perf_event.c 133.7 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17
#include <linux/poll.h>
18
#include <linux/slab.h>
19
#include <linux/hash.h>
T
Thomas Gleixner 已提交
20
#include <linux/sysfs.h>
21
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
22
#include <linux/percpu.h>
23
#include <linux/ptrace.h>
24
#include <linux/vmstat.h>
25
#include <linux/vmalloc.h>
26 27
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
28 29 30
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel_stat.h>
32
#include <linux/perf_event.h>
L
Li Zefan 已提交
33
#include <linux/ftrace_event.h>
34
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
35

36 37
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
38
/*
39
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
40
 */
41
static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
T
Thomas Gleixner 已提交
42

43
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
44 45 46
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

47 48 49 50
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
51

52
/*
53
 * perf event paranoia level:
54 55
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
56
 *   1 - disallow cpu events for unpriv
57
 *   2 - disallow kernel profiling for unpriv
58
 */
59
int sysctl_perf_event_paranoid __read_mostly = 1;
60

61
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62 63

/*
64
 * max perf event sample rate
65
 */
66
int sysctl_perf_event_sample_rate __read_mostly = 100000;
67

68
static atomic64_t perf_event_id;
69

T
Thomas Gleixner 已提交
70
/*
71
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
72
 */
73
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
74 75 76 77

/*
 * Architecture provided APIs - weak aliases:
 */
78
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
79
{
80
	return NULL;
T
Thomas Gleixner 已提交
81 82
}

83 84 85
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

86
void __weak perf_event_print_debug(void)	{ }
87

88
static DEFINE_PER_CPU(int, perf_disable_count);
89 90 91

void perf_disable(void)
{
P
Peter Zijlstra 已提交
92 93
	if (!__get_cpu_var(perf_disable_count)++)
		hw_perf_disable();
94 95 96 97
}

void perf_enable(void)
{
P
Peter Zijlstra 已提交
98
	if (!--__get_cpu_var(perf_disable_count))
99 100 101
		hw_perf_enable();
}

102
static void get_ctx(struct perf_event_context *ctx)
103
{
104
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105 106
}

107 108
static void free_ctx(struct rcu_head *head)
{
109
	struct perf_event_context *ctx;
110

111
	ctx = container_of(head, struct perf_event_context, rcu_head);
112 113 114
	kfree(ctx);
}

115
static void put_ctx(struct perf_event_context *ctx)
116
{
117 118 119
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
120 121 122
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
123
	}
124 125
}

126
static void unclone_ctx(struct perf_event_context *ctx)
127 128 129 130 131 132 133
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

134
/*
135
 * If we inherit events we want to return the parent event id
136 137
 * to userspace.
 */
138
static u64 primary_event_id(struct perf_event *event)
139
{
140
	u64 id = event->id;
141

142 143
	if (event->parent)
		id = event->parent->id;
144 145 146 147

	return id;
}

148
/*
149
 * Get the perf_event_context for a task and lock it.
150 151 152
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
153
static struct perf_event_context *
154
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155
{
156
	struct perf_event_context *ctx;
157 158 159

	rcu_read_lock();
 retry:
160
	ctx = rcu_dereference(task->perf_event_ctxp);
161 162 163 164
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
165
		 * perf_event_task_sched_out, though the
166 167 168 169 170 171
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
172
		raw_spin_lock_irqsave(&ctx->lock, *flags);
173
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175 176
			goto retry;
		}
177 178

		if (!atomic_inc_not_zero(&ctx->refcount)) {
179
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180 181
			ctx = NULL;
		}
182 183 184 185 186 187 188 189 190 191
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
192
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193
{
194
	struct perf_event_context *ctx;
195 196 197 198 199
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
200
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
201 202 203 204
	}
	return ctx;
}

205
static void perf_unpin_context(struct perf_event_context *ctx)
206 207 208
{
	unsigned long flags;

209
	raw_spin_lock_irqsave(&ctx->lock, flags);
210
	--ctx->pin_count;
211
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
212 213 214
	put_ctx(ctx);
}

215 216
static inline u64 perf_clock(void)
{
217
	return cpu_clock(raw_smp_processor_id());
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

243 244 245 246 247 248
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
249 250 251 252 253 254 255 256 257

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

258 259 260 261 262 263 264 265 266 267 268 269
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

270 271 272 273 274 275 276 277 278
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

279
/*
280
 * Add a event from the lists for its context.
281 282
 * Must be called with ctx->mutex and ctx->lock held.
 */
283
static void
284
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
285
{
286 287
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
288 289

	/*
290 291 292
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
293
	 */
294
	if (event->group_leader == event) {
295 296
		struct list_head *list;

297 298 299
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

300 301
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
302
	}
P
Peter Zijlstra 已提交
303

304 305 306
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
307
		ctx->nr_stat++;
308 309
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
static void perf_group_attach(struct perf_event *event)
{
	struct perf_event *group_leader = event->group_leader;

	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
}

328
/*
329
 * Remove a event from the lists for its context.
330
 * Must be called with ctx->mutex and ctx->lock held.
331
 */
332
static void
333
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
334
{
335 336 337 338
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339
		return;
340 341 342

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

343 344
	ctx->nr_events--;
	if (event->attr.inherit_stat)
345
		ctx->nr_stat--;
346

347
	list_del_rcu(&event->event_entry);
348

349 350
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
351

352
	update_group_times(event);
353 354 355 356 357 358 359 360 361 362

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
363 364
}

365
static void perf_group_detach(struct perf_event *event)
366 367
{
	struct perf_event *sibling, *tmp;
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
		return;
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
389

390
	/*
391 392
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
393
	 * to whatever list we are on.
394
	 */
395
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396 397
		if (list)
			list_move_tail(&sibling->group_entry, list);
398
		sibling->group_leader = sibling;
399 400 401

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
402 403 404
	}
}

405
static void
406
event_sched_out(struct perf_event *event,
407
		  struct perf_cpu_context *cpuctx,
408
		  struct perf_event_context *ctx)
409
{
410
	if (event->state != PERF_EVENT_STATE_ACTIVE)
411 412
		return;

413 414 415 416
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
417
	}
418 419 420
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
421

422
	if (!is_software_event(event))
423 424
		cpuctx->active_oncpu--;
	ctx->nr_active--;
425
	if (event->attr.exclusive || !cpuctx->active_oncpu)
426 427 428
		cpuctx->exclusive = 0;
}

429
static void
430
group_sched_out(struct perf_event *group_event,
431
		struct perf_cpu_context *cpuctx,
432
		struct perf_event_context *ctx)
433
{
434
	struct perf_event *event;
435

436
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
437 438
		return;

439
	event_sched_out(group_event, cpuctx, ctx);
440 441 442 443

	/*
	 * Schedule out siblings (if any):
	 */
444 445
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
446

447
	if (group_event->attr.exclusive)
448 449 450
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
451
/*
452
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
453
 *
454
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
455 456
 * remove it from the context list.
 */
457
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
458 459
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
460 461
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
462 463 464 465 466 467

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
468
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
469 470
		return;

471
	raw_spin_lock(&ctx->lock);
472 473
	/*
	 * Protect the list operation against NMI by disabling the
474
	 * events on a global level.
475 476
	 */
	perf_disable();
T
Thomas Gleixner 已提交
477

478
	event_sched_out(event, cpuctx, ctx);
479

480
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
481 482 483

	if (!ctx->task) {
		/*
484
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
485 486 487
		 * reservation:
		 */
		cpuctx->max_pertask =
488 489
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
490 491
	}

492
	perf_enable();
493
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
494 495 496 497
}


/*
498
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
499
 *
500
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
501
 *
502
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
503
 * call when the task is on a CPU.
504
 *
505 506
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
507 508
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
509
 * When called from perf_event_exit_task, it's OK because the
510
 * context has been detached from its task.
T
Thomas Gleixner 已提交
511
 */
512
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
513
{
514
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
515 516 517 518
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
519
		 * Per cpu events are removed via an smp call and
520
		 * the removal is always successful.
T
Thomas Gleixner 已提交
521
		 */
522 523 524
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
525 526 527 528
		return;
	}

retry:
529 530
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
531

532
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
533 534 535
	/*
	 * If the context is active we need to retry the smp call.
	 */
536
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
537
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
538 539 540 541 542
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
543
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
544 545
	 * succeed.
	 */
P
Peter Zijlstra 已提交
546
	if (!list_empty(&event->group_entry))
547
		list_del_event(event, ctx);
548
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
549 550
}

551
/*
552
 * Cross CPU call to disable a performance event
553
 */
554
static void __perf_event_disable(void *info)
555
{
556
	struct perf_event *event = info;
557
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
558
	struct perf_event_context *ctx = event->ctx;
559 560

	/*
561 562
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
563
	 */
564
	if (ctx->task && cpuctx->task_ctx != ctx)
565 566
		return;

567
	raw_spin_lock(&ctx->lock);
568 569

	/*
570
	 * If the event is on, turn it off.
571 572
	 * If it is in error state, leave it in error state.
	 */
573
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
574
		update_context_time(ctx);
575 576 577
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
578
		else
579 580
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
581 582
	}

583
	raw_spin_unlock(&ctx->lock);
584 585 586
}

/*
587
 * Disable a event.
588
 *
589 590
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
591
 * remains valid.  This condition is satisifed when called through
592 593 594 595
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
596
 * is the current context on this CPU and preemption is disabled,
597
 * hence we can't get into perf_event_task_sched_out for this context.
598
 */
599
void perf_event_disable(struct perf_event *event)
600
{
601
	struct perf_event_context *ctx = event->ctx;
602 603 604 605
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
606
		 * Disable the event on the cpu that it's on
607
		 */
608 609
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
610 611 612 613
		return;
	}

 retry:
614
	task_oncpu_function_call(task, __perf_event_disable, event);
615

616
	raw_spin_lock_irq(&ctx->lock);
617
	/*
618
	 * If the event is still active, we need to retry the cross-call.
619
	 */
620
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
621
		raw_spin_unlock_irq(&ctx->lock);
622 623 624 625 626 627 628
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
629 630 631
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
632
	}
633

