(half);
97
  fpga::fpga_flush(p, memory_size);
98
}
99

100 101 102 103 104 105 106 107 108 109 110 111 112
void format_fp32_ofm(framework::Tensor *ofm_tensor) {
  auto dims = ofm_tensor->dims();
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(float);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(float);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
113
  // memset(p, 0, memory_size);
114
  ofm_tensor->reset_data_ptr(p);
115
  ofm_tensor->set_type(typeid(float));
116
  ofm_tensor->fpga_data_num = memory_size / sizeof(float);
117
  fpga::fpga_flush(p, memory_size);
Z
zhangyang 已提交
118 119
}

Z
zhangyang 已提交
120 121 122 123
float filter_find_max(framework::Tensor *filter_tensor) {
  auto filter_ptr = filter_tensor->data<float>();
  return filter::find_max(filter_ptr, filter_tensor->numel());
}
Z
zhangyang 已提交
124 125 126

int get_plit_num(framework::Tensor *filter_tensor) {
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
127 128
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
129 130 131
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_split_num(num, div_capacity);
}
Z
zhangyang 已提交
132 133 134 135 136 137 138
int get_deconv_plit_num(framework::Tensor *filter_tensor, int stride) {
  auto dims = filter_tensor->dims();
  auto chw = dims[1] * dims[2] / stride * dims[3] / stride;
  auto num = dims[0] * stride;
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_split_num(num, div_capacity);
}
Z
zhangyang 已提交
139

140
int get_filter_num_per_div(framework::Tensor *filter_tensor, int group_num) {
Z
zhangyang 已提交
141
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
142 143
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
144 145 146 147
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
}

Z
zhangyang 已提交
148 149 150 151 152 153 154 155 156
int get_deconv_filter_num_per_div(framework::Tensor *filter_tensor,
                                  int group_num, int stride) {
  auto dims = filter_tensor->dims();
  auto chw = dims[1] * dims[2] / stride * dims[3] / stride;
  auto num = dims[0] * stride;
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
}

Z
zhangyang 已提交
157 158 159 160
int get_aligned_filter_element_num(int chw) {
  return align_to_x(chw, FILTER_ELEMENT_ALIGNMENT);
}

Z
zhangyang 已提交
161 162
void format_filter(framework::Tensor *filter_tensor, float max_value,
                   int group_num) {
163 164
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
Z
zhangyang 已提交
165
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
166
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
167
  auto data_ptr = filter_tensor->data<float>();
Z
zhangyang 已提交
168
  size_t memory_size = num * channel * height * width * sizeof(float);
169
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
Z
zhangyang 已提交
170 171 172 173
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_filter(&new_data, num, channel, height, width, group_num,
                        max_value);
  filter_tensor->reset_data_ptr(new_data);
174
  filter_tensor->set_type(typeid(int8_t));
Z
zhangyang 已提交
175
}
176 177 178 179 180 181 182 183 184
void format_dwconv_filter(framework::Tensor *filter_tensor, float *scale_ptr) {
  auto dims = filter_tensor->dims();
  auto num = dims[0], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_dwconv_filter(&new_data, num, height, width, scale_ptr);
  filter_tensor->reset_data_ptr(new_data);
qnqinan's avatar
update  
qnqinan 已提交
185
  filter_tensor->set_type(typeid(int16_t));
186
}
Z
zhangyang 已提交
187

qnqinan's avatar
qnqinan 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
void format_DWDconv_filter(framework::Tensor *filter_tensor, float *scale_ptr,
                           int stride) {
  auto dims = filter_tensor->dims();
  auto num = dims[0], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  fpga_copy(new_data, data_ptr, memory_size);

  int hw = height * width;
  deconv_filter::deconv_NC_convert(&new_data, num, 1, hw);

  num = dims[1];
  int channel = dims[0];

  deconv_filter::DWDconv_format_filter(&new_data, num, channel, height, width,
                                       scale_ptr, stride);

  //  framework::DDim dims_new =
  //      framework::make_ddim({num, 1, height, width});
  //  filter_tensor->Resize(dims_new);
  filter_tensor->reset_data_ptr(new_data);
210
  filter_tensor->set_type(typeid(int8_t));
qnqinan's avatar
qnqinan 已提交
211 212
}

Z
zhangyang 已提交
213 214 215 216 217 218 219 220 221 222 223 224
void format_fc_filter(framework::Tensor *filter_tensor, float max_value) {
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
  auto dims = filter_tensor->dims();
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * channel * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_fc_filter(&new_data, num, channel, height, width, 1,
                           max_value);
  filter_tensor->reset_data_ptr(new_data);
225
  filter_tensor->set_type(typeid(int8_t));
Z
zhangyang 已提交
226
}
Z
zhangyang 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
void format_deconv_filter(framework::Tensor *filter_tensor, float max_value,
                          int group_num, int stride) {
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
  auto dims = filter_tensor->dims();
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * channel * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  memcpy(new_data, data_ptr, memory_size);

  int hw = height * width;
  deconv_filter::deconv_NC_convert(&new_data, num, channel, hw);

  num = dims[1];
  channel = dims[0];
  deconv_filter::deconv_format_filter(
      &new_data, (int)num, (int)channel,          // NOLINT
      (int)height,                                // NOLINT
      (int)width, group_num, max_value, stride);  // NOLINT

  framework::DDim dims_new =
      framework::make_ddim({num, channel, height, width});
  filter_tensor->Resize(dims_new);
  filter_tensor->reset_data_ptr(new_data);
252
  filter_tensor->set_type(typeid(int8_t));
Z
zhangyang 已提交
253
}
Z
zhangyang 已提交
254

Z
zhangyang 已提交
255 256 257 258 259
void format_bias_scale_array(float **bias_scale_array,
                             int element_num_per_division, int num) {
  bias_scale::format_bias_scale_array(bias_scale_array,
                                      element_num_per_division, num);
}
260 261 262
void format_bias_array(float **bias_array, int num) {
  bias_scale::format_bias_array(bias_array, num);
}
Z
zhangyang 已提交
263

