sched_fair.c 34.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
I
Ingo Molnar 已提交
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50 51 52

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
53
 */
54
const_debug unsigned int sysctl_sched_child_runs_first = 1;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77 78 79
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

80
#ifdef CONFIG_FAIR_GROUP_SCHED
81

82
/* cpu runqueue to which this cfs_rq is attached */
83 84
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
85
	return cfs_rq->rq;
86 87
}

88 89
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
90

91
#else	/* CONFIG_FAIR_GROUP_SCHED */
92

93 94 95
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
}

#define entity_is_task(se)	1

#endif	/* CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}


/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

112
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
113
{
114 115
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
116 117 118 119 120
		min_vruntime = vruntime;

	return min_vruntime;
}

121
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
122 123 124 125 126 127 128 129
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

130
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
131
{
132
	return se->vruntime - cfs_rq->min_vruntime;
133 134
}

135 136 137
/*
 * Enqueue an entity into the rb-tree:
 */
138
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
139 140 141 142
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
143
	s64 key = entity_key(cfs_rq, se);
144 145 146 147 148 149 150 151 152 153 154 155
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
156
		if (key < entity_key(cfs_rq, entry)) {
157 158 159 160 161 162 163 164 165 166 167
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
P
Peter Zijlstra 已提交
168
	if (leftmost) {
I
Ingo Molnar 已提交
169
		cfs_rq->rb_leftmost = &se->run_node;
P
Peter Zijlstra 已提交
170 171 172 173 174 175 176
		/*
		 * maintain cfs_rq->min_vruntime to be a monotonic increasing
		 * value tracking the leftmost vruntime in the tree.
		 */
		cfs_rq->min_vruntime =
			max_vruntime(cfs_rq->min_vruntime, se->vruntime);
	}
177 178 179 180 181

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

182
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
183
{
P
Peter Zijlstra 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;
		struct sched_entity *next;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;

		if (next_node) {
			next = rb_entry(next_node,
					struct sched_entity, run_node);
			cfs_rq->min_vruntime =
				max_vruntime(cfs_rq->min_vruntime,
					     next->vruntime);
		}
	}
I
Ingo Molnar 已提交
199

200 201 202
	if (cfs_rq->next == se)
		cfs_rq->next = NULL;

203 204 205 206 207 208 209 210 211 212 213 214 215
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

216 217
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
218
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
219

220 221
	if (!last)
		return NULL;
222 223

	return rb_entry(last, struct sched_entity, run_node);
224 225
}

226 227 228 229
/**************************************************************
 * Scheduling class statistics methods:
 */

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
246 247 248 249 250 251 252 253 254

/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
255 256 257
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
258
	unsigned long nr_latency = sched_nr_latency;
259 260

	if (unlikely(nr_running > nr_latency)) {
261
		period = sysctl_sched_min_granularity;
262 263 264 265 266 267
		period *= nr_running;
	}

	return period;
}

268 269 270 271 272 273
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
 * s = p*w/rw
 */
P
Peter Zijlstra 已提交
274
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
275
{
I
Ingo Molnar 已提交
276 277
	return calc_delta_mine(__sched_period(cfs_rq->nr_running),
			       se->load.weight, &cfs_rq->load);
278 279
}

280 281 282 283 284 285
/*
 * We calculate the vruntime slice.
 *
 * vs = s/w = p/rw
 */
static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
P
Peter Zijlstra 已提交
286
{
287
	u64 vslice = __sched_period(nr_running);
P
Peter Zijlstra 已提交
288

P
Peter Zijlstra 已提交
289
	vslice *= NICE_0_LOAD;
290
	do_div(vslice, rq_weight);
P
Peter Zijlstra 已提交
291

292 293
	return vslice;
}
294

295 296 297 298
static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	return __sched_vslice(cfs_rq->load.weight + se->load.weight,
			cfs_rq->nr_running + 1);
P
Peter Zijlstra 已提交
299 300
}