634
	raw_spin_unlock_irq(&ctx->lock);
635 636
}

637
static int
638
event_sched_in(struct perf_event *event,
639
		 struct perf_cpu_context *cpuctx,
640
		 struct perf_event_context *ctx)
641
{
642
	if (event->state <= PERF_EVENT_STATE_OFF)
643 644
		return 0;

645
	event->state = PERF_EVENT_STATE_ACTIVE;
646
	event->oncpu = smp_processor_id();
647 648 649 650 651
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

652 653 654
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
655 656 657
		return -EAGAIN;
	}

658
	event->tstamp_running += ctx->time - event->tstamp_stopped;
659

660
	if (!is_software_event(event))
661
		cpuctx->active_oncpu++;
662 663
	ctx->nr_active++;

664
	if (event->attr.exclusive)
665 666
		cpuctx->exclusive = 1;

667 668 669
	return 0;
}

670
static int
671
group_sched_in(struct perf_event *group_event,
672
	       struct perf_cpu_context *cpuctx,
673
	       struct perf_event_context *ctx)
674
{
675 676 677
	struct perf_event *event, *partial_group = NULL;
	const struct pmu *pmu = group_event->pmu;
	bool txn = false;
678

679
	if (group_event->state == PERF_EVENT_STATE_OFF)
680 681
		return 0;

682 683 684 685 686 687
	/* Check if group transaction availabe */
	if (pmu->start_txn)
		txn = true;

	if (txn)
		pmu->start_txn(pmu);
688

689 690 691
	if (event_sched_in(group_event, cpuctx, ctx)) {
		if (txn)
			pmu->cancel_txn(pmu);
692
		return -EAGAIN;
693
	}
694 695 696 697

	/*
	 * Schedule in siblings as one group (if any):
	 */
698
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
699
		if (event_sched_in(event, cpuctx, ctx)) {
700
			partial_group = event;
701 702 703 704
			goto group_error;
		}
	}

705
	if (!txn || !pmu->commit_txn(pmu))
706
		return 0;
707

708 709 710 711 712
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
713 714
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
715
			break;
716
		event_sched_out(event, cpuctx, ctx);
717
	}
718
	event_sched_out(group_event, cpuctx, ctx);
719

720 721 722
	if (txn)
		pmu->cancel_txn(pmu);

723 724 725
	return -EAGAIN;
}

726
/*
727
 * Work out whether we can put this event group on the CPU now.
728
 */
729
static int group_can_go_on(struct perf_event *event,
730 731 732 733
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
734
	 * Groups consisting entirely of software events can always go on.
735
	 */
736
	if (event->group_flags & PERF_GROUP_SOFTWARE)
737 738 739
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
740
	 * events can go on.
741 742 743 744 745
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
746
	 * events on the CPU, it can't go on.
747
	 */
748
	if (event->attr.exclusive && cpuctx->active_oncpu)
749 750 751 752 753 754 755 756
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

757 758
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
759
{
760
	list_add_event(event, ctx);
761
	perf_group_attach(event);
762 763 764
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
765 766
}

T
Thomas Gleixner 已提交
767
/*
768
 * Cross CPU call to install and enable a performance event
769 770
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
771 772 773 774
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
775 776 777
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
778
	int err;
T
Thomas Gleixner 已提交
779 780 781 782 783

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
784
	 * Or possibly this is the right context but it isn't
785
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
786
	 */
787
	if (ctx->task && cpuctx->task_ctx != ctx) {
788
		if (cpuctx->task_ctx || ctx->task != current)
789 790 791
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
792

793
	raw_spin_lock(&ctx->lock);
794
	ctx->is_active = 1;
795
	update_context_time(ctx);
T
Thomas Gleixner 已提交
796 797 798

	/*
	 * Protect the list operation against NMI by disabling the
799
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
800
	 */
801
	perf_disable();
T
Thomas Gleixner 已提交
802

803
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
804

805 806 807
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

808
	/*
809
	 * Don't put the event on if it is disabled or if
810 811
	 * it is in a group and the group isn't on.
	 */
812 813
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
814 815
		goto unlock;

816
	/*
817 818 819
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
820
	 */
821
	if (!group_can_go_on(event, cpuctx, 1))
822 823
		err = -EEXIST;
	else
824
		err = event_sched_in(event, cpuctx, ctx);
825

826 827
	if (err) {
		/*
828
		 * This event couldn't go on.  If it is in a group
829
		 * then we have to pull the whole group off.
830
		 * If the event group is pinned then put it in error state.
831
		 */
832
		if (leader != event)
833
			group_sched_out(leader, cpuctx, ctx);
834
		if (leader->attr.pinned) {
835
			update_group_times(leader);
836
			leader->state = PERF_EVENT_STATE_ERROR;
837
		}
838
	}
T
Thomas Gleixner 已提交
839

840
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
841 842
		cpuctx->max_pertask--;

843
 unlock:
844
	perf_enable();
845

846
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
847 848 849
}

/*
850
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
851
 *
852 853
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
854
 *
855
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
856 857
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
858 859
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
860 861
 */
static void
862 863
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
864 865 866 867 868 869
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
870
		 * Per cpu events are installed via an smp call and
871
		 * the install is always successful.
T
Thomas Gleixner 已提交
872 873
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
874
					 event, 1);
T
Thomas Gleixner 已提交
875 876 877 878 879
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
880
				 event);
T
Thomas Gleixner 已提交
881

882
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
883 884 885
	/*
	 * we need to retry the smp call.
	 */
886
	if (ctx->is_active && list_empty(&event->group_entry)) {
887
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
888 889 890 891 892
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
893
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
894 895
	 * succeed.
	 */
896 897
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
898
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
899 900
}

901
/*
902
 * Put a event into inactive state and update time fields.
903 904 905 906 907 908
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
909 910
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
911
{
912
	struct perf_event *sub;
913

914 915 916 917
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
918 919 920 921
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

922
/*
923
 * Cross CPU call to enable a performance event
924
 */
925
static void __perf_event_enable(void *info)
926
{
927
	struct perf_event *event = info;
928
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
929 930
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
931
	int err;
932

933
	/*
934 935
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
936
	 */
937
	if (ctx->task && cpuctx->task_ctx != ctx) {
938
		if (cpuctx->task_ctx || ctx->task != current)
939 940 941
			return;
		cpuctx->task_ctx = ctx;
	}
942

943
	raw_spin_lock(&ctx->lock);
944
	ctx->is_active = 1;
945
	update_context_time(ctx);
946

947
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
948
		goto unlock;
949
	__perf_event_mark_enabled(event, ctx);
950

951 952 953
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

954
	/*
955
	 * If the event is in a group and isn't the group leader,
956
	 * then don't put it on unless the group is on.
957
	 */
958
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
959
		goto unlock;
960

961
	if (!group_can_go_on(event, cpuctx, 1)) {
962
		err = -EEXIST;
963
	} else {
964
		perf_disable();
965
		if (event == leader)
966
			err = group_sched_in(event, cpuctx, ctx);
967
		else
968
			err = event_sched_in(event, cpuctx, ctx);
969
		perf_enable();
970
	}
971 972 973

	if (err) {
		/*
974
		 * If this event can't go on and it's part of a
975 976
		 * group, then the whole group has to come off.
		 */
977
		if (leader != event)
978
			group_sched_out(leader, cpuctx, ctx);
979
		if (leader->attr.pinned) {
980
			update_group_times(leader);
981
			leader->state = PERF_EVENT_STATE_ERROR;
982
		}
983 984 985
	}

 unlock:
986
	raw_spin_unlock(&ctx->lock);
987 988 989
}

/*
990
 * Enable a event.
991
 *
992 993
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
994
 * remains valid.  This condition is satisfied when called through
995 996
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
997
 */
998
void perf_event_enable(struct perf_event *event)
999
{
1000
	struct perf_event_context *ctx = event->ctx;
1001 1002 1003 1004
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1005
		 * Enable the event on the cpu that it's on
1006
		 */
1007 1008
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
1009 1010 1011
		return;
	}

1012
	raw_spin_lock_irq(&ctx->lock);
1013
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1014 1015 1016
		goto out;

	/*
1017 1018
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1019 1020 1021 1022
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1023 1024
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1025 1026

 retry:
1027
	raw_spin_unlock_irq(&ctx->lock);
1028
	task_oncpu_function_call(task, __perf_event_enable, event);
1029

1030
	raw_spin_lock_irq(&ctx->lock);
1031 1032

	/*
1033
	 * If the context is active and the event is still off,
1034 1035
	 * we need to retry the cross-call.
	 */
1036
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1037 1038 1039 1040 1041 1042
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1043 1044
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1045

1046
 out:
1047
	raw_spin_unlock_irq(&ctx->lock);
1048 1049
}

1050
static int perf_event_refresh(struct perf_event *event, int refresh)
1051
{
1052
	/*
1053
	 * not supported on inherited events
1054
	 */
1055
	if (event->attr.inherit)
1056 1057
		return -EINVAL;

1058 1059
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1060 1061

	return 0;
1062 1063
}

1064 1065 1066 1067 1068 1069 1070 1071 1072
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1073
{
1074
	struct perf_event *event;
1075

1076
	raw_spin_lock(&ctx->lock);
1077
	ctx->is_active = 0;
1078
	if (likely(!ctx->nr_events))
1079
		goto out;
1080
	update_context_time(ctx);
1081

