api.cpp 41.3 KB
Newer Older
H
hanbuhe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhangyang 已提交
15 16
#include "fpga/V1/api.h"
#include "fpga/V1/bias_scale.h"
Z
zhangyang 已提交
17
#include "fpga/V1/deconv_filter.h"
Z
zhangyang 已提交
18 19
#include "fpga/V1/filter.h"
#include "fpga/V1/image.h"
Z
zhangyang 已提交
20

Z
zhangyang 已提交
21
namespace paddle_mobile {
H
hanbuhe 已提交
22 23
namespace fpga {

24 25 26
#define USE_RELU 1
#define USE_BIAS 2

Z
zhangyang 已提交
27 28
void format_image(framework::Tensor *image_tensor) {
  auto dims = image_tensor->dims();
Z
zhangyang 已提交
29
  auto channel = dims[1], height = dims[2], width = dims[3];
30
  auto data_ptr = image_tensor->data<float>();
31 32
  auto external_ptr = reinterpret_cast<float *>(image_tensor->external_data);
  float *p_data = external_ptr == nullptr ? data_ptr : external_ptr;
J
jameswu2014 已提交
33

34
  image::format_image(&p_data, channel, height, width);
J
jameswu2014 已提交
35
  if (p_data != data_ptr && external_ptr == nullptr) {
36 37
    image_tensor->reset_data_ptr(p_data);
  }
Z
zhangyang 已提交
38 39
}

Z
zhangyang0701 已提交
40 41 42 43 44 45 46
void format_ofm(framework::Tensor *ofm_tensor) {
  if (ofm_tensor->type() == typeid(float)) {
    format_fp32_ofm(ofm_tensor);
  } else {
    format_fp16_ofm(ofm_tensor);
  }
}
47
void format_fp16_ofm(framework::Tensor *ofm_tensor) {
Z
zhangyang 已提交
48
  auto dims = ofm_tensor->dims();
49 50
  size_t memory_size = 0;
  if (dims.size() == 4) {
J
jameswu2014 已提交
51 52 53
    auto channel = dims[1], height = dims[2], width = dims[3], num = dims[0];
    memory_size = num * height * align_to_x(channel * width, IMAGE_ALIGNMENT) *
                  sizeof(half);
54 55 56 57 58 59 60 61
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(half);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
62
  ofm_tensor->set_type(typeid(half));
63
  ofm_tensor->fpga_data_num = memory_size / sizeof(half);
64 65
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
void format_fp16_ofm(framework::Tensor *ofm_tensor, framework::DDim dims) {
  // auto dims = ofm_tensor->dims();
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(half);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(half);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
81
  ofm_tensor->set_type(typeid(half));
82
  ofm_tensor->fpga_data_num = memory_size / sizeof(half);
83
}
84

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
void format_fp32_ofm(framework::Tensor *ofm_tensor) {
  auto dims = ofm_tensor->dims();
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(float);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(float);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
100
  ofm_tensor->set_type(typeid(float));
101
  ofm_tensor->fpga_data_num = memory_size / sizeof(float);
Z
zhangyang 已提交
102 103
}

Z
zhangyang 已提交
104 105 106 107
float filter_find_max(framework::Tensor *filter_tensor) {
  auto filter_ptr = filter_tensor->data<float>();
  return filter::find_max(filter_ptr, filter_tensor->numel());
}
Z
zhangyang 已提交
108 109 110

int get_plit_num(framework::Tensor *filter_tensor) {
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
111 112
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
113 114 115
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_split_num(num, div_capacity);
}
Z
zhangyang 已提交
116 117 118 119 120 121 122
int get_deconv_plit_num(framework::Tensor *filter_tensor, int stride) {
  auto dims = filter_tensor->dims();
  auto chw = dims[1] * dims[2] / stride * dims[3] / stride;
  auto num = dims[0] * stride;
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_split_num(num, div_capacity);
}
Z
zhangyang 已提交
123

124
int get_filter_num_per_div(framework::Tensor *filter_tensor, int group_num) {
Z
zhangyang 已提交
125
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
126 127
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
128 129 130 131
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
}

Z
zhangyang 已提交
132 133 134 135 136 137 138 139 140
int get_deconv_filter_num_per_div(framework::Tensor *filter_tensor,
                                  int group_num, int stride) {
  auto dims = filter_tensor->dims();
  auto chw = dims[1] * dims[2] / stride * dims[3] / stride;
  auto num = dims[0] * stride;
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
}

Z
zhangyang 已提交
141 142 143 144
int get_aligned_filter_element_num(int chw) {
  return align_to_x(chw, FILTER_ELEMENT_ALIGNMENT);
}

Z
zhangyang 已提交
145 146
void format_filter(framework::Tensor *filter_tensor, float max_value,
                   int group_num) {
147 148
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
Z
zhangyang 已提交
149
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
150
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
151
  auto data_ptr = filter_tensor->data<float>();
Z
zhangyang 已提交
152
  size_t memory_size = num * channel * height * width * sizeof(float);
153
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
Z
zhangyang 已提交
154 155 156 157
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_filter(&new_data, num, channel, height, width, group_num,
                        max_value);
  filter_tensor->reset_data_ptr(new_data);
158
  filter_tensor->set_type(typeid(int8_t));
Z
zhangyang 已提交
159
}
160 161 162 163 164 165 166 167 168
void format_dwconv_filter(framework::Tensor *filter_tensor, float *scale_ptr) {
  auto dims = filter_tensor->dims();
  auto num = dims[0], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_dwconv_filter(&new_data, num, height, width, scale_ptr);
  filter_tensor->reset_data_ptr(new_data);
qnqinan's avatar
update  
qnqinan 已提交
169
  filter_tensor->set_type(typeid(int16_t));
170
}
Z
zhangyang 已提交
171

qnqinan's avatar
qnqinan 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
void format_DWDconv_filter(framework::Tensor *filter_tensor, float *scale_ptr,
                           int stride) {
  auto dims = filter_tensor->dims();
  auto num = dims[0], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  fpga_copy(new_data, data_ptr, memory_size);

  int hw = height * width;
  deconv_filter::deconv_NC_convert(&new_data, num, 1, hw);

  num = dims[1];
  int channel = dims[0];

  deconv_filter::DWDconv_format_filter(&new_data, num, channel, height, width,
                                       scale_ptr, stride);

  //  framework::DDim dims_new =
  //      framework::make_ddim({num, 1, height, width});
  //  filter_tensor->Resize(dims_new);
  filter_tensor->reset_data_ptr(new_data);
194
  filter_tensor->set_type(typeid(int8_t));
qnqinan's avatar
qnqinan 已提交
195 196
}