301 302 303 304 305
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
306 307
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
308
{
309
	unsigned long delta_exec_weighted;
310

311
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
312 313

	curr->sum_exec_runtime += delta_exec;
314
	schedstat_add(cfs_rq, exec_clock, delta_exec);
I
Ingo Molnar 已提交
315 316 317 318 319 320
	delta_exec_weighted = delta_exec;
	if (unlikely(curr->load.weight != NICE_0_LOAD)) {
		delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
							&curr->load);
	}
	curr->vruntime += delta_exec_weighted;
321 322
}

323
static void update_curr(struct cfs_rq *cfs_rq)
324
{
325
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
326
	u64 now = rq_of(cfs_rq)->clock;
327 328 329 330 331 332 333 334 335 336
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
337
	delta_exec = (unsigned long)(now - curr->exec_start);
338

I
Ingo Molnar 已提交
339 340
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
341 342 343 344 345 346

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
	}
347 348 349
}

static inline void
350
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
351
{
352
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
353 354 355 356 357
}

/*
 * Task is being enqueued - update stats:
 */
358
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
359 360 361 362 363
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
364
	if (se != cfs_rq->curr)
365
		update_stats_wait_start(cfs_rq, se);
366 367 368
}

static void
369
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
370
{
371 372
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
373 374 375
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
I
Ingo Molnar 已提交
376
	schedstat_set(se->wait_start, 0);
377 378 379
}

static inline void
380
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
381 382 383 384 385
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
386
	if (se != cfs_rq->curr)
387
		update_stats_wait_end(cfs_rq, se);
388 389 390 391 392 393
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
394
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
395 396 397 398
{
	/*
	 * We are starting a new run period:
	 */
399
	se->exec_start = rq_of(cfs_rq)->clock;
400 401 402 403 404 405
}

/**************************************************
 * Scheduling class queueing methods:
 */

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

422
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
423 424 425
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
426
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
A
Arjan van de Ven 已提交
427
		struct task_struct *tsk = task_of(se);
428 429 430 431 432 433 434 435 436

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
437 438

		account_scheduler_latency(tsk, delta >> 10, 1);
439 440
	}
	if (se->block_start) {
441
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
A
Arjan van de Ven 已提交
442
		struct task_struct *tsk = task_of(se);
443 444 445 446 447 448 449 450 451

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
452 453 454 455 456 457 458

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
459

I
Ingo Molnar 已提交
460 461 462
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
A
Arjan van de Ven 已提交
463
		account_scheduler_latency(tsk, delta >> 10, 0);
464 465 466 467
	}
#endif
}

P
Peter Zijlstra 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

481 482 483
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
P
Peter Zijlstra 已提交
484
	u64 vruntime;
485

P
Peter Zijlstra 已提交
486 487 488 489 490
	if (first_fair(cfs_rq)) {
		vruntime = min_vruntime(cfs_rq->min_vruntime,
				__pick_next_entity(cfs_rq)->vruntime);
	} else
		vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
491

492 493 494 495 496 497
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
498
	if (initial && sched_feat(START_DEBIT))
499
		vruntime += sched_vslice_add(cfs_rq, se);
500

I
Ingo Molnar 已提交
501
	if (!initial) {
502
		/* sleeps upto a single latency don't count. */
503 504 505 506
		if (sched_feat(NEW_FAIR_SLEEPERS)) {
			vruntime -= calc_delta_fair(sysctl_sched_latency,
						    &cfs_rq->load);
		}
507

508 509
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
510 511
	}

P
Peter Zijlstra 已提交
512
	se->vruntime = vruntime;
513 514
}

515
static void
516
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
517 518
{
	/*
519
	 * Update run-time statistics of the 'current'.
520
	 */
521
	update_curr(cfs_rq);
522

I
Ingo Molnar 已提交
523
	if (wakeup) {
524
		place_entity(cfs_rq, se, 0);
525
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
526
	}
527