Z
zhangyang 已提交
264 265 266 267 268 269 270 271 272
void format_concat_output(framework::Tensor *out, int height, int width,
                          int image_num, uint32_t *channel_num) {
  int sum_channel = 0, sum_cw = 0;
  for (int i = 0; i < image_num; i++) {
    sum_channel += channel_num[i];
  }

  sum_cw = align_to_x(width * sum_channel, IMAGE_ALIGNMENT);
  auto data_ptr = fpga_malloc(height * sum_cw * sizeof(half));
273
  auto ddim = framework::make_ddim({1, sum_channel, height, width});
Z
zhangyang 已提交
274 275
  out->Resize(ddim);
  out->reset_data_ptr(data_ptr);
276
  out->set_type(typeid(half));
Z
zhangyang 已提交
277
}
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
void format_conv_data(framework::Tensor *filter_tensor,
                      framework::Tensor *ofm_tensor, float **bs_ptr,
                      int group) {
  float max_value = fpga::filter_find_max(filter_tensor);
  fpga::format_filter(filter_tensor, max_value, group);
  int element_num_per_div = fpga::get_filter_num_per_div(filter_tensor, group);
  fpga::format_bias_scale_array(bs_ptr, element_num_per_div,
                                ofm_tensor->dims()[1]);
  fpga::format_fp16_ofm(ofm_tensor);
}
void format_deconv_data(framework::Tensor *filter_tensor,
                        framework::Tensor *ofm_tensor, float **bs_ptr,
                        int group, int sub_conv_n) {
  int channel = ofm_tensor->dims()[1];
  float max_value = filter_find_max(filter_tensor);
  format_deconv_filter(filter_tensor, max_value, group, sub_conv_n);
  int element_num_per_div =
      get_deconv_filter_num_per_div(filter_tensor, group, sub_conv_n);
  format_bias_scale_array(bs_ptr, element_num_per_div, channel * sub_conv_n);
  format_fp16_ofm(ofm_tensor);
}
Z
zhangyang 已提交
299

300 301 302 303 304 305 306 307
void format_dwconv_data(framework::Tensor *filter_tensor,
                        framework::Tensor *ofm_tensor, float *scale_ptr,
                        float **bias_ptr) {
  auto channel = ofm_tensor->dims()[1];
  format_dwconv_filter(filter_tensor, scale_ptr);
  format_bias_array(bias_ptr, channel);
  format_fp16_ofm(ofm_tensor);
}
qnqinan's avatar
qnqinan 已提交
308 309 310 311 312 313 314 315 316 317 318
void format_DWDeconv_data(framework::Tensor *filter_tensor,
                          framework::Tensor *ofm_tensor, float **bs_ptr,
                          int group, int sub_conv_n) {
  int channel = ofm_tensor->dims()[1];
  // dw-deconv
  format_DWDconv_filter(
      filter_tensor,
      (reinterpret_cast<float *>(*bs_ptr) + sub_conv_n * channel), sub_conv_n);
  format_bias_array(bs_ptr, channel);
  format_fp16_ofm(ofm_tensor);
}
319 320
void expand_conv_arg(ConvArgs *arg) {
  ConvArgs args = *arg;
321 322

  auto fpga_bias_scale_len =
323 324
      align_to_x(args.filter_num / args.group_num, 8) * args.group_num;

325
  auto output_height =
326 327 328
      (args.image.height + args.image.pad_height * 2 - args.kernel.height) /
          args.kernel.stride_h +
      1;
329
  auto output_width =
330 331 332
      (args.image.width + args.image.pad_width * 2 - args.kernel.width) /
          args.kernel.stride_w +
      1;
333 334 335 336 337 338 339 340 341 342

  auto filter_per_group = args.filter_num / args.group_num;
  auto channel_per_group = args.image.channels / args.group_num;

  auto image_row_count = args.image.width * args.image.channels;
  auto image_amount_per_row = align_to_x(image_row_count, IMAGE_ALIGNMENT);
  auto image_one_pad_per_row = align_to_x(image_row_count, IMAGE_ALIGNMENT) +
                               args.image.pad_width * args.image.channels;
  auto filter_amount_all =
      align_to_x(args.kernel.height * args.kernel.width * channel_per_group,
343 344
                 FILTER_ELEMENT_ALIGNMENT);

345 346 347
  auto output_amount_per_row = align_to_x(
      (output_width - (args.deconv_tx_param.omit_size) * 2) * args.filter_num,
      IMAGE_ALIGNMENT);
348 349 350 351

  // find the opt partition strategy
  uint64_t res_win;
  uint64_t res_fit = 0;
352
  for (res_win = 1; res_win <= output_width; res_win++) {
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
    if ((align_to_x(
             (args.image.channels *
              (args.kernel.width + (res_win - 1) * args.kernel.stride_w)),
             IMAGE_ALIGNMENT) /
             16 +
         1) *
            args.kernel.height >
        2048) {
      break;
    }
  }

  if (res_win != output_width) {
    res_win -= 1;
  }

  if (((res_win % 2) != 0) && (res_win != 1)) {
    res_win = res_win - 1;
  }
  res_fit = res_win;

374 375 376
  auto block_num = (output_width + res_fit - 1) / res_fit;
  auto block_len = res_fit;
  auto block_last = output_width - res_fit * (block_num - 1);
377

378 379
  auto res_amount_per_row =
      (output_width - (args.deconv_tx_param.omit_size) * 2) * args.filter_num;
380
  auto res_amount_per_row_pad = output_amount_per_row - res_amount_per_row;
381

382 383 384
  auto image_block_amount_per_row =
      args.kernel.stride_w * res_fit * args.image.channels;
  auto filter_pad_width_mul_channel =
385
      args.image.pad_width * args.image.channels;
386
  auto image_amount_per_row_multi_win_first =
J
jameswu2014 已提交
387 388
      image_amount_per_row *
      (ROW_PARALLEL_NUM * args.kernel.stride_h - args.image.pad_height);
389
  auto image_amount_per_row_multi_win =
390
      image_amount_per_row * (ROW_PARALLEL_NUM * args.kernel.stride_h);
391