1082
	perf_disable();
1083 1084 1085 1086
	if (!ctx->nr_active)
		goto out_enable;

	if (event_type & EVENT_PINNED)
1087 1088 1089
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);

1090
	if (event_type & EVENT_FLEXIBLE)
1091
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1092
			group_sched_out(event, cpuctx, ctx);
1093 1094

 out_enable:
1095
	perf_enable();
1096
 out:
1097
	raw_spin_unlock(&ctx->lock);
1098 1099
}

1100 1101 1102
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1103 1104 1105 1106
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1107
 * in them directly with an fd; we can only enable/disable all
1108
 * events via prctl, or enable/disable all events in a family
1109 1110
 * via ioctl, which will have the same effect on both contexts.
 */
1111 1112
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1113 1114
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1115
		&& ctx1->parent_gen == ctx2->parent_gen
1116
		&& !ctx1->pin_count && !ctx2->pin_count;
1117 1118
}

1119 1120
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1121 1122 1123
{
	u64 value;

1124
	if (!event->attr.inherit_stat)
1125 1126 1127
		return;

	/*
1128
	 * Update the event value, we cannot use perf_event_read()
1129 1130
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1131
	 * we know the event must be on the current CPU, therefore we
1132 1133
	 * don't need to use it.
	 */
1134 1135
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1136 1137
		event->pmu->read(event);
		/* fall-through */
1138

1139 1140
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1141 1142 1143 1144 1145 1146 1147
		break;

	default:
		break;
	}

	/*
1148
	 * In order to keep per-task stats reliable we need to flip the event
1149 1150
	 * values when we flip the contexts.
	 */
1151 1152 1153
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1154

1155 1156
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1157

1158
	/*
1159
	 * Since we swizzled the values, update the user visible data too.
1160
	 */
1161 1162
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1163 1164 1165 1166 1167
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1168 1169
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1170
{
1171
	struct perf_event *event, *next_event;
1172 1173 1174 1175

	if (!ctx->nr_stat)
		return;

1176 1177
	update_context_time(ctx);

1178 1179
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1180

1181 1182
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1183

1184 1185
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1186

1187
		__perf_event_sync_stat(event, next_event);
1188

1189 1190
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1191 1192 1193
	}
}

T
Thomas Gleixner 已提交
1194
/*
1195
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1196 1197
 * with interrupts disabled.
 *
1198
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1199
 *
I
Ingo Molnar 已提交
1200
 * This does not protect us against NMI, but disable()
1201 1202 1203
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1204
 */
1205
void perf_event_task_sched_out(struct task_struct *task,
1206
				 struct task_struct *next)
T
Thomas Gleixner 已提交
1207
{
1208
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1209 1210 1211
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1212
	int do_switch = 1;
T
Thomas Gleixner 已提交
1213

1214
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1215

1216
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1217 1218
		return;

1219 1220
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1221
	next_ctx = next->perf_event_ctxp;
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1233 1234
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1235
		if (context_equiv(ctx, next_ctx)) {
1236 1237
			/*
			 * XXX do we need a memory barrier of sorts
1238
			 * wrt to rcu_dereference() of perf_event_ctxp
1239
			 */
1240 1241
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1242 1243 1244
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1245

1246
			perf_event_sync_stat(ctx, next_ctx);
1247
		}
1248 1249
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1250
	}
1251
	rcu_read_unlock();
1252

1253
	if (do_switch) {
1254
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1255 1256
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1257 1258
}

1259 1260
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1261 1262 1263
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1264 1265
	if (!cpuctx->task_ctx)
		return;
1266 1267 1268 1269

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1270
	ctx_sched_out(ctx, cpuctx, event_type);
1271 1272 1273
	cpuctx->task_ctx = NULL;
}

1274 1275 1276
/*
 * Called with IRQs disabled
 */
1277
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1278
{
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1289 1290
}

1291
static void
1292
ctx_pinned_sched_in(struct perf_event_context *ctx,
1293
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1294
{
1295
	struct perf_event *event;
T
Thomas Gleixner 已提交
1296

1297 1298
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1299
			continue;
1300
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1301 1302
			continue;

1303
		if (group_can_go_on(event, cpuctx, 1))
1304
			group_sched_in(event, cpuctx, ctx);
1305 1306 1307 1308 1309

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1310 1311 1312
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1313
		}
1314
	}
1315 1316 1317 1318
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1319
		      struct perf_cpu_context *cpuctx)
1320 1321 1322
{
	struct perf_event *event;
	int can_add_hw = 1;
1323

1324 1325 1326
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1327
			continue;
1328 1329
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1330
		 * of events:
1331
		 */
1332
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1333 1334
			continue;

1335
		if (group_can_go_on(event, cpuctx, can_add_hw))
1336
			if (group_sched_in(event, cpuctx, ctx))
1337
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1338
	}
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	perf_disable();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1360
		ctx_pinned_sched_in(ctx, cpuctx);
1361 1362 1363

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1364
		ctx_flexible_sched_in(ctx, cpuctx);
1365

1366
	perf_enable();
1367
 out:
1368
	raw_spin_unlock(&ctx->lock);
1369 1370
}

1371 1372 1373 1374 1375 1376 1377 1378
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
static void task_ctx_sched_in(struct task_struct *task,
			      enum event_type_t event_type)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;

	if (likely(!ctx))
		return;
	if (cpuctx->task_ctx == ctx)
		return;
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
1392
/*
1393
 * Called from scheduler to add the events of the current task
1394 1395
 * with interrupts disabled.
 *
1396
 * We restore the event value and then enable it.
1397 1398
 *
 * This does not protect us against NMI, but enable()
1399 1400 1401
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1402
 */
1403
void perf_event_task_sched_in(struct task_struct *task)
1404
{
1405 1406
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;
T
Thomas Gleixner 已提交
1407

1408 1409
	if (likely(!ctx))
		return;
1410

1411 1412 1413
	if (cpuctx->task_ctx == ctx)
		return;

1414 1415
	perf_disable();

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1428 1429

	perf_enable();
1430 1431
}

1432 1433
#define MAX_INTERRUPTS (~0ULL)

1434
static void perf_log_throttle(struct perf_event *event, int enable);
1435

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

1503 1504 1505
	if (!divisor)
		return dividend;

1506 1507 1508
	return div64_u64(dividend, divisor);
}

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
static void perf_event_stop(struct perf_event *event)
{
	if (!event->pmu->stop)
		return event->pmu->disable(event);

	return event->pmu->stop(event);
}

static int perf_event_start(struct perf_event *event)
{
	if (!event->pmu->start)
		return event->pmu->enable(event);

	return event->pmu->start(event);
}

1525
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1526
{
1527
	struct hw_perf_event *hwc = &event->hw;
1528
	s64 period, sample_period;
1529 1530
	s64 delta;

1531
	period = perf_calculate_period(event, nsec, count);
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1542 1543 1544

	if (atomic64_read(&hwc->period_left) > 8*sample_period) {
		perf_disable();
1545
		perf_event_stop(event);
1546
		atomic64_set(&hwc->period_left, 0);
1547
		perf_event_start(event);
1548 1549
		perf_enable();
	}
1550 1551
}

1552
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1553
{
1554 1555
	struct perf_event *event;
	struct hw_perf_event *hwc;
1556 1557
	u64 interrupts, now;
	s64 delta;
1558

1559
	raw_spin_lock(&ctx->lock);
1560
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1561
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1562 1563
			continue;

1564 1565 1566
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1567
		hwc = &event->hw;
1568 1569 1570

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1571

1572
		/*
1573
		 * unthrottle events on the tick
1574
		 */
1575
		if (interrupts == MAX_INTERRUPTS) {
1576
			perf_log_throttle(event, 1);
1577
			perf_disable();
1578
			event->pmu->unthrottle(event);
1579
			perf_enable();
1580 1581
		}

1582
		if (!event->attr.freq || !event->attr.sample_freq)
1583 1584
			continue;

1585
		perf_disable();
1586 1587 1588 1589
		event->pmu->read(event);
		now = atomic64_read(&event->count);
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1590

1591 1592
		if (delta > 0)
			perf_adjust_period(event, TICK_NSEC, delta);
1593
		perf_enable();
1594
	}
1595
	raw_spin_unlock(&ctx->lock);
1596 1597
}

1598
/*
1599
 * Round-robin a context's events:
1600
 */
1601
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1602
{
1603
	raw_spin_lock(&ctx->lock);
1604 1605 1606 1607

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1608
	raw_spin_unlock(&ctx->lock);
1609 1610
}

1611
void perf_event_task_tick(struct task_struct *curr)
1612
{
1613
	struct perf_cpu_context *cpuctx;
1614
	struct perf_event_context *ctx;
1615
	int rotate = 0;
1616

1617
	if (!atomic_read(&nr_events))
1618 1619
		return;

1620
	cpuctx = &__get_cpu_var(perf_cpu_context);
1621 1622 1623
	if (cpuctx->ctx.nr_events &&
	    cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
		rotate = 1;
1624

1625 1626 1627
	ctx = curr->perf_event_ctxp;
	if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
		rotate = 1;
1628

1629
	perf_ctx_adjust_freq(&cpuctx->ctx);
1630
	if (ctx)
1631
		perf_ctx_adjust_freq(ctx);
1632

1633 1634 1635 1636
	if (!rotate)
		return;

	perf_disable();
1637
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1638
	if (ctx)
1639
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1640

1641
	rotate_ctx(&cpuctx->ctx);
1642 1643
	if (ctx)
		rotate_ctx(ctx);
1644

1645
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1646
	if (ctx)
1647
		task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1648
	perf_enable();
T
Thomas Gleixner 已提交
1649 1650
}