528
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
529
	check_spread(cfs_rq, se);
530 531
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
532
	account_entity_enqueue(cfs_rq, se);
533 534
}

I
Ingo Molnar 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (!se->last_wakeup)
		return;

	update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
	se->last_wakeup = 0;
}

550
static void
551
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
552
{
553 554 555 556 557
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

558
	update_stats_dequeue(cfs_rq, se);
559
	if (sleep) {
I
Ingo Molnar 已提交
560
		update_avg_stats(cfs_rq, se);
P
Peter Zijlstra 已提交
561
#ifdef CONFIG_SCHEDSTATS
562 563 564 565
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
566
				se->sleep_start = rq_of(cfs_rq)->clock;
567
			if (tsk->state & TASK_UNINTERRUPTIBLE)
568
				se->block_start = rq_of(cfs_rq)->clock;
569
		}
570
#endif
P
Peter Zijlstra 已提交
571 572
	}

573
	if (se != cfs_rq->curr)
574 575
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
576 577 578 579 580
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
581
static void
I
Ingo Molnar 已提交
582
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
583
{
584 585
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
586
	ideal_runtime = sched_slice(cfs_rq, curr);
587
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
I
Ingo Molnar 已提交
588
	if (delta_exec > ideal_runtime)
589 590 591
		resched_task(rq_of(cfs_rq)->curr);
}

592
static void
593
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
594
{
595 596 597 598 599 600 601 602 603 604 605
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

606
	update_stats_curr_start(cfs_rq, se);
607
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
608 609 610 611 612 613
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
614
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
615 616 617 618
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
619
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
620 621
}

622 623 624
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

625 626 627 628 629 630
static struct sched_entity *
pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (!cfs_rq->next)
		return se;

631
	if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
632 633 634 635 636
		return se;

	return cfs_rq->next;
}

637
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
638
{
D
Dmitry Adamushko 已提交
639
	struct sched_entity *se = NULL;
640

D
Dmitry Adamushko 已提交
641 642
	if (first_fair(cfs_rq)) {
		se = __pick_next_entity(cfs_rq);
643
		se = pick_next(cfs_rq, se);
D
Dmitry Adamushko 已提交
644 645
		set_next_entity(cfs_rq, se);
	}
646 647 648 649

	return se;
}

650
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
651 652 653 654 655 656
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
657
		update_curr(cfs_rq);
658

P
Peter Zijlstra 已提交
659
	check_spread(cfs_rq, prev);
660
	if (prev->on_rq) {
661
		update_stats_wait_start(cfs_rq, prev);
662 663 664
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
665
	cfs_rq->curr = NULL;
666 667
}

P
Peter Zijlstra 已提交
668 669
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
670 671
{
	/*
672
	 * Update run-time statistics of the 'current'.
673
	 */
674
	update_curr(cfs_rq);
675

P
Peter Zijlstra 已提交
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
	if (queued)
		return resched_task(rq_of(cfs_rq)->curr);
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

691
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
692
		check_preempt_tick(cfs_rq, curr);
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
}

/**************************************************
 * CFS operations on tasks:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
S
Srivatsa Vaddagiri 已提交
727
	return cfs_rq->tg->cfs_rq[this_cpu];
728 729 730 731
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
732
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
733

734 735 736
/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
737
{
738
	if (se->cfs_rq == pse->cfs_rq)
739 740 741 742 743
		return 1;

	return 0;
}

744 745 746 747 748
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
#else	/* CONFIG_FAIR_GROUP_SCHED */

#define for_each_sched_entity(se) \
		for (; se; se = NULL)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return &task_rq(p)->cfs;
}

static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

781 782
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
783 784 785 786
{
	return 1;
}

787 788 789 790 791
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

792 793
#endif	/* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	int requeue = rq->curr == p;
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
		if (!requeue)
			delta = max(10000LL, delta);

		hrtick_start(rq, delta, requeue);
	}
}
#else
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
#endif