392 393
  auto image_block_num = block_num;
  auto image_block_len =
394 395 396 397 398
      align_to_x((args.image.channels *
                  (args.kernel.width + (block_len - 1) * args.kernel.stride_w)),
                 IMAGE_ALIGNMENT) /
          16 +
      1;
399
  auto image_block_len_last =
400 401 402 403 404 405
      align_to_x(
          (args.image.channels *
           (args.kernel.width + (block_last - 1) * args.kernel.stride_w)),
          IMAGE_ALIGNMENT) /
          16 +
      1;
406 407 408
  auto image_win_cnt = block_len;
  auto image_win_cnt_last = block_last;
  auto res_row_data_align4_pad = res_amount_per_row_pad / 8;
409 410
  auto prog_full_cnt = 1024 / (filter_amount_all / 16 * 2) - 1;
  if (prog_full_cnt == 511) {
411 412
    prog_full_cnt--;
  }
413
  auto post_prog_full_cnt =
414 415 416
      (512 / (align_to_x(args.filter_num, 4) / 4 * 2) > 2)
          ? (512 / (align_to_x(args.filter_num, 4) / 4 * 2) - 2)
          : 0;
qnqinan's avatar
qnqinan 已提交
417 418
  // auto cmd = 0UL | (args.relu_enabled ? USE_RELU : 0) | USE_BIAS;
  auto cmd = 0UL | USE_BIAS;
419

qnqinan's avatar
update  
qnqinan 已提交
420 421
  auto deconv_param = ((args.deconv_tx_param.deconv_en) << 16) |
                      ((args.deconv_tx_param.sub_conv_num) << 8) |
422
                      ((args.deconv_tx_param.omit_size) << 0);
423 424 425
  (*arg).driver.image_address_phy = vaddr_to_paddr(args.image.address);
  (*arg).driver.sb_address_phy = vaddr_to_paddr(args.sb_address);
  (*arg).driver.filter_address_phy = vaddr_to_paddr(args.filter_address);
426 427
  (*arg).driver.output_address_phy = vaddr_to_paddr(args.output.address) +
                                     args.deconv_tx_param.out_addr_offset;
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
  (*arg).driver.output_height = output_height;
  (*arg).driver.output_width = output_width;
  (*arg).driver.filter_per_group = filter_per_group;
  (*arg).driver.channel_per_group = channel_per_group;
  (*arg).driver.image_amount_per_row = image_amount_per_row;
  (*arg).driver.image_one_pad_per_row = image_one_pad_per_row;
  (*arg).driver.filter_amount_all = filter_amount_all;
  (*arg).driver.output_amount_per_row = output_amount_per_row;
  (*arg).driver.image_block_amount_per_row = image_block_amount_per_row;
  (*arg).driver.filter_pad_width_mul_channel = filter_pad_width_mul_channel;
  (*arg).driver.image_amount_per_row_multi_win_first =
      image_amount_per_row_multi_win_first;
  (*arg).driver.image_amount_per_row_multi_win = image_amount_per_row_multi_win;
  (*arg).driver.image_block_num = image_block_num;
  (*arg).driver.image_block_len = image_block_len;
  (*arg).driver.image_block_len_last = image_block_len_last;
  (*arg).driver.image_win_cnt = image_win_cnt;
  (*arg).driver.image_win_cnt_last = image_win_cnt_last;
  (*arg).driver.res_row_data_align4_pad = res_row_data_align4_pad;
  (*arg).driver.prog_full_cnt = prog_full_cnt;
  (*arg).driver.post_prog_full_cnt = post_prog_full_cnt;
  (*arg).driver.fpga_bias_scale_len = fpga_bias_scale_len;
  (*arg).driver.cmd = cmd;
451
  (*arg).driver.deconv_param = deconv_param;
452 453 454 455
}  // expand_conv_arg()

void expand_EW_arg(EWAddArgs *arg) {
  EWAddArgs args = *arg;
qnqinan's avatar
qnqinan 已提交
456 457
  // uint64_t cmd = args.relu_enabled ? USE_RELU : 0;
  uint64_t cmd = 0;
458 459 460 461 462 463 464 465 466 467 468
  uint64_t datalen = (uint64_t)args.image0.width *
                     (uint64_t)args.image0.height *
                     (uint64_t)args.image0.channels;
  uint64_t coefficient = (uint64_t)args.const0 << 32 | (uint64_t)args.const1;
  uint64_t image0_address_phy = vaddr_to_paddr(args.image0.address);
  uint64_t image1_address_phy = vaddr_to_paddr(args.image1.address);
  uint64_t output_address_phy = vaddr_to_paddr(args.output.address);

  uint64_t image_amount_per_row =
      align_to_x((uint64_t)args.image0.width * (uint64_t)args.image0.channels,
                 IMAGE_ALIGNMENT);
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
  //////////////////////////////////////////////////////////
  // temporary modify for EW and DMA problem
  uint64_t image_image_pixel = 0;
  if ((args.image0.width * args.image0.channels) >= 24576) {
    if ((args.image0.width * args.image0.channels) % 32 != 0) {
      DLOG << "EW parameter can not be support";
    } else {
      image_amount_per_row = image_amount_per_row / 2;
      image_image_pixel = ((uint64_t)args.image0.channels << 32) |
                          ((uint64_t)(args.image0.width / 2) << 16) |
                          (uint64_t)(args.image0.height * 2);
    }
  } else {
    image_image_pixel = ((uint64_t)args.image0.channels << 32) |
                        ((uint64_t)args.image0.width << 16) |
                        (uint64_t)args.image0.height;
  }
  //////////////////////////////////////////////////////////
487 488 489 490 491 492 493 494 495 496 497

  (*arg).driver.image0_address_phy = image0_address_phy;
  (*arg).driver.image1_address_phy = image1_address_phy;
  (*arg).driver.datalen = datalen;
  (*arg).driver.image_image_pixel = image_image_pixel;
  (*arg).driver.image_amount_per_row = image_amount_per_row;
  (*arg).driver.output_address_phy = output_address_phy;
  (*arg).driver.coefficient = coefficient;
  (*arg).driver.cmd = cmd;
}  // expand_EW_arg

Z
zhangyang 已提交
498 499
void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
                    framework::Tensor *out, framework::Tensor *filter,
qnqinan's avatar
qnqinan 已提交
500 501 502 503
                    ActivationType activation_enable,
                    int16_t leaky_relu_negative_slope, int group_num,
                    int stride_h, int stride_w, int padding_h, int padding_w,
                    float *bs_ptr) {
504 505 506
  auto input_ptr = input->data<half>();
  auto filter_ptr = filter->data<int8_t>();
  auto out_ptr = out->data<half>();
Z
zhangyang 已提交
507
  auto deleter = [](void *p) { fpga_free(p); };
508 509

  arg->group_num = (uint32_t)group_num;
510 511
  // Either group_num or split_num = 1;
  arg->split_num = group_num == 1 ? (uint32_t)get_plit_num(filter) : 1;
512 513 514
  arg->filter_num = (uint32_t)filter->dims()[0];
  arg->output.address = out_ptr;
  arg->output.scale_address = out->scale;
Z
zhangyang 已提交
515
  arg->conv_arg =
516
      (ConvArgs *)fpga_malloc(arg->split_num * sizeof(ConvArgs));  // NOLINT
517