Z
zhangyang 已提交
197 198 199 200 201 202 203 204 205 206 207 208
void format_fc_filter(framework::Tensor *filter_tensor, float max_value) {
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
  auto dims = filter_tensor->dims();
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * channel * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_fc_filter(&new_data, num, channel, height, width, 1,
                           max_value);
  filter_tensor->reset_data_ptr(new_data);
209
  filter_tensor->set_type(typeid(int8_t));
Z
zhangyang 已提交
210
}
Z
zhangyang 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
void format_deconv_filter(framework::Tensor *filter_tensor, float max_value,
                          int group_num, int stride) {
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
  auto dims = filter_tensor->dims();
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * channel * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  memcpy(new_data, data_ptr, memory_size);

  int hw = height * width;
  deconv_filter::deconv_NC_convert(&new_data, num, channel, hw);

  num = dims[1];
  channel = dims[0];
  deconv_filter::deconv_format_filter(
      &new_data, (int)num, (int)channel,          // NOLINT
      (int)height,                                // NOLINT
      (int)width, group_num, max_value, stride);  // NOLINT

  framework::DDim dims_new =
      framework::make_ddim({num, channel, height, width});
  filter_tensor->Resize(dims_new);
  filter_tensor->reset_data_ptr(new_data);
236
  filter_tensor->set_type(typeid(int8_t));
Z
zhangyang 已提交
237
}
Z
zhangyang 已提交
238

Z
zhangyang 已提交
239 240 241 242 243
void format_bias_scale_array(float **bias_scale_array,
                             int element_num_per_division, int num) {
  bias_scale::format_bias_scale_array(bias_scale_array,
                                      element_num_per_division, num);
}
244 245 246
void format_bias_array(float **bias_array, int num) {
  bias_scale::format_bias_array(bias_array, num);
}
Z
zhangyang 已提交
247

Z
zhangyang 已提交
248 249 250 251 252 253 254 255 256
void format_concat_output(framework::Tensor *out, int height, int width,
                          int image_num, uint32_t *channel_num) {
  int sum_channel = 0, sum_cw = 0;
  for (int i = 0; i < image_num; i++) {
    sum_channel += channel_num[i];
  }

  sum_cw = align_to_x(width * sum_channel, IMAGE_ALIGNMENT);
  auto data_ptr = fpga_malloc(height * sum_cw * sizeof(half));
257
  auto ddim = framework::make_ddim({1, sum_channel, height, width});
Z
zhangyang 已提交
258 259
  out->Resize(ddim);
  out->reset_data_ptr(data_ptr);
260
  out->set_type(typeid(half));
Z
zhangyang 已提交
261
}
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
void format_conv_data(framework::Tensor *filter_tensor,
                      framework::Tensor *ofm_tensor, float **bs_ptr,
                      int group) {
  float max_value = fpga::filter_find_max(filter_tensor);
  fpga::format_filter(filter_tensor, max_value, group);
  int element_num_per_div = fpga::get_filter_num_per_div(filter_tensor, group);
  fpga::format_bias_scale_array(bs_ptr, element_num_per_div,
                                ofm_tensor->dims()[1]);
  fpga::format_fp16_ofm(ofm_tensor);
}
void format_deconv_data(framework::Tensor *filter_tensor,
                        framework::Tensor *ofm_tensor, float **bs_ptr,
                        int group, int sub_conv_n) {
  int channel = ofm_tensor->dims()[1];
  float max_value = filter_find_max(filter_tensor);
  format_deconv_filter(filter_tensor, max_value, group, sub_conv_n);
  int element_num_per_div =
      get_deconv_filter_num_per_div(filter_tensor, group, sub_conv_n);
  format_bias_scale_array(bs_ptr, element_num_per_div, channel * sub_conv_n);
  format_fp16_ofm(ofm_tensor);
}
Z
zhangyang 已提交
283

284 285 286 287 288 289 290 291
void format_dwconv_data(framework::Tensor *filter_tensor,
                        framework::Tensor *ofm_tensor, float *scale_ptr,
                        float **bias_ptr) {
  auto channel = ofm_tensor->dims()[1];
  format_dwconv_filter(filter_tensor, scale_ptr);
  format_bias_array(bias_ptr, channel);
  format_fp16_ofm(ofm_tensor);
}
qnqinan's avatar
qnqinan 已提交
292 293 294 295 296 297 298 299 300 301 302
void format_DWDeconv_data(framework::Tensor *filter_tensor,
                          framework::Tensor *ofm_tensor, float **bs_ptr,
                          int group, int sub_conv_n) {
  int channel = ofm_tensor->dims()[1];
  // dw-deconv
  format_DWDconv_filter(
      filter_tensor,
      (reinterpret_cast<float *>(*bs_ptr) + sub_conv_n * channel), sub_conv_n);
  format_bias_array(bs_ptr, channel);
  format_fp16_ofm(ofm_tensor);
}
303 304
void expand_conv_arg(ConvArgs *arg) {
  ConvArgs args = *arg;
305 306

  auto fpga_bias_scale_len =
307 308
      align_to_x(args.filter_num / args.group_num, 8) * args.group_num;

309
  auto output_height =
310 311 312
      (args.image.height + args.image.pad_height * 2 - args.kernel.height) /
          args.kernel.stride_h +
      1;
313
  auto output_width =
314 315 316
      (args.image.width + args.image.pad_width * 2 - args.kernel.width) /
          args.kernel.stride_w +
      1;
317 318 319 320 321 322 323 324 325 326

  auto filter_per_group = args.filter_num / args.group_num;
  auto channel_per_group = args.image.channels / args.group_num;

  auto image_row_count = args.image.width * args.image.channels;
  auto image_amount_per_row = align_to_x(image_row_count, IMAGE_ALIGNMENT);
  auto image_one_pad_per_row = align_to_x(image_row_count, IMAGE_ALIGNMENT) +
                               args.image.pad_width * args.image.channels;
  auto filter_amount_all =
      align_to_x(args.kernel.height * args.kernel.width * channel_per_group,
327 328
                 FILTER_ELEMENT_ALIGNMENT);

329 330 331
  auto output_amount_per_row = align_to_x(
      (output_width - (args.deconv_tx_param.omit_size) * 2) * args.filter_num,
      IMAGE_ALIGNMENT);
332 333 334 335