831 832 833 834 835
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
836
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
837 838
{
	struct cfs_rq *cfs_rq;
839
	struct sched_entity *se = &p->se;
840 841

	for_each_sched_entity(se) {
842
		if (se->on_rq)
843 844
			break;
		cfs_rq = cfs_rq_of(se);
845
		enqueue_entity(cfs_rq, se, wakeup);
846
		wakeup = 1;
847
	}
P
Peter Zijlstra 已提交
848 849

	hrtick_start_fair(rq, rq->curr);
850 851 852 853 854 855 856
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
857
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
858 859
{
	struct cfs_rq *cfs_rq;
860
	struct sched_entity *se = &p->se;
861 862 863

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
864
		dequeue_entity(cfs_rq, se, sleep);
865
		/* Don't dequeue parent if it has other entities besides us */
866
		if (cfs_rq->load.weight)
867
			break;
868
		sleep = 1;
869
	}
P
Peter Zijlstra 已提交
870 871

	hrtick_start_fair(rq, rq->curr);
872 873 874
}

/*
875 876 877
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
878
 */
879
static void yield_task_fair(struct rq *rq)
880
{
881 882 883
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
884 885

	/*
886 887 888 889 890
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

891
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
892 893
		__update_rq_clock(rq);
		/*
894
		 * Update run-time statistics of the 'current'.
895
		 */
D
Dmitry Adamushko 已提交
896
		update_curr(cfs_rq);
897 898 899 900 901

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
902
	 */
D
Dmitry Adamushko 已提交
903
	rightmost = __pick_last_entity(cfs_rq);
904 905 906
	/*
	 * Already in the rightmost position?
	 */
D
Dmitry Adamushko 已提交
907
	if (unlikely(rightmost->vruntime < se->vruntime))
908 909 910 911
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
912 913
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
914
	 */
915
	se->vruntime = rightmost->vruntime + 1;
916 917
}

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
static int wake_idle(int cpu, struct task_struct *p)
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
			cpus_and(tmp, sd->span, p->cpus_allowed);
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
#else
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
971

I
Ingo Molnar 已提交
972 973
static const struct sched_class fair_sched_class;

974
static int
I
Ingo Molnar 已提交
975 976 977
wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
	    int idx, unsigned long load, unsigned long this_load,
978 979
	    unsigned int imbalance)
{
I
Ingo Molnar 已提交
980
	struct task_struct *curr = this_rq->curr;
981 982 983 984 985 986 987
	unsigned long tl = this_load;
	unsigned long tl_per_task;

	if (!(this_sd->flags & SD_WAKE_AFFINE))
		return 0;

	/*
I
Ingo Molnar 已提交
988 989 990
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
991
	 */
I
Ingo Molnar 已提交
992 993 994 995 996
	if (sync && curr->sched_class == &fair_sched_class) {
		if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
				p->se.avg_overlap < sysctl_sched_migration_cost)
			return 1;
	}
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
	if (sync)
		tl -= current->se.load.weight;

1009
	if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
			100*(tl + p->se.load.weight) <= imbalance*load) {
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
		schedstat_inc(this_sd, ttwu_move_affine);
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1024 1025 1026
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	struct sched_domain *sd, *this_sd = NULL;
1027
	int prev_cpu, this_cpu, new_cpu;
1028
	unsigned long load, this_load;
I
Ingo Molnar 已提交
1029
	struct rq *rq, *this_rq;
1030 1031
	unsigned int imbalance;
	int idx;
1032

1033 1034 1035
	prev_cpu	= task_cpu(p);
	rq		= task_rq(p);
	this_cpu	= smp_processor_id();
I
Ingo Molnar 已提交
1036
	this_rq		= cpu_rq(this_cpu);
1037
	new_cpu		= prev_cpu;
1038