Z
zhangyang 已提交
518 519
  arg->shared_conv_arg = std::shared_ptr<ConvArgs>(arg->conv_arg, deleter);

520 521
  memset(arg->conv_arg, 0, arg->split_num * sizeof(struct ConvArgs));

522 523 524
  arg->concat_arg.image_num = arg->split_num;
  arg->concat_arg.image_out = out_ptr;
  arg->concat_arg.scale_out = out->scale;
525 526
  arg->concat_arg.height = (uint32_t)out->dims()[2];
  arg->concat_arg.width = (uint32_t)out->dims()[3];
527 528

  int n = arg->split_num;
529
  arg->concat_arg.images_in =
Z
zhangyang 已提交
530
      static_cast<int16_t **>(fpga_malloc(n * sizeof(int *)));
531
  arg->concat_arg.scales_in =
Z
zhangyang 已提交
532
      static_cast<float **>(fpga_malloc(n * sizeof(float *)));
533
  arg->concat_arg.channel_num =
Z
zhangyang 已提交
534 535 536 537 538 539 540
      static_cast<uint32_t *>(fpga_malloc(n * sizeof(uint32_t)));
  arg->vector_concat_space.push_back(std::shared_ptr<char>(
      reinterpret_cast<char *>(arg->concat_arg.images_in), deleter));
  arg->vector_concat_space.push_back(std::shared_ptr<char>(
      reinterpret_cast<char *>(arg->concat_arg.scales_in), deleter));
  arg->vector_concat_space.push_back(std::shared_ptr<char>(
      reinterpret_cast<char *>(arg->concat_arg.channel_num), deleter));
541

542 543 544
  auto channel = (int)out->dims()[1];  // NOLINT
  int filter_num_per_div = get_filter_num_per_div(filter, group_num);
  int element_num = get_aligned_filter_element_num(
545 546
      (int)(filter->dims()[1] * filter->dims()[2] *  // NOLINT
            filter->dims()[3]));
547 548

  for (int i = 0; i < n; i++) {
qnqinan's avatar
qnqinan 已提交
549 550 551 552
    // arg->conv_arg[i].relu_enabled = relu_enabled;
    arg->conv_arg[i].output.activation.activation_type = activation_enable;
    arg->conv_arg[i].output.activation.leaky_relu_negative_slope =
        leaky_relu_negative_slope;
Z
zhangyang 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566
    arg->conv_arg[i].group_num = (uint32_t)group_num;
    arg->conv_arg[i].kernel.stride_h = (uint32_t)stride_h;
    arg->conv_arg[i].kernel.stride_w = (uint32_t)stride_w;
    arg->conv_arg[i].kernel.height = (uint32_t)filter->dims()[2];
    arg->conv_arg[i].kernel.width = (uint32_t)filter->dims()[3];
    arg->conv_arg[i].image.address = input_ptr;
    arg->conv_arg[i].image.channels = (uint32_t)input->dims()[1];
    arg->conv_arg[i].image.height = (uint32_t)input->dims()[2];
    arg->conv_arg[i].image.width = (uint32_t)input->dims()[3];
    arg->conv_arg[i].image.scale_address = input->scale;
    arg->conv_arg[i].image.pad_height = (uint32_t)padding_h;
    arg->conv_arg[i].image.pad_width = (uint32_t)padding_w;
    arg->conv_arg[i].filter_scale_address = filter->scale;
    arg->conv_arg[i].filter_num = (uint32_t)(
567 568
        i == n - 1 ? channel - (n - 1) * filter_num_per_div  // NOLINT
                   : filter_num_per_div);
569

Z
zhangyang 已提交
570
    size_t filter_size =
571 572 573
        element_num *
        align_to_x(arg->conv_arg[i].filter_num, FILTER_NUM_ALIGNMENT) *
        sizeof(int8_t);
574 575
    auto filter_head = &(
        (int8_t *)filter_ptr)[i * element_num * filter_num_per_div];  // NOLINT
Z
zhangyang 已提交
576
    arg->conv_arg[i].filter_address = fpga_malloc(filter_size);
Z
zhangyang 已提交
577 578
    arg->vector_conv_space.push_back(std::shared_ptr<char>(
        reinterpret_cast<char *>(arg->conv_arg[i].filter_address), deleter));
Z
zhangyang 已提交
579 580
    memcpy(arg->conv_arg[i].filter_address, filter_head, filter_size);
    fpga_flush(arg->conv_arg[i].filter_address, filter_size);
581 582 583 584 585 586 587 588 589 590 591 592
    // for test
    //    {
    //    static int cnt = 0;
    //    if(cnt == 4){
    //        int8_t result = 0;
    //        std::string str = "fc_filter";
    //      fpga::savefile<int8_t>(str, arg->conv_arg[i].filter_address,
    //      filter_size, result);
    //
    //    }
    //    cnt++;
    //}
Z
zhangyang 已提交
593

594 595 596
    size_t bs_size = 2 *
                     align_to_x(arg->conv_arg[i].filter_num, BS_NUM_ALIGNMENT) *
                     sizeof(float);
Z
zhangyang 已提交
597 598
    auto bs_head = &bs_ptr[i * filter_num_per_div * 2];
    arg->conv_arg[i].sb_address = fpga_malloc(bs_size);
Z
zhangyang 已提交
599 600
    arg->vector_conv_space.push_back(std::shared_ptr<char>(
        reinterpret_cast<char *>(arg->conv_arg[i].sb_address), deleter));
Z
zhangyang 已提交
601 602
    memcpy(arg->conv_arg[i].sb_address, bs_head, bs_size);
    fpga_flush(arg->conv_arg[i].sb_address, bs_size);
603 604 605 606 607 608 609 610 611 612 613 614
    // for test
    /*{
    static int cnt = 0;
    if(cnt == 4){
        float result = 0;
        std::string str = "fc_bs";
      fpga::savefile<float>(str, arg->conv_arg[i].sb_address, bs_size/4,
result);