  // find the opt partition strategy
  uint64_t res_win;
  uint64_t res_fit = 0;
336
  for (res_win = 1; res_win <= output_width; res_win++) {
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
    if ((align_to_x(
             (args.image.channels *
              (args.kernel.width + (res_win - 1) * args.kernel.stride_w)),
             IMAGE_ALIGNMENT) /
             16 +
         1) *
            args.kernel.height >
        2048) {
      break;
    }
  }

  if (res_win != output_width) {
    res_win -= 1;
  }

  if (((res_win % 2) != 0) && (res_win != 1)) {
    res_win = res_win - 1;
  }
  res_fit = res_win;

358 359 360
  auto block_num = (output_width + res_fit - 1) / res_fit;
  auto block_len = res_fit;
  auto block_last = output_width - res_fit * (block_num - 1);
361

362 363
  auto res_amount_per_row =
      (output_width - (args.deconv_tx_param.omit_size) * 2) * args.filter_num;
364
  auto res_amount_per_row_pad = output_amount_per_row - res_amount_per_row;
365

366 367 368
  auto image_block_amount_per_row =
      args.kernel.stride_w * res_fit * args.image.channels;
  auto filter_pad_width_mul_channel =
369
      args.image.pad_width * args.image.channels;
370
  auto image_amount_per_row_multi_win_first =
qnqinan's avatar
qnqinan 已提交
371
      image_amount_per_row * (2 * args.kernel.stride_h - args.image.pad_height);
372
  auto image_amount_per_row_multi_win =
qnqinan's avatar
qnqinan 已提交
373
      image_amount_per_row * (2 * args.kernel.stride_h);
374

375 376
  auto image_block_num = block_num;
  auto image_block_len =
377 378 379 380 381
      align_to_x((args.image.channels *
                  (args.kernel.width + (block_len - 1) * args.kernel.stride_w)),
                 IMAGE_ALIGNMENT) /
          16 +
      1;
382
  auto image_block_len_last =
383 384 385 386 387 388
      align_to_x(
          (args.image.channels *
           (args.kernel.width + (block_last - 1) * args.kernel.stride_w)),
          IMAGE_ALIGNMENT) /
          16 +
      1;
389 390 391
  auto image_win_cnt = block_len;
  auto image_win_cnt_last = block_last;
  auto res_row_data_align4_pad = res_amount_per_row_pad / 8;
392 393
  auto prog_full_cnt = 1024 / (filter_amount_all / 16 * 2) - 1;
  if (prog_full_cnt == 511) {
394 395
    prog_full_cnt--;
  }
396
  auto post_prog_full_cnt =
397 398 399
      (512 / (align_to_x(args.filter_num, 4) / 4 * 2) > 2)
          ? (512 / (align_to_x(args.filter_num, 4) / 4 * 2) - 2)
          : 0;
qnqinan's avatar
qnqinan 已提交
400 401
  // auto cmd = 0UL | (args.relu_enabled ? USE_RELU : 0) | USE_BIAS;
  auto cmd = 0UL | USE_BIAS;
402

qnqinan's avatar
update  
qnqinan 已提交
403 404
  auto deconv_param = ((args.deconv_tx_param.deconv_en) << 16) |
                      ((args.deconv_tx_param.sub_conv_num) << 8) |
405
                      ((args.deconv_tx_param.omit_size) << 0);
406 407 408
  (*arg).driver.image_address_phy = vaddr_to_paddr(args.image.address);
  (*arg).driver.sb_address_phy = vaddr_to_paddr(args.sb_address);
  (*arg).driver.filter_address_phy = vaddr_to_paddr(args.filter_address);
409 410
  (*arg).driver.output_address_phy = vaddr_to_paddr(args.output.address) +
                                     args.deconv_tx_param.out_addr_offset;
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
  (*arg).driver.output_height = output_height;
  (*arg).driver.output_width = output_width;
  (*arg).driver.filter_per_group = filter_per_group;
  (*arg).driver.channel_per_group = channel_per_group;
  (*arg).driver.image_amount_per_row = image_amount_per_row;
  (*arg).driver.image_one_pad_per_row = image_one_pad_per_row;
  (*arg).driver.filter_amount_all = filter_amount_all;
  (*arg).driver.output_amount_per_row = output_amount_per_row;
  (*arg).driver.image_block_amount_per_row = image_block_amount_per_row;
  (*arg).driver.filter_pad_width_mul_channel = filter_pad_width_mul_channel;
  (*arg).driver.image_amount_per_row_multi_win_first =
      image_amount_per_row_multi_win_first;
  (*arg).driver.image_amount_per_row_multi_win = image_amount_per_row_multi_win;
  (*arg).driver.image_block_num = image_block_num;
  (*arg).driver.image_block_len = image_block_len;
  (*arg).driver.image_block_len_last = image_block_len_last;
  (*arg).driver.image_win_cnt = image_win_cnt;
  (*arg).driver.image_win_cnt_last = image_win_cnt_last;
  (*arg).driver.res_row_data_align4_pad = res_row_data_align4_pad;
  (*arg).driver.prog_full_cnt = prog_full_cnt;
  (*arg).driver.post_prog_full_cnt = post_prog_full_cnt;
  (*arg).driver.fpga_bias_scale_len = fpga_bias_scale_len;
  (*arg).driver.cmd = cmd;
434
  (*arg).driver.deconv_param = deconv_param;
435 436 437 438
}  // expand_conv_arg()

void expand_EW_arg(EWAddArgs *arg) {
  EWAddArgs args = *arg;
qnqinan's avatar
qnqinan 已提交
439 440
  // uint64_t cmd = args.relu_enabled ? USE_RELU : 0;
  uint64_t cmd = 0;
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
  uint64_t datalen = (uint64_t)args.image0.width *
                     (uint64_t)args.image0.height *
                     (uint64_t)args.image0.channels;
  uint64_t coefficient = (uint64_t)args.const0 << 32 | (uint64_t)args.const1;
  uint64_t image0_address_phy = vaddr_to_paddr(args.image0.address);
  uint64_t image1_address_phy = vaddr_to_paddr(args.image1.address);
  uint64_t output_address_phy = vaddr_to_paddr(args.output.address);

  uint64_t image_amount_per_row =
      align_to_x((uint64_t)args.image0.width * (uint64_t)args.image0.channels,
                 IMAGE_ALIGNMENT);
  uint64_t image_image_pixel = ((uint64_t)args.image0.channels << 32) |
                               ((uint64_t)args.image0.width << 16) |
                               (uint64_t)args.image0.height;