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1666
/*
1667
 * Enable all of a task's events that have been marked enable-on-exec.
1668 1669
 * This expects task == current.
 */
1670
static void perf_event_enable_on_exec(struct task_struct *task)
1671
{
1672 1673
	struct perf_event_context *ctx;
	struct perf_event *event;
1674 1675
	unsigned long flags;
	int enabled = 0;
1676
	int ret;
1677 1678

	local_irq_save(flags);
1679 1680
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1681 1682
		goto out;

1683
	__perf_event_task_sched_out(ctx);
1684

1685
	raw_spin_lock(&ctx->lock);
1686

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1697 1698 1699
	}

	/*
1700
	 * Unclone this context if we enabled any event.
1701
	 */
1702 1703
	if (enabled)
		unclone_ctx(ctx);
1704

1705
	raw_spin_unlock(&ctx->lock);
1706

1707
	perf_event_task_sched_in(task);
1708 1709 1710 1711
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1712
/*
1713
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1714
 */
1715
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1716
{
1717
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1718 1719
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1720

1721 1722 1723 1724
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1725 1726
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1727 1728 1729 1730
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1731
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1732
	update_context_time(ctx);
1733
	update_event_times(event);
1734
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1735

P
Peter Zijlstra 已提交
1736
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1737 1738
}

1739
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1740 1741
{
	/*
1742 1743
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1744
	 */
1745 1746 1747 1748
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1749 1750 1751
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1752
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1753
		update_context_time(ctx);
1754
		update_event_times(event);
1755
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1756 1757
	}

1758
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1759 1760
}

1761
/*
1762
 * Initialize the perf_event context in a task_struct:
1763 1764
 */
static void
1765
__perf_event_init_context(struct perf_event_context *ctx,
1766 1767
			    struct task_struct *task)
{
1768
	raw_spin_lock_init(&ctx->lock);
1769
	mutex_init(&ctx->mutex);
1770 1771
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
1772 1773 1774 1775 1776
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1777
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1778
{
1779
	struct perf_event_context *ctx;
1780
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1781
	struct task_struct *task;
1782
	unsigned long flags;
1783
	int err;
T
Thomas Gleixner 已提交
1784

1785
	if (pid == -1 && cpu != -1) {
1786
		/* Must be root to operate on a CPU event: */
1787
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1788 1789
			return ERR_PTR(-EACCES);

1790
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
1791 1792 1793
			return ERR_PTR(-EINVAL);

		/*
1794
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1795 1796 1797
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
1798
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
1799 1800 1801 1802
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1803
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1820
	/*
1821
	 * Can't attach events to a dying task.
1822 1823 1824 1825 1826
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1827
	/* Reuse ptrace permission checks for now. */
1828 1829 1830 1831 1832
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1833
	ctx = perf_lock_task_context(task, &flags);
1834
	if (ctx) {
1835
		unclone_ctx(ctx);
1836
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1837 1838
	}

1839
	if (!ctx) {
1840
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1841 1842 1843
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1844
		__perf_event_init_context(ctx, task);
1845
		get_ctx(ctx);
1846
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1847 1848 1849 1850 1851
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1852
			goto retry;
1853
		}
1854
		get_task_struct(task);
1855 1856
	}

1857
	put_task_struct(task);
T
Thomas Gleixner 已提交
1858
	return ctx;
1859 1860 1861 1862

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1863 1864
}

L
Li Zefan 已提交
1865 1866
static void perf_event_free_filter(struct perf_event *event);

1867
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1868
{
1869
	struct perf_event *event;
P
Peter Zijlstra 已提交
1870

1871 1872 1873
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1874
	perf_event_free_filter(event);
1875
	kfree(event);
P
Peter Zijlstra 已提交
1876 1877
}

1878
static void perf_pending_sync(struct perf_event *event);
1879
static void perf_buffer_put(struct perf_buffer *buffer);
1880

1881
static void free_event(struct perf_event *event)
1882
{
1883
	perf_pending_sync(event);
1884

1885 1886
	if (!event->parent) {
		atomic_dec(&nr_events);
1887
		if (event->attr.mmap || event->attr.mmap_data)
1888 1889 1890 1891 1892
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1893
	}
1894

1895 1896 1897
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
1898 1899
	}

1900 1901
	if (event->destroy)
		event->destroy(event);
1902

1903 1904
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1905 1906
}

1907
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
1908
{
1909
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1910

1911 1912 1913 1914 1915 1916
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

1917
	WARN_ON_ONCE(ctx->parent_ctx);
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1931
	raw_spin_lock_irq(&ctx->lock);
1932
	perf_group_detach(event);
1933 1934
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
1935
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1936

1937 1938 1939 1940
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1941

1942
	free_event(event);
T
Thomas Gleixner 已提交
1943 1944 1945

	return 0;
}
1946
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
1947

1948 1949 1950 1951
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
1952
{
1953
	struct perf_event *event = file->private_data;
1954

1955
	file->private_data = NULL;
1956

1957
	return perf_event_release_kernel(event);
1958 1959
}

1960
static int perf_event_read_size(struct perf_event *event)
1961 1962 1963 1964 1965
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1966
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1967 1968
		size += sizeof(u64);

1969
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1970 1971
		size += sizeof(u64);

1972
	if (event->attr.read_format & PERF_FORMAT_ID)
1973 1974
		entry += sizeof(u64);

1975 1976
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1977 1978 1979 1980 1981 1982 1983 1984
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1985
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1986
{
1987
	struct perf_event *child;
1988 1989
	u64 total = 0;

1990 1991 1992
	*enabled = 0;
	*running = 0;

1993
	mutex_lock(&event->child_mutex);
1994
	total += perf_event_read(event);
1995 1996 1997 1998 1999 2000
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2001
		total += perf_event_read(child);
2002 2003 2004
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2005
	mutex_unlock(&event->child_mutex);
2006 2007 2008

	return total;
}
2009
EXPORT_SYMBOL_GPL(perf_event_read_value);
2010

2011
static int perf_event_read_group(struct perf_event *event,
2012 2013
				   u64 read_format, char __user *buf)
{
2014
	struct perf_event *leader = event->group_leader, *sub;
2015 2016
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2017
	u64 values[5];
2018
	u64 count, enabled, running;
2019

2020
	mutex_lock(&ctx->mutex);
2021
	count = perf_event_read_value(leader, &enabled, &running);
2022 2023

	values[n++] = 1 + leader->nr_siblings;
2024 2025 2026 2027
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2028 2029 2030
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2031 2032 2033 2034

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2035
		goto unlock;
2036

2037
	ret = size;
2038

2039
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2040
		n = 0;
2041

2042
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2043 2044 2045 2046 2047
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2048
		if (copy_to_user(buf + ret, values, size)) {
2049 2050 2051
			ret = -EFAULT;
			goto unlock;
		}
2052 2053

		ret += size;
2054
	}
2055 2056
unlock:
	mutex_unlock(&ctx->mutex);
2057

2058
	return ret;
2059 2060
}

2061
static int perf_event_read_one(struct perf_event *event,
2062 2063
				 u64 read_format, char __user *buf)
{
2064
	u64 enabled, running;
2065 2066 2067
	u64 values[4];
	int n = 0;

2068 2069 2070 2071 2072
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2073
	if (read_format & PERF_FORMAT_ID)
2074
		values[n++] = primary_event_id(event);
2075 2076 2077 2078 2079 2080 2081

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2082
/*
2083
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2084 2085
 */
static ssize_t
2086
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2087
{
2088
	u64 read_format = event->attr.read_format;
2089
	int ret;
T
Thomas Gleixner 已提交
2090

2091
	/*
2092
	 * Return end-of-file for a read on a event that is in
2093 2094 2095
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2096
	if (event->state == PERF_EVENT_STATE_ERROR)
2097 2098
		return 0;

2099
	if (count < perf_event_read_size(event))
2100 2101
		return -ENOSPC;

2102
	WARN_ON_ONCE(event->ctx->parent_ctx);
2103
	if (read_format & PERF_FORMAT_GROUP)
2104
		ret = perf_event_read_group(event, read_format, buf);
2105
	else
2106
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2107

2108
	return ret;
T
Thomas Gleixner 已提交
2109 2110 2111 2112 2113
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2114
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2115

2116
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2117 2118 2119 2120
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2121
	struct perf_event *event = file->private_data;
2122
	struct perf_buffer *buffer;
2123
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2124 2125

	rcu_read_lock();
2126 2127 2128
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
2129
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2130

2131
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2132 2133 2134 2135

	return events;
}

2136
static void perf_event_reset(struct perf_event *event)
2137
{
2138 2139 2140
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2141 2142
}

2143
/*
2144 2145 2146 2147
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2148
 */
2149 2150
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2151
{
2152
	struct perf_event *child;
P
Peter Zijlstra 已提交
2153

2154 2155 2156 2157
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2158
		func(child);
2159
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2160 2161
}

2162 2163
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2164
{
2165 2166
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2167

2168 2169
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2170
	event = event->group_leader;
2171

2172 2173 2174 2175
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2176
	mutex_unlock(&ctx->mutex);
2177 2178
}

2179
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2180
{
2181
	struct perf_event_context *ctx = event->ctx;
2182 2183 2184 2185
	unsigned long size;
	int ret = 0;
	u64 value;

2186
	if (!event->attr.sample_period)
2187 2188 2189 2190 2191 2192 2193 2194 2195
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2196
	raw_spin_lock_irq(&ctx->lock);
2197 2198
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2199 2200 2201 2202
			ret = -EINVAL;
			goto unlock;
		}

2203
		event->attr.sample_freq = value;
2204
	} else {
2205 2206
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2207 2208
	}
unlock:
2209
	raw_spin_unlock_irq(&ctx->lock);
2210 2211 2212 2213

	return ret;
}

2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
2235
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2236