    }
    cnt++;
}*/
Z
zhangyang 已提交
615

616
    if (n > 1) {
Z
zhangyang 已提交
617
      arg->conv_arg[i].output.scale_address =
Z
zhangyang 已提交
618
          static_cast<float *>(fpga_malloc(2 * sizeof(float)));
619 620 621 622 623 624
      arg->conv_arg[i].output.address =
          fpga_malloc(out->dims()[2] *
                      align_to_x((int)(out->dims()[3] *  // NOLINT
                                       arg->conv_arg[i].filter_num),
                                 IMAGE_ALIGNMENT) *
                      sizeof(half));
Z
zhangyang 已提交
625 626 627 628 629
      arg->vector_conv_space.push_back(std::shared_ptr<char>(
          reinterpret_cast<char *>(arg->conv_arg[i].output.scale_address),
          deleter));
      arg->vector_conv_space.push_back(std::shared_ptr<char>(
          reinterpret_cast<char *>(arg->conv_arg[i].output.address), deleter));
630
    } else {
Z
zhangyang 已提交
631 632
      arg->conv_arg[i].output.scale_address = out->scale;
      arg->conv_arg[i].output.address = out_ptr;
633 634
    }

635
    arg->concat_arg.images_in[i] =
Z
zhangyang 已提交
636 637 638
        (half *)arg->conv_arg[i].output.address;  // NOLINT
    arg->concat_arg.scales_in[i] = arg->conv_arg[i].output.scale_address;
    arg->concat_arg.channel_num[i] = arg->conv_arg[i].filter_num;
639 640

    expand_conv_arg(&arg->conv_arg[i]);
641
  }
Z
zhangyang 已提交
642 643
  filter->reset_data_ptr(nullptr);
  fpga_free(bs_ptr);
644 645
}  // fill_split_arg

Z
zhangyang 已提交
646 647
void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
                     framework::Tensor *out, framework::Tensor *filter,
qnqinan's avatar
qnqinan 已提交
648 649 650
                     ActivationType activation_enable,
                     int16_t leaky_relu_negative_slope, int group_num,
                     int stride_h, int stride_w, int padding_h, int padding_w,
Z
zhangyang 已提交
651
                     float *bs_ptr) {
652 653
  auto input_ptr = input->data<half>();
  auto filter_ptr = filter->data<int8_t>();
Z
zhangyang 已提交
654
  auto deleter = [](void *p) { fpga_free(p); };
Z
zhangyang 已提交
655 656

  arg->group_num = (uint32_t)group_num;
657
  arg->sub_conv_num = (uint32_t)stride_h;
Z
zhangyang 已提交
658
  arg->filter_num = (uint32_t)filter->dims()[0];
659
  uint32_t sub_conv_num = arg->sub_conv_num;
660 661 662
  int sub_pad =
      deconv_filter::deconv_calc_sub_pad((int)filter->dims()[3],  // NOLINT
                                         padding_w, stride_w);
663
  auto sub_filter_width = (uint32_t)deconv_filter::deconv_get_sub_filter_axis(
664
      (int)filter->dims()[3], stride_w);  // NOLINT
665

666
  auto sub_output_width = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
667
      (int)input->dims()[3], sub_pad, sub_filter_width);  // NOLINT
668
  auto sub_output_height = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
669
      (int)input->dims()[2], sub_pad, sub_filter_width);  // NOLINT
Z
zhangyang 已提交
670

671 672 673
  arg->sub_output_width = (uint32_t)sub_output_width;
  arg->sub_output_height = (uint32_t)sub_output_height;
  arg->omit_size = (uint32_t)deconv_filter::deconv_get_omit(
674
      stride_w, (int)filter->dims()[3], padding_w);  // NOLINT
Z
zhangyang 已提交
675

676
  auto sub_channels = (int)input->dims()[1];  // NOLINT
677
  uint32_t omit_size = arg->omit_size;
Z
zhangyang 已提交
678
  int real_out_width = sub_output_width * sub_conv_num - 2 * omit_size;
Z
zhangyang 已提交
679 680
  int sub_filter_num = sub_conv_num * (arg->filter_num);

681 682 683
  framework::DDim dims_out_new = framework::make_ddim(
      {1, arg->filter_num, sub_output_height * sub_conv_num, real_out_width});
  fpga::format_fp16_ofm(out, dims_out_new);
684
  auto out_ptr = out->data<half>();
685
  arg->output.address =
qnqinan's avatar
update  
qnqinan 已提交
686
      (half *)out_ptr +  // NOLINT
687 688 689 690 691
      omit_size * sizeof(half) *
          (align_to_x(real_out_width * arg->filter_num, IMAGE_ALIGNMENT));
  arg->output.scale_address = out->scale;

  uint32_t conv_output_size =
Z
zhangyang 已提交
692 693
      (align_to_x(sub_output_width * sub_filter_num, IMAGE_ALIGNMENT)) *
      sub_output_height;
694
  uint32_t split_num =
Z
zhangyang 已提交
695 696
      group_num == 1 ? (uint32_t)get_deconv_plit_num(filter, sub_conv_num) : 1;

Z
zhangyang 已提交
697
  for (int i = 0; i < sub_conv_num; ++i) {
Z
zhangyang 已提交
698 699
    arg->split_conv_args.push_back(std::make_shared<SplitConvArgs>());
    arg->split_conv_args[i]->filter_num =
Z
zhangyang 已提交
700
        (arg->sub_conv_num) * (arg->filter_num);
Z
zhangyang 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
    arg->split_conv_args[i]->group_num = (uint32_t)group_num;
    arg->split_conv_args[i]->split_num = split_num;
    arg->split_conv_args[i]->concat_arg.height = sub_output_height;
    arg->split_conv_args[i]->concat_arg.width = sub_output_width;
    arg->split_conv_args[i]->concat_arg.image_num = split_num;

    arg->split_conv_args[i]->conv_arg =
        static_cast<ConvArgs *>(fpga_malloc(split_num * sizeof(ConvArgs)));
    arg->split_conv_args[i]->concat_arg.images_in =
        static_cast<int16_t **>(fpga_malloc(split_num * sizeof(int16_t *)));
    arg->split_conv_args[i]->concat_arg.scales_in =
        static_cast<float **>(fpga_malloc(split_num * sizeof(float *)));
    arg->split_conv_args[i]->concat_arg.channel_num =
        static_cast<uint32_t *>(fpga_malloc(split_num * sizeof(uint32_t)));
    arg->split_conv_args[i]->shared_conv_arg =
        std::shared_ptr<ConvArgs>(arg->split_conv_args[i]->conv_arg, deleter);
    arg->split_conv_args[i]->vector_concat_space.push_back(
        std::shared_ptr<char>(
            reinterpret_cast<char *>(
                arg->split_conv_args[i]->concat_arg.images_in),
            deleter));
    arg->split_conv_args[i]->vector_concat_space.push_back(
        std::shared_ptr<char>(
            reinterpret_cast<char *>(
                arg->split_conv_args[i]->concat_arg.scales_in),
            deleter));
    arg->split_conv_args[i]->vector_concat_space.push_back(
        std::shared_ptr<char>(
            reinterpret_cast<char *>(
                arg->split_conv_args[i]->concat_arg.channel_num),
            deleter));
Z
zhangyang 已提交
732
  }
Z
zhangyang 已提交
733