  (*arg).driver.image0_address_phy = image0_address_phy;
  (*arg).driver.image1_address_phy = image1_address_phy;
  (*arg).driver.datalen = datalen;
  (*arg).driver.image_image_pixel = image_image_pixel;
  (*arg).driver.image_amount_per_row = image_amount_per_row;
  (*arg).driver.output_address_phy = output_address_phy;
  (*arg).driver.coefficient = coefficient;
  (*arg).driver.cmd = cmd;
}  // expand_EW_arg

Z
zhangyang 已提交
466 467
void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
                    framework::Tensor *out, framework::Tensor *filter,
qnqinan's avatar
qnqinan 已提交
468 469 470 471
                    ActivationType activation_enable,
                    int16_t leaky_relu_negative_slope, int group_num,
                    int stride_h, int stride_w, int padding_h, int padding_w,
                    float *bs_ptr) {
472 473 474
  auto input_ptr = input->data<half>();
  auto filter_ptr = filter->data<int8_t>();
  auto out_ptr = out->data<half>();
Z
zhangyang 已提交
475
  auto deleter = [](void *p) { fpga_free(p); };
476 477

  arg->group_num = (uint32_t)group_num;
478 479
  // Either group_num or split_num = 1;
  arg->split_num = group_num == 1 ? (uint32_t)get_plit_num(filter) : 1;
480 481 482
  arg->filter_num = (uint32_t)filter->dims()[0];
  arg->output.address = out_ptr;
  arg->output.scale_address = out->scale;
Z
zhangyang 已提交
483
  arg->conv_arg =
484
      (ConvArgs *)fpga_malloc(arg->split_num * sizeof(ConvArgs));  // NOLINT
485

Z
zhangyang 已提交
486 487
  arg->shared_conv_arg = std::shared_ptr<ConvArgs>(arg->conv_arg, deleter);

488 489
  memset(arg->conv_arg, 0, arg->split_num * sizeof(struct ConvArgs));

490 491 492
  arg->concat_arg.image_num = arg->split_num;
  arg->concat_arg.image_out = out_ptr;
  arg->concat_arg.scale_out = out->scale;
493 494
  arg->concat_arg.height = (uint32_t)out->dims()[2];
  arg->concat_arg.width = (uint32_t)out->dims()[3];
495 496

  int n = arg->split_num;
497
  arg->concat_arg.images_in =
Z
zhangyang 已提交
498
      static_cast<int16_t **>(fpga_malloc(n * sizeof(int *)));
499
  arg->concat_arg.scales_in =
Z
zhangyang 已提交
500
      static_cast<float **>(fpga_malloc(n * sizeof(float *)));
501
  arg->concat_arg.channel_num =
Z
zhangyang 已提交
502 503 504 505 506 507 508
      static_cast<uint32_t *>(fpga_malloc(n * sizeof(uint32_t)));
  arg->vector_concat_space.push_back(std::shared_ptr<char>(
      reinterpret_cast<char *>(arg->concat_arg.images_in), deleter));
  arg->vector_concat_space.push_back(std::shared_ptr<char>(
      reinterpret_cast<char *>(arg->concat_arg.scales_in), deleter));
  arg->vector_concat_space.push_back(std::shared_ptr<char>(
      reinterpret_cast<char *>(arg->concat_arg.channel_num), deleter));
509

510 511 512
  auto channel = (int)out->dims()[1];  // NOLINT
  int filter_num_per_div = get_filter_num_per_div(filter, group_num);
  int element_num = get_aligned_filter_element_num(
513 514
      (int)(filter->dims()[1] * filter->dims()[2] *  // NOLINT
            filter->dims()[3]));
515 516

  for (int i = 0; i < n; i++) {
qnqinan's avatar
qnqinan 已提交
517 518 519 520
    // arg->conv_arg[i].relu_enabled = relu_enabled;
    arg->conv_arg[i].output.activation.activation_type = activation_enable;
    arg->conv_arg[i].output.activation.leaky_relu_negative_slope =
        leaky_relu_negative_slope;
Z
zhangyang 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534
    arg->conv_arg[i].group_num = (uint32_t)group_num;
    arg->conv_arg[i].kernel.stride_h = (uint32_t)stride_h;
    arg->conv_arg[i].kernel.stride_w = (uint32_t)stride_w;
    arg->conv_arg[i].kernel.height = (uint32_t)filter->dims()[2];
    arg->conv_arg[i].kernel.width = (uint32_t)filter->dims()[3];
    arg->conv_arg[i].image.address = input_ptr;
    arg->conv_arg[i].image.channels = (uint32_t)input->dims()[1];
    arg->conv_arg[i].image.height = (uint32_t)input->dims()[2];
    arg->conv_arg[i].image.width = (uint32_t)input->dims()[3];
    arg->conv_arg[i].image.scale_address = input->scale;
    arg->conv_arg[i].image.pad_height = (uint32_t)padding_h;
    arg->conv_arg[i].image.pad_width = (uint32_t)padding_w;
    arg->conv_arg[i].filter_scale_address = filter->scale;
    arg->conv_arg[i].filter_num = (uint32_t)(
535 536
        i == n - 1 ? channel - (n - 1) * filter_num_per_div  // NOLINT
                   : filter_num_per_div);
537

Z
zhangyang 已提交
538
    size_t filter_size =
539 540 541
        element_num *
        align_to_x(arg->conv_arg[i].filter_num, FILTER_NUM_ALIGNMENT) *
        sizeof(int8_t);
542 543
    auto filter_head = &(
        (int8_t *)filter_ptr)[i * element_num * filter_num_per_div];  // NOLINT
Z
zhangyang 已提交
544
    arg->conv_arg[i].filter_address = fpga_malloc(filter_size);
Z
zhangyang 已提交
545 546
    arg->vector_conv_space.push_back(std::shared_ptr<char>(
        reinterpret_cast<char *>(arg->conv_arg[i].filter_address), deleter));
Z
zhangyang 已提交
547 548 549
    memcpy(arg->conv_arg[i].filter_address, filter_head, filter_size);
    fpga_flush(arg->conv_arg[i].filter_address, filter_size);

550 551 552
    size_t bs_size = 2 *
                     align_to_x(arg->conv_arg[i].filter_num, BS_NUM_ALIGNMENT) *
                     sizeof(float);
Z
zhangyang 已提交
553 554
    auto bs_head = &bs_ptr[i * filter_num_per_div * 2];
    arg->conv_arg[i].sb_address = fpga_malloc(bs_size);
Z
zhangyang 已提交
555 556
    arg->vector_conv_space.push_back(std::shared_ptr<char>(
        reinterpret_cast<char *>(arg->conv_arg[i].sb_address), deleter));
Z
zhangyang 已提交
557 558 559
    memcpy(arg->conv_arg[i].sb_address, bs_head, bs_size);
    fpga_flush(arg->conv_arg[i].sb_address, bs_size);