2237 2238
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2239 2240
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2241
	u32 flags = arg;
2242 2243

	switch (cmd) {
2244 2245
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2246
		break;
2247 2248
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2249
		break;
2250 2251
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2252
		break;
P
Peter Zijlstra 已提交
2253

2254 2255
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2256

2257 2258
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2259

2260
	case PERF_EVENT_IOC_SET_OUTPUT:
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
2278

L
Li Zefan 已提交
2279 2280 2281
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2282
	default:
P
Peter Zijlstra 已提交
2283
		return -ENOTTY;
2284
	}
P
Peter Zijlstra 已提交
2285 2286

	if (flags & PERF_IOC_FLAG_GROUP)
2287
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2288
	else
2289
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2290 2291

	return 0;
2292 2293
}

2294
int perf_event_task_enable(void)
2295
{
2296
	struct perf_event *event;
2297

2298 2299 2300 2301
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2302 2303 2304 2305

	return 0;
}

2306
int perf_event_task_disable(void)
2307
{
2308
	struct perf_event *event;
2309

2310 2311 2312 2313
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2314 2315 2316 2317

	return 0;
}

2318 2319
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2320 2321
#endif

2322
static int perf_event_index(struct perf_event *event)
2323
{
2324
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2325 2326
		return 0;

2327
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2328 2329
}

2330 2331 2332 2333 2334
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2335
void perf_event_update_userpage(struct perf_event *event)
2336
{
2337
	struct perf_event_mmap_page *userpg;
2338
	struct perf_buffer *buffer;
2339 2340

	rcu_read_lock();
2341 2342
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2343 2344
		goto unlock;

2345
	userpg = buffer->user_page;
2346

2347 2348 2349 2350 2351
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2352
	++userpg->lock;
2353
	barrier();
2354 2355 2356 2357
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2358

2359 2360
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2361

2362 2363
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2364

2365
	barrier();
2366
	++userpg->lock;
2367
	preempt_enable();
2368
unlock:
2369
	rcu_read_unlock();
2370 2371
}

2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

2391
#ifndef CONFIG_PERF_USE_VMALLOC
2392

2393 2394 2395
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2396

2397
static struct page *
2398
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2399
{
2400
	if (pgoff > buffer->nr_pages)
2401
		return NULL;
2402

2403
	if (pgoff == 0)
2404
		return virt_to_page(buffer->user_page);
2405

2406
	return virt_to_page(buffer->data_pages[pgoff - 1]);
2407 2408
}

2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

2422
static struct perf_buffer *
2423
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2424
{
2425
	struct perf_buffer *buffer;
2426 2427 2428
	unsigned long size;
	int i;

2429
	size = sizeof(struct perf_buffer);
2430 2431
	size += nr_pages * sizeof(void *);

2432 2433
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2434 2435
		goto fail;

2436
	buffer->user_page = perf_mmap_alloc_page(cpu);
2437
	if (!buffer->user_page)
2438 2439 2440
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
2441
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2442
		if (!buffer->data_pages[i])
2443 2444 2445
			goto fail_data_pages;
	}

2446
	buffer->nr_pages = nr_pages;
2447

2448 2449
	perf_buffer_init(buffer, watermark, flags);

2450
	return buffer;
2451 2452 2453

fail_data_pages:
	for (i--; i >= 0; i--)
2454
		free_page((unsigned long)buffer->data_pages[i]);
2455

2456
	free_page((unsigned long)buffer->user_page);
2457 2458

fail_user_page:
2459
	kfree(buffer);
2460 2461

fail:
2462
	return NULL;
2463 2464
}

2465 2466
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2467
	struct page *page = virt_to_page((void *)addr);
2468 2469 2470 2471 2472

	page->mapping = NULL;
	__free_page(page);
}

2473
static void perf_buffer_free(struct perf_buffer *buffer)
2474 2475 2476
{
	int i;

2477 2478 2479 2480
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
2481 2482
}

2483
static inline int page_order(struct perf_buffer *buffer)
2484 2485 2486 2487
{
	return 0;
}

2488 2489 2490 2491 2492 2493 2494 2495
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

2496
static inline int page_order(struct perf_buffer *buffer)
2497
{
2498
	return buffer->page_order;
2499 2500
}

2501
static struct page *
2502
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2503
{
2504
	if (pgoff > (1UL << page_order(buffer)))
2505 2506
		return NULL;

2507
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2508 2509 2510 2511 2512 2513 2514 2515 2516
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

2517
static void perf_buffer_free_work(struct work_struct *work)
2518
{
2519
	struct perf_buffer *buffer;
2520 2521 2522
	void *base;
	int i, nr;

2523 2524
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
2525

2526
	base = buffer->user_page;
2527 2528 2529 2530
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2531
	kfree(buffer);
2532 2533
}

2534
static void perf_buffer_free(struct perf_buffer *buffer)
2535
{
2536
	schedule_work(&buffer->work);
2537 2538
}

2539
static struct perf_buffer *
2540
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2541
{
2542
	struct perf_buffer *buffer;
2543 2544 2545
	unsigned long size;
	void *all_buf;

2546
	size = sizeof(struct perf_buffer);
2547 2548
	size += sizeof(void *);

2549 2550
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2551 2552
		goto fail;

2553
	INIT_WORK(&buffer->work, perf_buffer_free_work);
2554 2555 2556 2557 2558

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

2559 2560 2561 2562
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
2563

2564 2565
	perf_buffer_init(buffer, watermark, flags);

2566
	return buffer;
2567 2568

fail_all_buf:
2569
	kfree(buffer);
2570 2571 2572 2573 2574 2575 2576

fail:
	return NULL;
}

#endif

2577
static unsigned long perf_data_size(struct perf_buffer *buffer)
2578
{
2579
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2580 2581
}

2582 2583 2584
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
2585
	struct perf_buffer *buffer;
2586 2587 2588 2589 2590 2591 2592 2593 2594
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
2595 2596
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2597 2598 2599 2600 2601
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

2602
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

2617
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2618
{
2619
	struct perf_buffer *buffer;
2620

2621 2622
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
2623 2624
}

2625
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2626
{
2627
	struct perf_buffer *buffer;
2628

2629
	rcu_read_lock();
2630 2631 2632 2633
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
2634 2635 2636
	}
	rcu_read_unlock();

2637
	return buffer;
2638 2639
}

2640
static void perf_buffer_put(struct perf_buffer *buffer)
2641
{
2642
	if (!atomic_dec_and_test(&buffer->refcount))
2643
		return;
2644

2645
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2646 2647 2648 2649
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2650
	struct perf_event *event = vma->vm_file->private_data;
2651

2652
	atomic_inc(&event->mmap_count);
2653 2654 2655 2656
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2657
	struct perf_event *event = vma->vm_file->private_data;
2658

2659
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2660
		unsigned long size = perf_data_size(event->buffer);
2661
		struct user_struct *user = event->mmap_user;
2662
		struct perf_buffer *buffer = event->buffer;
2663

2664
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2665
		vma->vm_mm->locked_vm -= event->mmap_locked;
2666
		rcu_assign_pointer(event->buffer, NULL);
2667
		mutex_unlock(&event->mmap_mutex);
2668

2669
		perf_buffer_put(buffer);
2670
		free_uid(user);
2671
	}
2672 2673
}

2674
static const struct vm_operations_struct perf_mmap_vmops = {
2675 2676 2677 2678
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2679 2680 2681 2682
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2683
	struct perf_event *event = file->private_data;
2684
	unsigned long user_locked, user_lock_limit;
2685
	struct user_struct *user = current_user();
2686
	unsigned long locked, lock_limit;
2687
	struct perf_buffer *buffer;
2688 2689
	unsigned long vma_size;
	unsigned long nr_pages;
2690
	long user_extra, extra;
2691
	int ret = 0, flags = 0;
2692

2693 2694 2695 2696 2697 2698 2699 2700
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

2701
	if (!(vma->vm_flags & VM_SHARED))
2702
		return -EINVAL;
2703 2704 2705 2706

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2707
	/*
2708
	 * If we have buffer pages ensure they're a power-of-two number, so we
2709 2710 2711
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2712 2713
		return -EINVAL;

2714
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2715 2716
		return -EINVAL;

2717 2718
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2719

2720 2721
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
2722 2723 2724
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
2725
		else
2726 2727 2728 2729
			ret = -EINVAL;
		goto unlock;
	}

2730
	user_extra = nr_pages + 1;
2731
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2732 2733 2734 2735 2736 2737

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2738
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2739

2740 2741 2742
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2743

2744
	lock_limit = rlimit(RLIMIT_MEMLOCK);
2745
	lock_limit >>= PAGE_SHIFT;
2746
	locked = vma->vm_mm->locked_vm + extra;
2747

2748 2749
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2750 2751 2752
		ret = -EPERM;
		goto unlock;
	}
2753

2754
	WARN_ON(event->buffer);
2755

2756 2757 2758 2759 2760
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
2761
	if (!buffer) {
2762
		ret = -ENOMEM;
2763
		goto unlock;
2764
	}
2765
	rcu_assign_pointer(event->buffer, buffer);
2766

2767 2768 2769 2770 2771
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

2772
unlock:
2773 2774
	if (!ret)
		atomic_inc(&event->mmap_count);
2775
	mutex_unlock(&event->mmap_mutex);
2776 2777 2778

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2779 2780

	return ret;
2781 2782
}

P
Peter Zijlstra 已提交
2783 2784 2785
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2786
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2787 2788 2789
	int retval;

	mutex_lock(&inode->i_mutex);
2790
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2791 2792 2793 2794 2795 2796 2797 2798
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2799
static const struct file_operations perf_fops = {
2800
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
2801 2802 2803
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2804 2805
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2806
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2807
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2808 2809
};