734 735
  auto filter_num_per_div =
      (uint32_t)get_deconv_filter_num_per_div(filter, group_num, stride_w);
Z
zhangyang 已提交
736
  int element_num = get_aligned_filter_element_num(
737
      (int)(sub_channels * sub_filter_width * sub_filter_width));  // NOLINT
Z
zhangyang 已提交
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752

  int chw = sub_channels * sub_filter_width * sub_filter_width;
  int division_capacity = filter::calc_division_capacity(chw);
  int num_per_div_before_alignment =
      filter::calc_num_per_div(sub_filter_num, group_num, division_capacity);
  int num_per_div_after_alignment =
      align_to_x(num_per_div_before_alignment, FILTER_NUM_ALIGNMENT);
  int div_num = (sub_filter_num + num_per_div_before_alignment - 1) /
                num_per_div_before_alignment;
  int residual = sub_filter_num % num_per_div_before_alignment;
  int num_after_alignment = num_per_div_after_alignment *
                                ((residual == 0) ? div_num : (div_num - 1)) +
                            align_to_x(residual, FILTER_NUM_ALIGNMENT);

  int filter_sub_conv_offset = element_num * num_after_alignment;
753
  uint32_t out_addr_offset = 0;
Z
zhangyang 已提交
754
  for (int i = 0; i < sub_conv_num; ++i) {
Z
zhangyang 已提交
755
    if (sub_conv_num == 1) {
Z
zhangyang 已提交
756 757
      arg->split_conv_args[i]->output.address = arg->output.address;
      arg->split_conv_args[i]->output.scale_address = arg->output.scale_address;
758
      out_addr_offset = 0;
Z
zhangyang 已提交
759

Z
zhangyang 已提交
760
    } else {
761
      out_addr_offset =
Z
zhangyang 已提交
762
          sizeof(int16_t) * (sub_conv_num - 1 - i) *
763 764
          (align_to_x(real_out_width * arg->filter_num, IMAGE_ALIGNMENT));

Z
zhangyang 已提交
765 766 767 768 769 770 771 772
      arg->split_conv_args[i]->output.address = out_ptr;
      arg->split_conv_args[i]->output.scale_address =
          static_cast<float *>(fpga_malloc(2 * sizeof(float)));
      arg->split_conv_args[i]->vector_conv_space.push_back(
          std::shared_ptr<char>(
              reinterpret_cast<char *>(
                  arg->split_conv_args[i]->output.scale_address),
              deleter));
Z
zhangyang 已提交
773 774
    }

Z
zhangyang 已提交
775
    for (int j = 0; j < split_num; ++j) {
qnqinan's avatar
qnqinan 已提交
776 777 778 779 780 781
      arg->split_conv_args[i]->conv_arg[j].output.activation.activation_type =
          activation_enable;
      arg->split_conv_args[i]
          ->conv_arg[j]
          .output.activation.leaky_relu_negative_slope =
          leaky_relu_negative_slope;
Z
zhangyang 已提交
782
      arg->split_conv_args[i]->conv_arg[j].group_num = (uint32_t)group_num;
Z
zhangyang 已提交
783

Z
zhangyang 已提交
784
      arg->split_conv_args[i]->conv_arg[j].kernel.width =
Z
zhangyang 已提交
785
          (uint32_t)sub_filter_width;
Z
zhangyang 已提交
786
      arg->split_conv_args[i]->conv_arg[j].kernel.height =
Z
zhangyang 已提交
787
          (uint32_t)sub_filter_width;
Z
zhangyang 已提交
788 789
      arg->split_conv_args[i]->conv_arg[j].kernel.stride_w = 1;
      arg->split_conv_args[i]->conv_arg[j].kernel.stride_h = 1;
Z
zhangyang 已提交
790

Z
zhangyang 已提交
791 792
      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.deconv_en = 1;
      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.sub_conv_num =
793
          sub_conv_num;
Z
zhangyang 已提交
794 795 796
      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.omit_size =
          omit_size;
      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.out_addr_offset =
797 798
          out_addr_offset;

Z
zhangyang 已提交
799 800
      arg->split_conv_args[i]->conv_arg[j].image.scale_address = input->scale;
      arg->split_conv_args[i]->conv_arg[j].image.channels =
Z
zhangyang 已提交
801
          (uint32_t)sub_channels;
Z
zhangyang 已提交
802
      arg->split_conv_args[i]->conv_arg[j].image.width =
Z
zhangyang 已提交
803
          (uint32_t)input->dims()[3];
Z
zhangyang 已提交
804
      arg->split_conv_args[i]->conv_arg[j].image.height =
Z
zhangyang 已提交
805
          (uint32_t)input->dims()[2];
Z
zhangyang 已提交
806 807 808
      arg->split_conv_args[i]->conv_arg[j].image.pad_width = (uint32_t)sub_pad;
      arg->split_conv_args[i]->conv_arg[j].image.pad_height = (uint32_t)sub_pad;
      arg->split_conv_args[i]->conv_arg[j].image.address = input_ptr;
Z
zhangyang 已提交
809