560
    if (n > 1) {
Z
zhangyang 已提交
561
      arg->conv_arg[i].output.scale_address =
Z
zhangyang 已提交
562
          static_cast<float *>(fpga_malloc(2 * sizeof(float)));
563 564 565 566 567 568
      arg->conv_arg[i].output.address =
          fpga_malloc(out->dims()[2] *
                      align_to_x((int)(out->dims()[3] *  // NOLINT
                                       arg->conv_arg[i].filter_num),
                                 IMAGE_ALIGNMENT) *
                      sizeof(half));
Z
zhangyang 已提交
569 570 571 572 573
      arg->vector_conv_space.push_back(std::shared_ptr<char>(
          reinterpret_cast<char *>(arg->conv_arg[i].output.scale_address),
          deleter));
      arg->vector_conv_space.push_back(std::shared_ptr<char>(
          reinterpret_cast<char *>(arg->conv_arg[i].output.address), deleter));
574
    } else {
Z
zhangyang 已提交
575 576
      arg->conv_arg[i].output.scale_address = out->scale;
      arg->conv_arg[i].output.address = out_ptr;
577 578
    }

579
    arg->concat_arg.images_in[i] =
Z
zhangyang 已提交
580 581 582
        (half *)arg->conv_arg[i].output.address;  // NOLINT
    arg->concat_arg.scales_in[i] = arg->conv_arg[i].output.scale_address;
    arg->concat_arg.channel_num[i] = arg->conv_arg[i].filter_num;
583 584

    expand_conv_arg(&arg->conv_arg[i]);
585
  }
Z
zhangyang 已提交
586 587
  filter->reset_data_ptr(nullptr);
  fpga_free(bs_ptr);
588 589
}  // fill_split_arg

Z
zhangyang 已提交
590 591
void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
                     framework::Tensor *out, framework::Tensor *filter,
qnqinan's avatar
qnqinan 已提交
592 593 594
                     ActivationType activation_enable,
                     int16_t leaky_relu_negative_slope, int group_num,
                     int stride_h, int stride_w, int padding_h, int padding_w,
Z
zhangyang 已提交
595
                     float *bs_ptr) {
596 597
  auto input_ptr = input->data<half>();
  auto filter_ptr = filter->data<int8_t>();
Z
zhangyang 已提交
598
  auto deleter = [](void *p) { fpga_free(p); };
Z
zhangyang 已提交
599 600

  arg->group_num = (uint32_t)group_num;
601
  arg->sub_conv_num = (uint32_t)stride_h;
Z
zhangyang 已提交
602
  arg->filter_num = (uint32_t)filter->dims()[0];
603
  uint32_t sub_conv_num = arg->sub_conv_num;
604 605 606
  int sub_pad =
      deconv_filter::deconv_calc_sub_pad((int)filter->dims()[3],  // NOLINT
                                         padding_w, stride_w);
607
  auto sub_filter_width = (uint32_t)deconv_filter::deconv_get_sub_filter_axis(
608
      (int)filter->dims()[3], stride_w);  // NOLINT
609

610
  auto sub_output_width = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
611
      (int)input->dims()[3], sub_pad, sub_filter_width);  // NOLINT
612
  auto sub_output_height = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
613
      (int)input->dims()[2], sub_pad, sub_filter_width);  // NOLINT
Z
zhangyang 已提交
614

615 616 617
  arg->sub_output_width = (uint32_t)sub_output_width;
  arg->sub_output_height = (uint32_t)sub_output_height;
  arg->omit_size = (uint32_t)deconv_filter::deconv_get_omit(
618
      stride_w, (int)filter->dims()[3], padding_w);  // NOLINT
Z
zhangyang 已提交
619

620
  auto sub_channels = (int)input->dims()[1];  // NOLINT
621
  uint32_t omit_size = arg->omit_size;
Z
zhangyang 已提交
622
  int real_out_width = sub_output_width * sub_conv_num - 2 * omit_size;
Z
zhangyang 已提交
623 624
  int sub_filter_num = sub_conv_num * (arg->filter_num);

625 626 627
  framework::DDim dims_out_new = framework::make_ddim(
      {1, arg->filter_num, sub_output_height * sub_conv_num, real_out_width});
  fpga::format_fp16_ofm(out, dims_out_new);
628
  auto out_ptr = out->data<half>();
629
  arg->output.address =
qnqinan's avatar
update  
qnqinan 已提交
630
      (half *)out_ptr +  // NOLINT
631 632 633 634 635
      omit_size * sizeof(half) *
          (align_to_x(real_out_width * arg->filter_num, IMAGE_ALIGNMENT));
  arg->output.scale_address = out->scale;

  uint32_t conv_output_size =
Z
zhangyang 已提交
636 637
      (align_to_x(sub_output_width * sub_filter_num, IMAGE_ALIGNMENT)) *
      sub_output_height;
638
  uint32_t split_num =
Z
zhangyang 已提交
639 640
      group_num == 1 ? (uint32_t)get_deconv_plit_num(filter, sub_conv_num) : 1;

Z
zhangyang 已提交
641
  for (int i = 0; i < sub_conv_num; ++i) {
Z
zhangyang 已提交
642 643
    arg->split_conv_args.push_back(std::make_shared<SplitConvArgs>());
    arg->split_conv_args[i]->filter_num =
Z
zhangyang 已提交
644
        (arg->sub_conv_num) * (arg->filter_num);
Z
zhangyang 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
    arg->split_conv_args[i]->group_num = (uint32_t)group_num;
    arg->split_conv_args[i]->split_num = split_num;
    arg->split_conv_args[i]->concat_arg.height = sub_output_height;
    arg->split_conv_args[i]->concat_arg.width = sub_output_width;
    arg->split_conv_args[i]->concat_arg.image_num = split_num;

    arg->split_conv_args[i]->conv_arg =
        static_cast<ConvArgs *>(fpga_malloc(split_num * sizeof(ConvArgs)));
    arg->split_conv_args[i]->concat_arg.images_in =
        static_cast<int16_t **>(fpga_malloc(split_num * sizeof(int16_t *)));
    arg->split_conv_args[i]->concat_arg.scales_in =
        static_cast<float **>(fpga_malloc(split_num * sizeof(float *)));
    arg->split_conv_args[i]->concat_arg.channel_num =
        static_cast<uint32_t *>(fpga_malloc(split_num * sizeof(uint32_t)));
    arg->split_conv_args[i]->shared_conv_arg =
        std::shared_ptr<ConvArgs>(arg->split_conv_args[i]->conv_arg, deleter);
    arg->split_conv_args[i]->vector_concat_space.push_back(
        std::shared_ptr<char>(
            reinterpret_cast<char *>(
                arg->split_conv_args[i]->concat_arg.images_in),
            deleter));
    arg->split_conv_args[i]->vector_concat_space.push_back(
        std::shared_ptr<char>(
            reinterpret_cast<char *>(
                arg->split_conv_args[i]->concat_arg.scales_in),
            deleter));
    arg->split_conv_args[i]->vector_concat_space.push_back(
        std::shared_ptr<char>(
            reinterpret_cast<char *>(
                arg->split_conv_args[i]->concat_arg.channel_num),
            deleter));
Z
zhangyang 已提交
676
  }
Z
zhangyang 已提交
677