2810
/*
2811
 * Perf event wakeup
2812 2813 2814 2815 2816
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2817
void perf_event_wakeup(struct perf_event *event)
2818
{
2819
	wake_up_all(&event->waitq);
2820

2821 2822 2823
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2824
	}
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2836
static void perf_pending_event(struct perf_pending_entry *entry)
2837
{
2838 2839
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2840

2841 2842 2843
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2844 2845
	}

2846 2847 2848
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2849 2850 2851
	}
}

2852
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2853

2854
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2855 2856 2857
	PENDING_TAIL,
};

2858 2859
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2860
{
2861
	struct perf_pending_entry **head;
2862

2863
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2864 2865
		return;

2866 2867 2868
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2869 2870

	do {
2871 2872
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2873

2874
	set_perf_event_pending();
2875

2876
	put_cpu_var(perf_pending_head);
2877 2878 2879 2880
}

static int __perf_pending_run(void)
{
2881
	struct perf_pending_entry *list;
2882 2883
	int nr = 0;

2884
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2885
	while (list != PENDING_TAIL) {
2886 2887
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2888 2889 2890

		list = list->next;

2891 2892
		func = entry->func;
		entry->next = NULL;
2893 2894 2895 2896 2897 2898 2899
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2900
		func(entry);
2901 2902 2903 2904 2905 2906
		nr++;
	}

	return nr;
}

2907
static inline int perf_not_pending(struct perf_event *event)
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2922
	return event->pending.next == NULL;
2923 2924
}

2925
static void perf_pending_sync(struct perf_event *event)
2926
{
2927
	wait_event(event->waitq, perf_not_pending(event));
2928 2929
}

2930
void perf_event_do_pending(void)
2931 2932 2933 2934
{
	__perf_pending_run();
}

2935 2936 2937 2938
/*
 * Callchain support -- arch specific
 */

2939
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2940 2941 2942 2943
{
	return NULL;
}

2944 2945 2946 2947
__weak
void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
{
}
2948

2949

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

2971 2972 2973
/*
 * Output
 */
2974
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
2975
			      unsigned long offset, unsigned long head)
2976 2977 2978
{
	unsigned long mask;

2979
	if (!buffer->writable)
2980 2981
		return true;

2982
	mask = perf_data_size(buffer) - 1;
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2993
static void perf_output_wakeup(struct perf_output_handle *handle)
2994
{
2995
	atomic_set(&handle->buffer->poll, POLL_IN);
2996

2997
	if (handle->nmi) {
2998 2999 3000
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
3001
	} else
3002
		perf_event_wakeup(handle->event);
3003 3004
}

3005
/*
3006
 * We need to ensure a later event_id doesn't publish a head when a former
3007
 * event isn't done writing. However since we need to deal with NMIs we
3008 3009 3010
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3011
 * event completes.
3012
 */
3013
static void perf_output_get_handle(struct perf_output_handle *handle)
3014
{
3015
	struct perf_buffer *buffer = handle->buffer;
3016

3017
	preempt_disable();
3018 3019
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3020 3021
}

3022
static void perf_output_put_handle(struct perf_output_handle *handle)
3023
{
3024
	struct perf_buffer *buffer = handle->buffer;
3025
	unsigned long head;
3026 3027

again:
3028
	head = local_read(&buffer->head);
3029 3030

	/*
3031
	 * IRQ/NMI can happen here, which means we can miss a head update.
3032 3033
	 */

3034
	if (!local_dec_and_test(&buffer->nest))
3035
		goto out;
3036 3037

	/*
3038
	 * Publish the known good head. Rely on the full barrier implied
3039
	 * by atomic_dec_and_test() order the buffer->head read and this
3040
	 * write.
3041
	 */
3042
	buffer->user_page->data_head = head;
3043

3044 3045
	/*
	 * Now check if we missed an update, rely on the (compiler)
3046
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3047
	 */
3048 3049
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3050 3051 3052
		goto again;
	}

3053
	if (handle->wakeup != local_read(&buffer->wakeup))
3054
		perf_output_wakeup(handle);
3055

3056
 out:
3057
	preempt_enable();
3058 3059
}

3060
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3061
		      const void *buf, unsigned int len)
3062
{
3063
	do {
3064
		unsigned long size = min_t(unsigned long, handle->size, len);
3065 3066 3067 3068 3069

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3070
		buf += size;
3071 3072
		handle->size -= size;
		if (!handle->size) {
3073
			struct perf_buffer *buffer = handle->buffer;
3074

3075
			handle->page++;
3076 3077 3078
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3079 3080
		}
	} while (len);
3081 3082
}

3083
int perf_output_begin(struct perf_output_handle *handle,
3084
		      struct perf_event *event, unsigned int size,
3085
		      int nmi, int sample)
3086
{
3087
	struct perf_buffer *buffer;
3088
	unsigned long tail, offset, head;
3089 3090 3091 3092 3093 3094
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
3095

3096
	rcu_read_lock();
3097
	/*
3098
	 * For inherited events we send all the output towards the parent.
3099
	 */
3100 3101
	if (event->parent)
		event = event->parent;
3102

3103 3104
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3105 3106
		goto out;

3107
	handle->buffer	= buffer;
3108
	handle->event	= event;
3109 3110
	handle->nmi	= nmi;
	handle->sample	= sample;
3111

3112
	if (!buffer->nr_pages)
3113
		goto out;
3114

3115
	have_lost = local_read(&buffer->lost);
3116 3117 3118
	if (have_lost)
		size += sizeof(lost_event);

3119
	perf_output_get_handle(handle);
3120

3121
	do {
3122 3123 3124 3125 3126
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
3127
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
3128
		smp_rmb();
3129
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
3130
		head += size;
3131
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3132
			goto fail;
3133
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
3134

3135 3136
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
3137

3138 3139 3140 3141
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
3142
	handle->addr += handle->size;
3143
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3144

3145
	if (have_lost) {
3146
		lost_event.header.type = PERF_RECORD_LOST;
3147 3148
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3149
		lost_event.id          = event->id;
3150
		lost_event.lost        = local_xchg(&buffer->lost, 0);
3151 3152 3153 3154

		perf_output_put(handle, lost_event);
	}

3155
	return 0;
3156

3157
fail:
3158
	local_inc(&buffer->lost);
3159
	perf_output_put_handle(handle);
3160 3161
out:
	rcu_read_unlock();
3162

3163 3164
	return -ENOSPC;
}
3165

3166
void perf_output_end(struct perf_output_handle *handle)
3167
{
3168
	struct perf_event *event = handle->event;
3169
	struct perf_buffer *buffer = handle->buffer;
3170

3171
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3172

3173
	if (handle->sample && wakeup_events) {
3174
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
3175
		if (events >= wakeup_events) {
3176 3177
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
3178
		}
3179 3180
	}

3181
	perf_output_put_handle(handle);
3182
	rcu_read_unlock();
3183 3184
}

3185
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3186 3187
{
	/*
3188
	 * only top level events have the pid namespace they were created in
3189
	 */
3190 3191
	if (event->parent)
		event = event->parent;
3192

3193
	return task_tgid_nr_ns(p, event->ns);
3194 3195
}

3196
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3197 3198
{
	/*
3199
	 * only top level events have the pid namespace they were created in
3200
	 */
3201 3202
	if (event->parent)
		event = event->parent;
3203

3204
	return task_pid_nr_ns(p, event->ns);
3205 3206
}

3207
static void perf_output_read_one(struct perf_output_handle *handle,
3208
				 struct perf_event *event)
3209
{
3210
	u64 read_format = event->attr.read_format;
3211 3212 3213
	u64 values[4];
	int n = 0;

3214
	values[n++] = atomic64_read(&event->count);
3215
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3216 3217
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3218 3219
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3220 3221
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3222 3223
	}
	if (read_format & PERF_FORMAT_ID)
3224
		values[n++] = primary_event_id(event);
3225 3226 3227 3228 3229

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3230
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3231 3232
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3233
			    struct perf_event *event)
3234
{
3235 3236
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3248
	if (leader != event)
3249 3250 3251 3252
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
3253
		values[n++] = primary_event_id(leader);
3254 3255 3256

	perf_output_copy(handle, values, n * sizeof(u64));

3257
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3258 3259
		n = 0;

3260
		if (sub != event)
3261 3262 3263 3264
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
3265
			values[n++] = primary_event_id(sub);
3266 3267 3268 3269 3270 3271

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3272
			     struct perf_event *event)
3273
{
3274 3275
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3276
	else
3277
		perf_output_read_one(handle, event);
3278 3279
}

3280 3281 3282
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3283
			struct perf_event *event)
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3314
		perf_output_read(handle, event);
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3352
			 struct perf_event *event,
3353
			 struct pt_regs *regs)
3354
{
3355
	u64 sample_type = event->attr.sample_type;
3356

3357
	data->type = sample_type;
3358

3359
	header->type = PERF_RECORD_SAMPLE;
3360 3361 3362 3363
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3364

3365
	if (sample_type & PERF_SAMPLE_IP) {
3366 3367 3368
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3369
	}
3370

3371
	if (sample_type & PERF_SAMPLE_TID) {
3372
		/* namespace issues */
3373 3374
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3375

3376
		header->size += sizeof(data->tid_entry);
3377 3378
	}

3379
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3380
		data->time = perf_clock();
3381

3382
		header->size += sizeof(data->time);
3383 3384
	}

3385
	if (sample_type & PERF_SAMPLE_ADDR)
3386
		header->size += sizeof(data->addr);
3387

3388
	if (sample_type & PERF_SAMPLE_ID) {
3389
		data->id = primary_event_id(event);
3390