1039 1040 1041 1042
	/*
	 * 'this_sd' is the first domain that both
	 * this_cpu and prev_cpu are present in:
	 */
1043
	for_each_domain(this_cpu, sd) {
1044
		if (cpu_isset(prev_cpu, sd->span)) {
1045 1046 1047 1048 1049 1050
			this_sd = sd;
			break;
		}
	}

	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1051
		goto out;
1052 1053 1054 1055

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
1056
	if (!this_sd)
1057
		goto out;
1058

1059 1060 1061 1062
	idx = this_sd->wake_idx;

	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

1063
	load = source_load(prev_cpu, idx);
1064 1065
	this_load = target_load(this_cpu, idx);

I
Ingo Molnar 已提交
1066 1067 1068 1069 1070
	if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
				     load, this_load, imbalance))
		return this_cpu;

	if (prev_cpu == this_cpu)
1071
		goto out;
1072 1073 1074 1075 1076 1077 1078 1079 1080

	/*
	 * Start passive balancing when half the imbalance_pct
	 * limit is reached.
	 */
	if (this_sd->flags & SD_WAKE_BALANCE) {
		if (imbalance*this_load <= 100*load) {
			schedstat_inc(this_sd, ttwu_move_balance);
			schedstat_inc(p, se.nr_wakeups_passive);
I
Ingo Molnar 已提交
1081
			return this_cpu;
1082 1083 1084
		}
	}

1085
out:
1086 1087 1088 1089
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
static unsigned long wakeup_gran(struct sched_entity *se)
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
	 * More easily preempt - nice tasks, while not making
	 * it harder for + nice tasks.
	 */
	if (unlikely(se->load.weight > NICE_0_LOAD))
		gran = calc_delta_fair(gran, &se->load);

	return gran;
}

/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff < 0)
		return -1;

	gran = wakeup_gran(curr);
	if (vdiff > gran)
		return 1;

	return 0;
}
1132

1133 1134 1135
/*
 * Preempt the current task with a newly woken task if needed:
 */
I
Ingo Molnar 已提交
1136
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1137 1138
{
	struct task_struct *curr = rq->curr;
1139
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1140
	struct sched_entity *se = &curr->se, *pse = &p->se;
1141 1142

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
1143
		update_rq_clock(rq);
1144
		update_curr(cfs_rq);
1145 1146 1147
		resched_task(curr);
		return;
	}
1148

I
Ingo Molnar 已提交
1149 1150 1151 1152
	se->last_wakeup = se->sum_exec_runtime;
	if (unlikely(se == pse))
		return;

1153 1154
	cfs_rq_of(pse)->next = pse;

1155 1156 1157 1158 1159 1160
	/*
	 * Batch tasks do not preempt (their preemption is driven by
	 * the tick):
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		return;
1161

1162 1163
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1164

1165 1166 1167
	while (!is_same_group(se, pse)) {
		se = parent_entity(se);
		pse = parent_entity(pse);
1168
	}
1169

1170
	if (wakeup_preempt_entity(se, pse) == 1)
1171
		resched_task(curr);
1172 1173
}

1174
static struct task_struct *pick_next_task_fair(struct rq *rq)
1175
{
P
Peter Zijlstra 已提交
1176
	struct task_struct *p;
1177 1178 1179 1180 1181 1182 1183
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1184
		se = pick_next_entity(cfs_rq);
1185 1186 1187
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1188 1189 1190 1191
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1192 1193 1194 1195 1196
}

/*
 * Account for a descheduled task:
 */
1197
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1198 1199 1200 1201 1202 1203
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1204
		put_prev_entity(cfs_rq, se);
1205 1206 1207
	}
}

1208
#ifdef CONFIG_SMP
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1220
static struct task_struct *
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
{
	struct task_struct *p;

	if (!curr)
		return NULL;

	p = rb_entry(curr, struct task_struct, se.run_node);
	cfs_rq->rb_load_balance_curr = rb_next(curr);