678 679
  auto filter_num_per_div =
      (uint32_t)get_deconv_filter_num_per_div(filter, group_num, stride_w);
Z
zhangyang 已提交
680
  int element_num = get_aligned_filter_element_num(
681
      (int)(sub_channels * sub_filter_width * sub_filter_width));  // NOLINT
Z
zhangyang 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696

  int chw = sub_channels * sub_filter_width * sub_filter_width;
  int division_capacity = filter::calc_division_capacity(chw);
  int num_per_div_before_alignment =
      filter::calc_num_per_div(sub_filter_num, group_num, division_capacity);
  int num_per_div_after_alignment =
      align_to_x(num_per_div_before_alignment, FILTER_NUM_ALIGNMENT);
  int div_num = (sub_filter_num + num_per_div_before_alignment - 1) /
                num_per_div_before_alignment;
  int residual = sub_filter_num % num_per_div_before_alignment;
  int num_after_alignment = num_per_div_after_alignment *
                                ((residual == 0) ? div_num : (div_num - 1)) +
                            align_to_x(residual, FILTER_NUM_ALIGNMENT);

  int filter_sub_conv_offset = element_num * num_after_alignment;
697
  uint32_t out_addr_offset = 0;
Z
zhangyang 已提交
698
  for (int i = 0; i < sub_conv_num; ++i) {
Z
zhangyang 已提交
699
    if (sub_conv_num == 1) {
Z
zhangyang 已提交
700 701
      arg->split_conv_args[i]->output.address = arg->output.address;
      arg->split_conv_args[i]->output.scale_address = arg->output.scale_address;
702
      out_addr_offset = 0;
Z
zhangyang 已提交
703

Z
zhangyang 已提交
704
    } else {
705
      out_addr_offset =
Z
zhangyang 已提交
706
          sizeof(int16_t) * (sub_conv_num - 1 - i) *
707 708
          (align_to_x(real_out_width * arg->filter_num, IMAGE_ALIGNMENT));

Z
zhangyang 已提交
709 710 711 712 713 714 715 716
      arg->split_conv_args[i]->output.address = out_ptr;
      arg->split_conv_args[i]->output.scale_address =
          static_cast<float *>(fpga_malloc(2 * sizeof(float)));
      arg->split_conv_args[i]->vector_conv_space.push_back(
          std::shared_ptr<char>(
              reinterpret_cast<char *>(
                  arg->split_conv_args[i]->output.scale_address),
              deleter));
Z
zhangyang 已提交
717 718
    }

Z
zhangyang 已提交
719
    for (int j = 0; j < split_num; ++j) {
qnqinan's avatar
qnqinan 已提交
720 721 722 723 724 725
      arg->split_conv_args[i]->conv_arg[j].output.activation.activation_type =
          activation_enable;
      arg->split_conv_args[i]
          ->conv_arg[j]
          .output.activation.leaky_relu_negative_slope =
          leaky_relu_negative_slope;
Z
zhangyang 已提交
726
      arg->split_conv_args[i]->conv_arg[j].group_num = (uint32_t)group_num;
Z
zhangyang 已提交
727

Z
zhangyang 已提交
728
      arg->split_conv_args[i]->conv_arg[j].kernel.width =
Z
zhangyang 已提交
729
          (uint32_t)sub_filter_width;
Z
zhangyang 已提交
730
      arg->split_conv_args[i]->conv_arg[j].kernel.height =
Z
zhangyang 已提交
731
          (uint32_t)sub_filter_width;
Z
zhangyang 已提交
732 733
      arg->split_conv_args[i]->conv_arg[j].kernel.stride_w = 1;
      arg->split_conv_args[i]->conv_arg[j].kernel.stride_h = 1;
Z
zhangyang 已提交
734

Z
zhangyang 已提交
735 736
      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.deconv_en = 1;
      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.sub_conv_num =
737
          sub_conv_num;
Z
zhangyang 已提交
738 739 740
      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.omit_size =
          omit_size;
      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.out_addr_offset =
741 742
          out_addr_offset;

Z
zhangyang 已提交
743 744
      arg->split_conv_args[i]->conv_arg[j].image.scale_address = input->scale;
      arg->split_conv_args[i]->conv_arg[j].image.channels =
Z
zhangyang 已提交
745
          (uint32_t)sub_channels;
Z
zhangyang 已提交
746
      arg->split_conv_args[i]->conv_arg[j].image.width =
Z
zhangyang 已提交
747
          (uint32_t)input->dims()[3];
Z
zhangyang 已提交
748
      arg->split_conv_args[i]->conv_arg[j].image.height =
Z
zhangyang 已提交
749
          (uint32_t)input->dims()[2];
Z
zhangyang 已提交
750 751 752
      arg->split_conv_args[i]->conv_arg[j].image.pad_width = (uint32_t)sub_pad;
      arg->split_conv_args[i]->conv_arg[j].image.pad_height = (uint32_t)sub_pad;
      arg->split_conv_args[i]->conv_arg[j].image.address = input_ptr;
Z
zhangyang 已提交
753