3391 3392 3393 3394
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3395
		data->stream_id = event->id;
3396 3397 3398

		header->size += sizeof(data->stream_id);
	}
3399

3400
	if (sample_type & PERF_SAMPLE_CPU) {
3401 3402
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3403

3404
		header->size += sizeof(data->cpu_entry);
3405 3406
	}

3407
	if (sample_type & PERF_SAMPLE_PERIOD)
3408
		header->size += sizeof(data->period);
3409

3410
	if (sample_type & PERF_SAMPLE_READ)
3411
		header->size += perf_event_read_size(event);
3412

3413
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3414
		int size = 1;
3415

3416 3417 3418 3419 3420 3421
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3422 3423
	}

3424
	if (sample_type & PERF_SAMPLE_RAW) {
3425 3426 3427 3428 3429 3430 3431 3432
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3433
		header->size += size;
3434
	}
3435
}
3436

3437
static void perf_event_output(struct perf_event *event, int nmi,
3438 3439 3440 3441 3442
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3443

3444
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3445

3446
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3447
		return;
3448

3449
	perf_output_sample(&handle, &header, data, event);
3450

3451
	perf_output_end(&handle);
3452 3453
}

3454
/*
3455
 * read event_id
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3466
perf_event_read_event(struct perf_event *event,
3467 3468 3469
			struct task_struct *task)
{
	struct perf_output_handle handle;
3470
	struct perf_read_event read_event = {
3471
		.header = {
3472
			.type = PERF_RECORD_READ,
3473
			.misc = 0,
3474
			.size = sizeof(read_event) + perf_event_read_size(event),
3475
		},
3476 3477
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3478
	};
3479
	int ret;
3480

3481
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3482 3483 3484
	if (ret)
		return;

3485
	perf_output_put(&handle, read_event);
3486
	perf_output_read(&handle, event);
3487

3488 3489 3490
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3491
/*
P
Peter Zijlstra 已提交
3492 3493
 * task tracking -- fork/exit
 *
3494
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
3495 3496
 */

P
Peter Zijlstra 已提交
3497
struct perf_task_event {
3498
	struct task_struct		*task;
3499
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3500 3501 3502 3503 3504 3505

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3506 3507
		u32				tid;
		u32				ptid;
3508
		u64				time;
3509
	} event_id;
P
Peter Zijlstra 已提交
3510 3511
};

3512
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3513
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3514 3515
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3516
	struct task_struct *task = task_event->task;
3517 3518
	int size, ret;

3519 3520
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3521

3522
	if (ret)
P
Peter Zijlstra 已提交
3523 3524
		return;

3525 3526
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3527

3528 3529
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3530

3531
	perf_output_put(&handle, task_event->event_id);
3532

P
Peter Zijlstra 已提交
3533 3534 3535
	perf_output_end(&handle);
}

3536
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3537
{
P
Peter Zijlstra 已提交
3538
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3539 3540
		return 0;

3541 3542 3543
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3544 3545
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
3546 3547 3548 3549 3550
		return 1;

	return 0;
}

3551
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3552
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3553
{
3554
	struct perf_event *event;
P
Peter Zijlstra 已提交
3555

3556 3557 3558
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3559 3560 3561
	}
}

3562
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3563 3564
{
	struct perf_cpu_context *cpuctx;
3565
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3566

3567
	rcu_read_lock();
P
Peter Zijlstra 已提交
3568
	cpuctx = &get_cpu_var(perf_cpu_context);
3569
	perf_event_task_ctx(&cpuctx->ctx, task_event);
3570
	if (!ctx)
P
Peter Zijlstra 已提交
3571
		ctx = rcu_dereference(current->perf_event_ctxp);
P
Peter Zijlstra 已提交
3572
	if (ctx)
3573
		perf_event_task_ctx(ctx, task_event);
3574
	put_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3575 3576 3577
	rcu_read_unlock();
}

3578 3579
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3580
			      int new)
P
Peter Zijlstra 已提交
3581
{
P
Peter Zijlstra 已提交
3582
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3583

3584 3585 3586
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3587 3588
		return;

P
Peter Zijlstra 已提交
3589
	task_event = (struct perf_task_event){
3590 3591
		.task	  = task,
		.task_ctx = task_ctx,
3592
		.event_id    = {
P
Peter Zijlstra 已提交
3593
			.header = {
3594
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3595
				.misc = 0,
3596
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3597
			},
3598 3599
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3600 3601
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3602
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3603 3604 3605
		},
	};

3606
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3607 3608
}

3609
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3610
{
3611
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3612 3613
}

3614 3615 3616 3617 3618
/*
 * comm tracking
 */

struct perf_comm_event {
3619 3620
	struct task_struct	*task;
	char			*comm;
3621 3622 3623 3624 3625 3626 3627
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3628
	} event_id;
3629 3630
};

3631
static void perf_event_comm_output(struct perf_event *event,
3632 3633 3634
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3635 3636
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3637 3638 3639 3640

	if (ret)
		return;

3641 3642
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3643

3644
	perf_output_put(&handle, comm_event->event_id);
3645 3646 3647 3648 3649
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3650
static int perf_event_comm_match(struct perf_event *event)
3651
{
P
Peter Zijlstra 已提交
3652
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3653 3654
		return 0;

3655 3656 3657
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3658
	if (event->attr.comm)
3659 3660 3661 3662 3663
		return 1;

	return 0;
}

3664
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3665 3666
				  struct perf_comm_event *comm_event)
{
3667
	struct perf_event *event;
3668

3669 3670 3671
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3672 3673 3674
	}
}

3675
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3676 3677
{
	struct perf_cpu_context *cpuctx;
3678
	struct perf_event_context *ctx;
3679
	unsigned int size;
3680
	char comm[TASK_COMM_LEN];
3681

3682
	memset(comm, 0, sizeof(comm));
3683
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3684
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3685 3686 3687 3688

	comm_event->comm = comm;
	comm_event->comm_size = size;

3689
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3690

3691
	rcu_read_lock();
3692
	cpuctx = &get_cpu_var(perf_cpu_context);
3693 3694
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3695
	if (ctx)
3696
		perf_event_comm_ctx(ctx, comm_event);
3697
	put_cpu_var(perf_cpu_context);
3698
	rcu_read_unlock();
3699 3700
}

3701
void perf_event_comm(struct task_struct *task)
3702
{
3703 3704
	struct perf_comm_event comm_event;

3705 3706
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3707

3708
	if (!atomic_read(&nr_comm_events))
3709
		return;
3710

3711
	comm_event = (struct perf_comm_event){
3712
		.task	= task,
3713 3714
		/* .comm      */
		/* .comm_size */
3715
		.event_id  = {
3716
			.header = {
3717
				.type = PERF_RECORD_COMM,
3718 3719 3720 3721 3722
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3723 3724 3725
		},
	};

3726
	perf_event_comm_event(&comm_event);
3727 3728
}

3729 3730 3731 3732 3733
/*
 * mmap tracking
 */

struct perf_mmap_event {
3734 3735 3736 3737
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3738 3739 3740 3741 3742 3743 3744 3745 3746

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3747
	} event_id;
3748 3749
};

3750
static void perf_event_mmap_output(struct perf_event *event,
3751 3752 3753
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3754 3755
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3756 3757 3758 3759

	if (ret)
		return;

3760 3761
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3762

3763
	perf_output_put(&handle, mmap_event->event_id);
3764 3765
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3766
	perf_output_end(&handle);
3767 3768
}

3769
static int perf_event_mmap_match(struct perf_event *event,
3770 3771
				   struct perf_mmap_event *mmap_event,
				   int executable)
3772
{
P
Peter Zijlstra 已提交
3773
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3774 3775
		return 0;

3776 3777 3778
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3779 3780
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
3781 3782 3783 3784 3785
		return 1;

	return 0;
}

3786
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3787 3788
				  struct perf_mmap_event *mmap_event,
				  int executable)
3789
{
3790
	struct perf_event *event;
3791

3792
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3793
		if (perf_event_mmap_match(event, mmap_event, executable))
3794
			perf_event_mmap_output(event, mmap_event);
3795 3796 3797
	}
}

3798
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3799 3800
{
	struct perf_cpu_context *cpuctx;
3801
	struct perf_event_context *ctx;
3802 3803
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3804 3805 3806
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3807
	const char *name;
3808

3809 3810
	memset(tmp, 0, sizeof(tmp));

3811
	if (file) {
3812 3813 3814 3815 3816 3817
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3818 3819 3820 3821
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3822
		name = d_path(&file->f_path, buf, PATH_MAX);
3823 3824 3825 3826 3827
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3828 3829 3830
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3831
			goto got_name;
3832
		}
3833 3834 3835 3836

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
3837 3838 3839 3840 3841 3842 3843 3844
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
3845 3846
		}

3847 3848 3849 3850 3851
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3852
	size = ALIGN(strlen(name)+1, sizeof(u64));
3853 3854 3855 3856

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3857
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3858

3859
	rcu_read_lock();
3860
	cpuctx = &get_cpu_var(perf_cpu_context);
3861
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, vma->vm_flags & VM_EXEC);
3862
	ctx = rcu_dereference(current->perf_event_ctxp);
3863
	if (ctx)
3864
		perf_event_mmap_ctx(ctx, mmap_event, vma->vm_flags & VM_EXEC);
3865
	put_cpu_var(perf_cpu_context);
3866 3867
	rcu_read_unlock();

3868 3869 3870
	kfree(buf);
}

3871
void perf_event_mmap(struct vm_area_struct *vma)
3872
{
3873 3874
	struct perf_mmap_event mmap_event;