Z
zhangyang 已提交
810 811
      arg->split_conv_args[i]->conv_arg[j].filter_scale_address = filter->scale;
      arg->split_conv_args[i]->conv_arg[j].filter_num =
812 813 814
          (uint32_t)(j == split_num - 1
                         ? sub_filter_num - (split_num - 1) * filter_num_per_div
                         : filter_num_per_div);
Z
zhangyang 已提交
815 816 817

      size_t filter_size =
          element_num *
Z
zhangyang 已提交
818
          align_to_x(arg->split_conv_args[i]->conv_arg[j].filter_num,
Z
zhangyang 已提交
819 820
                     FILTER_NUM_ALIGNMENT) *
          sizeof(int8_t);
qnqinan's avatar
update  
qnqinan 已提交
821 822 823
      auto filter_head = &((
          int8_t *)filter_ptr)[j * element_num * filter_num_per_div +  // NOLINT
                               i * filter_sub_conv_offset];
Z
zhangyang 已提交
824
      arg->split_conv_args[i]->conv_arg[j].filter_address =
Z
zhangyang 已提交
825
          fpga_malloc(filter_size);
Z
zhangyang 已提交
826 827 828 829 830 831 832
      arg->split_conv_args[i]->vector_conv_space.push_back(
          std::shared_ptr<char>(
              reinterpret_cast<char *>(
                  arg->split_conv_args[i]->conv_arg[j].filter_address),
              deleter));

      memcpy(arg->split_conv_args[i]->conv_arg[j].filter_address, filter_head,
Z
zhangyang 已提交
833
             filter_size);
Z
zhangyang 已提交
834
      fpga_flush(arg->split_conv_args[i]->conv_arg[j].filter_address,
Z
zhangyang 已提交
835 836 837
                 filter_size);

      size_t bs_align_num = align_to_x(
Z
zhangyang 已提交
838
          arg->split_conv_args[i]->conv_arg[j].filter_num, BS_NUM_ALIGNMENT);
Z
zhangyang 已提交
839 840 841
      size_t bs_size = 2 * bs_align_num * sizeof(float);
      auto bs_head = &bs_ptr[j * filter_num_per_div * 2];

Z
zhangyang 已提交
842 843 844 845 846 847 848 849 850
      arg->split_conv_args[i]->conv_arg[j].sb_address = fpga_malloc(bs_size);
      arg->split_conv_args[i]->vector_conv_space.push_back(
          std::shared_ptr<char>(
              reinterpret_cast<char *>(
                  arg->split_conv_args[i]->conv_arg[j].sb_address),
              deleter));

      memcpy(arg->split_conv_args[i]->conv_arg[j].sb_address, bs_head, bs_size);
      fpga_flush(arg->split_conv_args[i]->conv_arg[j].sb_address, bs_size);
Z
zhangyang 已提交
851 852

      if (split_num == 1) {
Z
zhangyang 已提交
853 854 855 856
        arg->split_conv_args[i]->conv_arg[j].output.address =
            arg->split_conv_args[i]->output.address;
        arg->split_conv_args[i]->conv_arg[j].output.scale_address =
            arg->split_conv_args[i]->output.scale_address;
Z
zhangyang 已提交
857
      } else {
Z
zhangyang 已提交
858 859 860 861 862 863 864 865 866 867 868 869 870 871
        arg->split_conv_args[i]->conv_arg[j].output.address =
            fpga_malloc(conv_output_size * sizeof(int16_t));
        arg->split_conv_args[i]->conv_arg[j].output.scale_address =
            static_cast<float *>(fpga_malloc(2 * sizeof(float)));
        arg->split_conv_args[i]->vector_conv_space.push_back(
            std::shared_ptr<char>(
                reinterpret_cast<char *>(
                    arg->split_conv_args[i]->conv_arg[j].output.address),
                deleter));
        arg->split_conv_args[i]->vector_conv_space.push_back(
            std::shared_ptr<char>(
                reinterpret_cast<char *>(
                    arg->split_conv_args[i]->conv_arg[j].output.scale_address),
                deleter));
Z
zhangyang 已提交
872
      }
873
      arg->split_conv_args[i]->concat_arg.images_in[j] = static_cast<half *>(
Z
zhangyang 已提交
874 875 876 877 878 879 880
          arg->split_conv_args[i]->conv_arg[j].output.address);
      arg->split_conv_args[i]->concat_arg.scales_in[j] =
          arg->split_conv_args[i]->conv_arg[j].output.scale_address;
      arg->split_conv_args[i]->concat_arg.channel_num[j] =
          arg->split_conv_args[i]->conv_arg[j].filter_num;

      expand_conv_arg(&(arg->split_conv_args[i]->conv_arg[j]));
Z
zhangyang 已提交
881 882
    }

Z
zhangyang 已提交
883 884 885 886
    arg->split_conv_args[i]->concat_arg.image_out =
        arg->split_conv_args[i]->output.address;
    arg->split_conv_args[i]->concat_arg.scale_out =
        arg->split_conv_args[i]->output.scale_address;
Z
zhangyang 已提交
887
  }
888
  filter->reset_data_ptr(nullptr);
Z
zhangyang 已提交
889
  fpga_free(bs_ptr);
890 891
}  // fill_deconv_arg

892 893
void fill_dwconv_arg(struct DWconvArgs *arg, framework::Tensor *input,
                     framework::Tensor *out, framework::Tensor *filter,
qnqinan's avatar
qnqinan 已提交
894 895 896 897
                     ActivationType activation_enable,
                     int16_t leaky_relu_negative_slope, int stride_h,
                     int stride_w, int padding_h, int padding_w,
                     float *bias_ptr) {
J
jameswu2014 已提交
898 899 900 901
  auto deleter = [](void *p) { fpga_free(p); };
  arg->vector_dwconv_space.push_back(
      std::shared_ptr<char>(reinterpret_cast<char *>(bias_ptr), deleter));

qnqinan's avatar
update  
qnqinan 已提交
902
  auto filter_ptr = filter->data<int16_t>();
903
  auto input_ptr = input->data<half>();
J
jameswu2014 已提交
904
  auto output_ptr = out->mutable_data<half>();
905
  arg->sub_conv_num = 1;
qnqinan's avatar
qnqinan 已提交
906 907 908
  // arg->relu_enabled = relu_enabled;
  arg->output.activation.activation_type = activation_enable;
  arg->output.activation.leaky_relu_negative_slope = leaky_relu_negative_slope;
909 910
  arg->bias_address = bias_ptr;
  arg->filter_address = filter_ptr;
Z
zhangyang 已提交
911 912 913 914
  arg->kernel.height = (uint32_t)filter->dims()[2];
  arg->kernel.width = (uint32_t)filter->dims()[3];
  arg->kernel.stride_h = (uint32_t)stride_h;
  arg->kernel.stride_w = (uint32_t)stride_w;
915 916 917 918
  arg->image.address = input_ptr;
  arg->image.channels = (uint32_t)input->dims()[1];
  arg->image.height = (uint32_t)input->dims()[2];
  arg->image.width = (uint32_t)input->dims()[3];
Z
zhangyang 已提交
919 920
  arg->image.pad_height = (uint32_t)padding_h;
  arg->image.pad_width = (uint32_t)padding_w;
921 922 923 924 925
  arg->image.scale_address = input->scale;
  arg->output.address = output_ptr;
  arg->output.scale_address = out->scale;
}  // end dwconv arg fill