Z
zhangyang 已提交
754 755
      arg->split_conv_args[i]->conv_arg[j].filter_scale_address = filter->scale;
      arg->split_conv_args[i]->conv_arg[j].filter_num =
756 757 758
          (uint32_t)(j == split_num - 1
                         ? sub_filter_num - (split_num - 1) * filter_num_per_div
                         : filter_num_per_div);
Z
zhangyang 已提交
759 760 761

      size_t filter_size =
          element_num *
Z
zhangyang 已提交
762
          align_to_x(arg->split_conv_args[i]->conv_arg[j].filter_num,
Z
zhangyang 已提交
763 764
                     FILTER_NUM_ALIGNMENT) *
          sizeof(int8_t);
qnqinan's avatar
update  
qnqinan 已提交
765 766 767
      auto filter_head = &((
          int8_t *)filter_ptr)[j * element_num * filter_num_per_div +  // NOLINT
                               i * filter_sub_conv_offset];
Z
zhangyang 已提交
768
      arg->split_conv_args[i]->conv_arg[j].filter_address =
Z
zhangyang 已提交
769
          fpga_malloc(filter_size);
Z
zhangyang 已提交
770 771 772 773 774 775 776
      arg->split_conv_args[i]->vector_conv_space.push_back(
          std::shared_ptr<char>(
              reinterpret_cast<char *>(
                  arg->split_conv_args[i]->conv_arg[j].filter_address),
              deleter));

      memcpy(arg->split_conv_args[i]->conv_arg[j].filter_address, filter_head,
Z
zhangyang 已提交
777
             filter_size);
Z
zhangyang 已提交
778
      fpga_flush(arg->split_conv_args[i]->conv_arg[j].filter_address,
Z
zhangyang 已提交
779 780 781
                 filter_size);

      size_t bs_align_num = align_to_x(
Z
zhangyang 已提交
782
          arg->split_conv_args[i]->conv_arg[j].filter_num, BS_NUM_ALIGNMENT);
Z
zhangyang 已提交
783 784 785
      size_t bs_size = 2 * bs_align_num * sizeof(float);
      auto bs_head = &bs_ptr[j * filter_num_per_div * 2];

Z
zhangyang 已提交
786 787 788 789 790 791 792 793 794
      arg->split_conv_args[i]->conv_arg[j].sb_address = fpga_malloc(bs_size);
      arg->split_conv_args[i]->vector_conv_space.push_back(
          std::shared_ptr<char>(
              reinterpret_cast<char *>(
                  arg->split_conv_args[i]->conv_arg[j].sb_address),
              deleter));

      memcpy(arg->split_conv_args[i]->conv_arg[j].sb_address, bs_head, bs_size);
      fpga_flush(arg->split_conv_args[i]->conv_arg[j].sb_address, bs_size);
Z
zhangyang 已提交
795 796

      if (split_num == 1) {
Z
zhangyang 已提交
797 798 799 800
        arg->split_conv_args[i]->conv_arg[j].output.address =
            arg->split_conv_args[i]->output.address;
        arg->split_conv_args[i]->conv_arg[j].output.scale_address =
            arg->split_conv_args[i]->output.scale_address;
Z
zhangyang 已提交
801
      } else {
Z
zhangyang 已提交
802 803 804 805 806 807 808 809 810 811 812 813 814 815
        arg->split_conv_args[i]->conv_arg[j].output.address =
            fpga_malloc(conv_output_size * sizeof(int16_t));
        arg->split_conv_args[i]->conv_arg[j].output.scale_address =
            static_cast<float *>(fpga_malloc(2 * sizeof(float)));
        arg->split_conv_args[i]->vector_conv_space.push_back(
            std::shared_ptr<char>(
                reinterpret_cast<char *>(
                    arg->split_conv_args[i]->conv_arg[j].output.address),
                deleter));
        arg->split_conv_args[i]->vector_conv_space.push_back(
            std::shared_ptr<char>(
                reinterpret_cast<char *>(
                    arg->split_conv_args[i]->conv_arg[j].output.scale_address),
                deleter));
Z
zhangyang 已提交
816
      }
817
      arg->split_conv_args[i]->concat_arg.images_in[j] = static_cast<half *>(
Z
zhangyang 已提交
818 819 820 821 822 823 824
          arg->split_conv_args[i]->conv_arg[j].output.address);
      arg->split_conv_args[i]->concat_arg.scales_in[j] =
          arg->split_conv_args[i]->conv_arg[j].output.scale_address;
      arg->split_conv_args[i]->concat_arg.channel_num[j] =
          arg->split_conv_args[i]->conv_arg[j].filter_num;

      expand_conv_arg(&(arg->split_conv_args[i]->conv_arg[j]));
Z
zhangyang 已提交
825 826
    }

Z
zhangyang 已提交
827 828 829 830
    arg->split_conv_args[i]->concat_arg.image_out =
        arg->split_conv_args[i]->output.address;
    arg->split_conv_args[i]->concat_arg.scale_out =
        arg->split_conv_args[i]->output.scale_address;
Z
zhangyang 已提交
831
  }
832
  filter->reset_data_ptr(nullptr);
Z
zhangyang 已提交
833
  fpga_free(bs_ptr);
834 835
}  // fill_deconv_arg

836 837
void fill_dwconv_arg(struct DWconvArgs *arg, framework::Tensor *input,
                     framework::Tensor *out, framework::Tensor *filter,
qnqinan's avatar
qnqinan 已提交
838 839 840 841
                     ActivationType activation_enable,
                     int16_t leaky_relu_negative_slope, int stride_h,
                     int stride_w, int padding_h, int padding_w,
                     float *bias_ptr) {
J
jameswu2014 已提交
842 843 844 845
  auto deleter = [](void *p) { fpga_free(p); };
  arg->vector_dwconv_space.push_back(
      std::shared_ptr<char>(reinterpret_cast<char *>(bias_ptr), deleter));

qnqinan's avatar
update  
qnqinan 已提交
846
  auto filter_ptr = filter->data<int16_t>();
847
  auto input_ptr = input->data<half>();
J
jameswu2014 已提交
848
  auto output_ptr = out->mutable_data<half>();
849
  arg->sub_conv_num = 1;
qnqinan's avatar
qnqinan 已提交
850 851 852
  // arg->relu_enabled = relu_enabled;
  arg->output.activation.activation_type = activation_enable;
  arg->output.activation.leaky_relu_negative_slope = leaky_relu_negative_slope;
853 854
  arg->bias_address = bias_ptr;
  arg->filter_address = filter_ptr;
Z
zhangyang 已提交
855 856 857 858
  arg->kernel.height = (uint32_t)filter->dims()[2];
  arg->kernel.width = (uint32_t)filter->dims()[3];
  arg->kernel.stride_h = (uint32_t)stride_h;
  arg->kernel.stride_w = (uint32_t)stride_w;
859 860 861 862
  arg->image.address = input_ptr;
  arg->image.channels = (uint32_t)input->dims()[1];
  arg->image.height = (uint32_t)input->dims()[2];
  arg->image.width = (uint32_t)input->dims()[3];
Z
zhangyang 已提交
863 864
  arg->image.pad_height = (uint32_t)padding_h;
  arg->image.pad_width = (uint32_t)padding_w;
865 866 867 868 869
  arg->image.scale_address = input->scale;
  arg->output.address = output_ptr;
  arg->output.scale_address = out->scale;
}  // end dwconv arg fill