	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
}

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
#ifdef CONFIG_FAIR_GROUP_SCHED
static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
{
	struct sched_entity *curr;
	struct task_struct *p;

	if (!cfs_rq->nr_running || !first_fair(cfs_rq))
		return MAX_PRIO;

	curr = cfs_rq->curr;
	if (!curr)
		curr = __pick_next_entity(cfs_rq);

	p = task_of(curr);

	return p->prio;
}
#endif

P
Peter Williams 已提交
1267
static unsigned long
1268
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1269
		  unsigned long max_load_move,
1270 1271
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1272 1273 1274 1275 1276 1277 1278 1279 1280
{
	struct cfs_rq *busy_cfs_rq;
	long rem_load_move = max_load_move;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1281
#ifdef CONFIG_FAIR_GROUP_SCHED
1282 1283 1284
		struct cfs_rq *this_cfs_rq;
		long imbalance;
		unsigned long maxload;
1285

1286
		this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
1287

1288 1289 1290
		imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
		/* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
		if (imbalance <= 0)
1291 1292
			continue;

1293 1294 1295
		/* Don't pull more than imbalance/2 */
		imbalance /= 2;
		maxload = min(rem_load_move, imbalance);
1296

1297
		*this_best_prio = cfs_rq_best_prio(this_cfs_rq);
1298
#else
1299
# define maxload rem_load_move
1300
#endif
1301 1302
		/*
		 * pass busy_cfs_rq argument into
1303 1304 1305
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
1306
		rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
1307 1308 1309
					       maxload, sd, idle, all_pinned,
					       this_best_prio,
					       &cfs_rq_iterator);
1310

1311
		if (rem_load_move <= 0)
1312 1313 1314
			break;
	}

P
Peter Williams 已提交
1315
	return max_load_move - rem_load_move;
1316 1317
}

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1341
#endif
1342

1343 1344 1345
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1346
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1347 1348 1349 1350 1351 1352
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1353
		entity_tick(cfs_rq, se, queued);
1354 1355 1356
	}
}

1357
#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1358

1359 1360 1361 1362 1363 1364 1365
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1366
static void task_new_fair(struct rq *rq, struct task_struct *p)
1367 1368
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1369
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1370
	int this_cpu = smp_processor_id();
1371 1372 1373

	sched_info_queued(p);

1374
	update_curr(cfs_rq);
1375
	place_entity(cfs_rq, se, 1);
1376

1377
	/* 'curr' will be NULL if the child belongs to a different group */
1378
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1379
			curr && curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1380
		/*
1381 1382 1383
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1384 1385
		swap(curr->vruntime, se->vruntime);
	}
1386

1387
	enqueue_task_fair(rq, p, 0);
1388
	resched_task(rq->curr);
1389 1390
}

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
		check_preempt_curr(rq, p);
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
		check_preempt_curr(rq, p);
}

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1450 1451 1452
/*
 * All the scheduling class methods:
 */
1453 1454
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1455 1456 1457
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
1458 1459 1460
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_fair,
#endif /* CONFIG_SMP */
1461

I
Ingo Molnar 已提交
1462
	.check_preempt_curr	= check_preempt_wakeup,
1463 1464 1465 1466

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1467
#ifdef CONFIG_SMP
1468
	.load_balance		= load_balance_fair,
1469
	.move_one_task		= move_one_task_fair,
1470
#endif
1471

1472
	.set_curr_task          = set_curr_task_fair,
1473 1474
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1475 1476 1477

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
1478 1479 1480 1481

#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
1482 1483 1484
};

#ifdef CONFIG_SCHED_DEBUG
1485
static void print_cfs_stats(struct seq_file *m, int cpu)
1486 1487 1488
{
	struct cfs_rq *cfs_rq;

S
Srivatsa Vaddagiri 已提交
1489 1490 1491
#ifdef CONFIG_FAIR_GROUP_SCHED
	print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
#endif
1492
	rcu_read_lock();
1493
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1494
		print_cfs_rq(m, cpu, cfs_rq);
1495
	rcu_read_unlock();
1496 1497
}
#endif