qnqinan's avatar
qnqinan 已提交
926 927
void fill_DWDeconv_arg(struct DWDeconvArgs *arg, framework::Tensor *input,
                       framework::Tensor *out, framework::Tensor *filter,
qnqinan's avatar
qnqinan 已提交
928 929 930 931
                       ActivationType activation_enable,
                       int16_t leaky_relu_negative_slope, int stride_h,
                       int stride_w, int padding_h, int padding_w,
                       float *bias_ptr) {
932 933
  auto filter_ptr = filter->data<int8_t>();
  auto input_ptr = input->data<half>();
qnqinan's avatar
qnqinan 已提交
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967

  auto deleter = [](void *p) { fpga_free(p); };

  arg->group_num = (uint32_t)filter->dims()[0];
  arg->sub_conv_num = (uint32_t)stride_w;
  arg->filter_num = (uint32_t)filter->dims()[0];

  int sub_conv_num = stride_w;

  int sub_pad =
      deconv_filter::deconv_calc_sub_pad((int)filter->dims()[3],  // NOLINT
                                         padding_w, stride_w);
  auto sub_filter_width = (uint32_t)deconv_filter::deconv_get_sub_filter_axis(
      (int)filter->dims()[3], stride_w);  // NOLINT

  auto sub_output_width = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
      (int)input->dims()[3], sub_pad, sub_filter_width);  // NOLINT
  auto sub_output_height = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
      (int)input->dims()[2], sub_pad, sub_filter_width);  // NOLINT

  arg->sub_output_width = (uint32_t)sub_output_width;
  arg->sub_output_height = (uint32_t)sub_output_height;
  arg->omit_size = (uint32_t)deconv_filter::deconv_get_omit(
      stride_w, (int)filter->dims()[3], padding_w);  // NOLINT

  auto sub_channels = (int)input->dims()[1];  // NOLINT
  uint32_t omit_size = arg->omit_size;
  int real_out_width = sub_output_width * sub_conv_num - 2 * omit_size;
  int real_out_height = sub_output_height * sub_conv_num - 2 * omit_size;
  int sub_filter_num = sub_conv_num * (arg->filter_num);

  framework::DDim dims_out_new = framework::make_ddim(
      {1, arg->filter_num, real_out_height, real_out_width});
  fpga::format_fp16_ofm(out, dims_out_new);
968
  auto out_ptr = out->data<half>();
qnqinan's avatar
qnqinan 已提交
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986

  /*====For Addition
  arg->output.address =
      (half *)out_ptr +  // NOLINT
      omit_size * sizeof(half) *
          (align_to_x(real_out_width * arg->filter_num, IMAGE_ALIGNMENT));
          */
  arg->output.address = out_ptr;
  arg->output.scale_address = out->scale;

  int filter_offset = sub_filter_width * sub_filter_width *
                      align_to_x(sub_channels, FILTER_ELEMENT_ALIGNMENT) *
                      arg->sub_conv_num;

  for (int i = 0; i < sub_conv_num; ++i) {
    arg->dw_conv_args.push_back(std::make_shared<DWconvArgs>());

    arg->dw_conv_args[i]->sub_conv_num = sub_conv_num;
qnqinan's avatar
qnqinan 已提交
987 988 989 990
    // arg->dw_conv_args[i]->relu_enabled = relu_enabled;
    arg->dw_conv_args[i]->output.activation.activation_type = activation_enable;
    arg->dw_conv_args[i]->output.activation.leaky_relu_negative_slope =
        leaky_relu_negative_slope;
qnqinan's avatar
qnqinan 已提交
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
    arg->dw_conv_args[i]->bias_address = bias_ptr;

    arg->dw_conv_args[i]->filter_address =
        fpga_malloc(filter_offset * sizeof(int16_t));
    memcpy(arg->dw_conv_args[i]->filter_address,
           (reinterpret_cast<half *>(filter_ptr) + i * filter_offset),
           filter_offset * sizeof(int16_t));
    arg->vector_dw_conv_space.push_back(std::shared_ptr<char>(
        reinterpret_cast<char *>(arg->dw_conv_args[i]->filter_address),
        deleter));

    arg->dw_conv_args[i]->kernel.height = (uint32_t)sub_filter_width;
    arg->dw_conv_args[i]->kernel.width = (uint32_t)sub_filter_width;

    arg->dw_conv_args[i]->kernel.stride_h = (uint32_t)1;
    arg->dw_conv_args[i]->kernel.stride_w = (uint32_t)1;
    arg->dw_conv_args[i]->image.address = input_ptr;
    arg->dw_conv_args[i]->image.channels = (uint32_t)input->dims()[1];
    arg->dw_conv_args[i]->image.height = (uint32_t)input->dims()[2];
    arg->dw_conv_args[i]->image.width = (uint32_t)input->dims()[3];

    arg->dw_conv_args[i]->image.pad_height = sub_pad;
    arg->dw_conv_args[i]->image.pad_width = sub_pad;
    arg->dw_conv_args[i]->image.scale_address = input->scale;

    arg->dw_conv_args[i]->output.address =
        fpga_malloc(sub_output_height *
                    align_to_x(sub_output_width * sub_channels * sub_conv_num,
                               IMAGE_ALIGNMENT) *
                    sizeof(int16_t));
    arg->dw_conv_args[i]->output.scale_address =
        static_cast<float *>(fpga_malloc(2 * sizeof(float)));
qnqinan's avatar
update  
qnqinan 已提交
1023
    arg->vector_dw_conv_space.push_back(std::shared_ptr<char>(
qnqinan's avatar
qnqinan 已提交
1024 1025
        reinterpret_cast<char *>(arg->dw_conv_args[i]->output.address),
        deleter));
qnqinan's avatar
update  
qnqinan 已提交
1026
    arg->vector_dw_conv_space.push_back(std::shared_ptr<char>(
qnqinan's avatar
qnqinan 已提交
1027 1028 1029 1030 1031 1032 1033
        reinterpret_cast<char *>(arg->dw_conv_args[i]->output.scale_address),
        deleter));
  }

  // arg->output.scale_address = out->scale;
}  // end dwconv arg fill

H
hanbuhe 已提交
1034
}  // namespace fpga
Z
zhangyang 已提交
1035
}  // namespace paddle_mobile