qnqinan's avatar
qnqinan 已提交
870 871
void fill_DWDeconv_arg(struct DWDeconvArgs *arg, framework::Tensor *input,
                       framework::Tensor *out, framework::Tensor *filter,
qnqinan's avatar
qnqinan 已提交
872 873 874 875
                       ActivationType activation_enable,
                       int16_t leaky_relu_negative_slope, int stride_h,
                       int stride_w, int padding_h, int padding_w,
                       float *bias_ptr) {
876 877
  auto filter_ptr = filter->data<int8_t>();
  auto input_ptr = input->data<half>();
qnqinan's avatar
qnqinan 已提交
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911

  auto deleter = [](void *p) { fpga_free(p); };

  arg->group_num = (uint32_t)filter->dims()[0];
  arg->sub_conv_num = (uint32_t)stride_w;
  arg->filter_num = (uint32_t)filter->dims()[0];

  int sub_conv_num = stride_w;

  int sub_pad =
      deconv_filter::deconv_calc_sub_pad((int)filter->dims()[3],  // NOLINT
                                         padding_w, stride_w);
  auto sub_filter_width = (uint32_t)deconv_filter::deconv_get_sub_filter_axis(
      (int)filter->dims()[3], stride_w);  // NOLINT

  auto sub_output_width = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
      (int)input->dims()[3], sub_pad, sub_filter_width);  // NOLINT
  auto sub_output_height = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
      (int)input->dims()[2], sub_pad, sub_filter_width);  // NOLINT

  arg->sub_output_width = (uint32_t)sub_output_width;
  arg->sub_output_height = (uint32_t)sub_output_height;
  arg->omit_size = (uint32_t)deconv_filter::deconv_get_omit(
      stride_w, (int)filter->dims()[3], padding_w);  // NOLINT

  auto sub_channels = (int)input->dims()[1];  // NOLINT
  uint32_t omit_size = arg->omit_size;
  int real_out_width = sub_output_width * sub_conv_num - 2 * omit_size;
  int real_out_height = sub_output_height * sub_conv_num - 2 * omit_size;
  int sub_filter_num = sub_conv_num * (arg->filter_num);

  framework::DDim dims_out_new = framework::make_ddim(
      {1, arg->filter_num, real_out_height, real_out_width});
  fpga::format_fp16_ofm(out, dims_out_new);
912
  auto out_ptr = out->data<half>();
qnqinan's avatar
qnqinan 已提交
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930

  /*====For Addition
  arg->output.address =
      (half *)out_ptr +  // NOLINT
      omit_size * sizeof(half) *
          (align_to_x(real_out_width * arg->filter_num, IMAGE_ALIGNMENT));
          */
  arg->output.address = out_ptr;
  arg->output.scale_address = out->scale;

  int filter_offset = sub_filter_width * sub_filter_width *
                      align_to_x(sub_channels, FILTER_ELEMENT_ALIGNMENT) *
                      arg->sub_conv_num;

  for (int i = 0; i < sub_conv_num; ++i) {
    arg->dw_conv_args.push_back(std::make_shared<DWconvArgs>());

    arg->dw_conv_args[i]->sub_conv_num = sub_conv_num;
qnqinan's avatar
qnqinan 已提交
931 932 933 934
    // arg->dw_conv_args[i]->relu_enabled = relu_enabled;
    arg->dw_conv_args[i]->output.activation.activation_type = activation_enable;
    arg->dw_conv_args[i]->output.activation.leaky_relu_negative_slope =
        leaky_relu_negative_slope;
qnqinan's avatar
qnqinan 已提交
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
    arg->dw_conv_args[i]->bias_address = bias_ptr;

    arg->dw_conv_args[i]->filter_address =
        fpga_malloc(filter_offset * sizeof(int16_t));
    memcpy(arg->dw_conv_args[i]->filter_address,
           (reinterpret_cast<half *>(filter_ptr) + i * filter_offset),
           filter_offset * sizeof(int16_t));
    arg->vector_dw_conv_space.push_back(std::shared_ptr<char>(
        reinterpret_cast<char *>(arg->dw_conv_args[i]->filter_address),
        deleter));

    arg->dw_conv_args[i]->kernel.height = (uint32_t)sub_filter_width;
    arg->dw_conv_args[i]->kernel.width = (uint32_t)sub_filter_width;

    arg->dw_conv_args[i]->kernel.stride_h = (uint32_t)1;
    arg->dw_conv_args[i]->kernel.stride_w = (uint32_t)1;
    arg->dw_conv_args[i]->image.address = input_ptr;
    arg->dw_conv_args[i]->image.channels = (uint32_t)input->dims()[1];
    arg->dw_conv_args[i]->image.height = (uint32_t)input->dims()[2];
    arg->dw_conv_args[i]->image.width = (uint32_t)input->dims()[3];

    arg->dw_conv_args[i]->image.pad_height = sub_pad;
    arg->dw_conv_args[i]->image.pad_width = sub_pad;
    arg->dw_conv_args[i]->image.scale_address = input->scale;

    arg->dw_conv_args[i]->output.address =
        fpga_malloc(sub_output_height *
                    align_to_x(sub_output_width * sub_channels * sub_conv_num,
                               IMAGE_ALIGNMENT) *
                    sizeof(int16_t));
    arg->dw_conv_args[i]->output.scale_address =
        static_cast<float *>(fpga_malloc(2 * sizeof(float)));
qnqinan's avatar
update  
qnqinan 已提交
967
    arg->vector_dw_conv_space.push_back(std::shared_ptr<char>(
qnqinan's avatar
qnqinan 已提交
968 969
        reinterpret_cast<char *>(arg->dw_conv_args[i]->output.address),
        deleter));
qnqinan's avatar
update  
qnqinan 已提交
970
    arg->vector_dw_conv_space.push_back(std::shared_ptr<char>(
qnqinan's avatar
qnqinan 已提交
971 972 973 974 975 976 977
        reinterpret_cast<char *>(arg->dw_conv_args[i]->output.scale_address),
        deleter));
  }

  // arg->output.scale_address = out->scale;
}  // end dwconv arg fill

H
hanbuhe 已提交
978
}  // namespace fpga
Z
zhangyang 已提交
979
}  // namespace paddle_mobile