3875
	if (!atomic_read(&nr_mmap_events))
3876 3877 3878
		return;

	mmap_event = (struct perf_mmap_event){
3879
		.vma	= vma,
3880 3881
		/* .file_name */
		/* .file_size */
3882
		.event_id  = {
3883
			.header = {
3884
				.type = PERF_RECORD_MMAP,
3885
				.misc = PERF_RECORD_MISC_USER,
3886 3887 3888 3889
				/* .size */
			},
			/* .pid */
			/* .tid */
3890 3891
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
3892
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3893 3894 3895
		},
	};

3896
	perf_event_mmap_event(&mmap_event);
3897 3898
}

3899 3900 3901 3902
/*
 * IRQ throttle logging
 */

3903
static void perf_log_throttle(struct perf_event *event, int enable)
3904 3905 3906 3907 3908 3909 3910
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3911
		u64				id;
3912
		u64				stream_id;
3913 3914
	} throttle_event = {
		.header = {
3915
			.type = PERF_RECORD_THROTTLE,
3916 3917 3918
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3919
		.time		= perf_clock(),
3920 3921
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3922 3923
	};

3924
	if (enable)
3925
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3926

3927
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3928 3929 3930 3931 3932 3933 3934
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3935
/*
3936
 * Generic event overflow handling, sampling.
3937 3938
 */

3939
static int __perf_event_overflow(struct perf_event *event, int nmi,
3940 3941
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3942
{
3943 3944
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3945 3946
	int ret = 0;

3947
	throttle = (throttle && event->pmu->unthrottle != NULL);
3948

3949
	if (!throttle) {
3950
		hwc->interrupts++;
3951
	} else {
3952 3953
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3954
			if (HZ * hwc->interrupts >
3955
					(u64)sysctl_perf_event_sample_rate) {
3956
				hwc->interrupts = MAX_INTERRUPTS;
3957
				perf_log_throttle(event, 0);
3958 3959 3960 3961
				ret = 1;
			}
		} else {
			/*
3962
			 * Keep re-disabling events even though on the previous
3963
			 * pass we disabled it - just in case we raced with a
3964
			 * sched-in and the event got enabled again:
3965
			 */
3966 3967 3968
			ret = 1;
		}
	}
3969

3970
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3971
		u64 now = perf_clock();
3972
		s64 delta = now - hwc->freq_time_stamp;
3973

3974
		hwc->freq_time_stamp = now;
3975

3976 3977
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
3978 3979
	}

3980 3981
	/*
	 * XXX event_limit might not quite work as expected on inherited
3982
	 * events
3983 3984
	 */

3985 3986
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3987
		ret = 1;
3988
		event->pending_kill = POLL_HUP;
3989
		if (nmi) {
3990 3991 3992
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3993
		} else
3994
			perf_event_disable(event);
3995 3996
	}

3997 3998 3999 4000 4001
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

4002
	return ret;
4003 4004
}

4005
int perf_event_overflow(struct perf_event *event, int nmi,
4006 4007
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4008
{
4009
	return __perf_event_overflow(event, nmi, 1, data, regs);
4010 4011
}

4012
/*
4013
 * Generic software event infrastructure
4014 4015
 */

4016
/*
4017 4018
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4019 4020 4021 4022
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4023
static u64 perf_swevent_set_period(struct perf_event *event)
4024
{
4025
	struct hw_perf_event *hwc = &event->hw;
4026 4027 4028 4029 4030
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4031 4032

again:
4033 4034 4035
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
4036

4037 4038 4039 4040 4041
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
4042

4043
	return nr;
4044 4045
}

4046
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4047 4048
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
4049
{
4050
	struct hw_perf_event *hwc = &event->hw;
4051
	int throttle = 0;
4052

4053
	data->period = event->hw.last_period;
4054 4055
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4056

4057 4058
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4059

4060
	for (; overflow; overflow--) {
4061
		if (__perf_event_overflow(event, nmi, throttle,
4062
					    data, regs)) {
4063 4064 4065 4066 4067 4068
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4069
		throttle = 1;
4070
	}
4071 4072
}

4073
static void perf_swevent_add(struct perf_event *event, u64 nr,
4074 4075
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
4076
{
4077
	struct hw_perf_event *hwc = &event->hw;
4078

4079
	atomic64_add(nr, &event->count);
4080

4081 4082 4083
	if (!regs)
		return;

4084 4085
	if (!hwc->sample_period)
		return;
4086

4087 4088 4089 4090
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
4091
		return;
4092

4093
	perf_swevent_overflow(event, 0, nmi, data, regs);
4094 4095
}

4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4110
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4111
				enum perf_type_id type,
L
Li Zefan 已提交
4112 4113 4114
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4115
{
4116
	if (event->attr.type != type)
4117
		return 0;
4118

4119
	if (event->attr.config != event_id)
4120 4121
		return 0;

4122 4123
	if (perf_exclude_event(event, regs))
		return 0;
4124 4125 4126 4127

	return 1;
}

4128 4129 4130 4131 4132 4133 4134
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4135 4136
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4137
{
4138 4139 4140 4141
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4142

4143 4144 4145 4146 4147
/* For the read side: events when they trigger */
static inline struct hlist_head *
find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
{
	struct swevent_hlist *hlist;
4148 4149 4150 4151 4152

	hlist = rcu_dereference(ctx->swevent_hlist);
	if (!hlist)
		return NULL;

4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
	hlist = rcu_dereference_protected(ctx->swevent_hlist,
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4175 4176 4177 4178 4179 4180
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4181
{
4182
	struct perf_cpu_context *cpuctx;
4183
	struct perf_event *event;
4184 4185
	struct hlist_node *node;
	struct hlist_head *head;
4186

4187 4188 4189 4190
	cpuctx = &__get_cpu_var(perf_cpu_context);

	rcu_read_lock();

4191
	head = find_swevent_head_rcu(cpuctx, type, event_id);
4192 4193 4194 4195 4196

	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4197
		if (perf_swevent_match(event, type, event_id, data, regs))
4198
			perf_swevent_add(event, nr, nmi, data, regs);
4199
	}
4200 4201
end:
	rcu_read_unlock();
4202 4203
}

4204
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4205
{
4206
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4207
	int rctx;
4208

P
Peter Zijlstra 已提交
4209
	if (in_nmi())
4210
		rctx = 3;
4211
	else if (in_irq())
4212
		rctx = 2;
4213
	else if (in_softirq())
4214
		rctx = 1;
4215
	else
4216
		rctx = 0;
P
Peter Zijlstra 已提交
4217

4218
	if (cpuctx->recursion[rctx])
4219
		return -1;
P
Peter Zijlstra 已提交
4220

4221 4222
	cpuctx->recursion[rctx]++;
	barrier();
P
Peter Zijlstra 已提交
4223

4224
	return rctx;
P
Peter Zijlstra 已提交
4225
}
I
Ingo Molnar 已提交
4226
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4227

4228
void inline perf_swevent_put_recursion_context(int rctx)
4229
{
4230 4231
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	barrier();
4232
	cpuctx->recursion[rctx]--;
4233
}
4234

4235
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4236
			    struct pt_regs *regs, u64 addr)
4237
{
4238
	struct perf_sample_data data;
4239 4240
	int rctx;

4241
	preempt_disable_notrace();
4242 4243 4244
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4245

4246
	perf_sample_data_init(&data, addr);
4247

4248
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4249 4250

	perf_swevent_put_recursion_context(rctx);
4251
	preempt_enable_notrace();
4252 4253
}

4254
static void perf_swevent_read(struct perf_event *event)
4255 4256 4257
{
}

4258
static int perf_swevent_enable(struct perf_event *event)
4259
{
4260
	struct hw_perf_event *hwc = &event->hw;
4261 4262 4263 4264
	struct perf_cpu_context *cpuctx;
	struct hlist_head *head;

	cpuctx = &__get_cpu_var(perf_cpu_context);
4265 4266 4267

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4268
		perf_swevent_set_period(event);
4269
	}
4270

4271
	head = find_swevent_head(cpuctx, event);
4272 4273 4274 4275 4276
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4277 4278 4279
	return 0;
}

4280
static void perf_swevent_disable(struct perf_event *event)
4281
{
4282
	hlist_del_rcu(&event->hlist_entry);
4283 4284
}

P
Peter Zijlstra 已提交
4285 4286 4287 4288 4289 4290 4291 4292 4293
static void perf_swevent_void(struct perf_event *event)
{
}

static int perf_swevent_int(struct perf_event *event)
{
	return 0;
}

4294
static const struct pmu perf_ops_generic = {
4295 4296
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
P
Peter Zijlstra 已提交
4297 4298
	.start		= perf_swevent_int,
	.stop		= perf_swevent_void,
4299
	.read		= perf_swevent_read,
P
Peter Zijlstra 已提交
4300
	.unthrottle	= perf_swevent_void, /* hwc->interrupts already reset */
4301 4302
};

4303
/*
4304
 * hrtimer based swevent callback
4305 4306
 */

4307
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4308 4309 4310
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
4311
	struct pt_regs *regs;
4312
	struct perf_event *event;
4313 4314
	u64 period;

4315
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4316
	event->pmu->read(event);
4317

4318
	perf_sample_data_init(&data, 0);
4319
	data.period = event->hw.last_period;
4320
	regs = get_irq_regs();
4321

4322
	if (regs && !perf_exclude_event(event, regs)) {
4323 4324 4325
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
4326 4327
	}

4328
	period = max_t(u64, 10000, event->hw.sample_period);
4329 4330 4331 4332 4333
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4370
/*
4371
 * Software event: cpu wall time clock
4372 4373
 */

4374
static void cpu_clock_perf_event_update(struct perf_event *event)
4375 4376 4377 4378 4379 4380
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4381
	prev = atomic64_xchg(&event->hw.prev_count, now);
4382
	atomic64_add(now - prev, &event->count);
4383 4384
}

4385
static int cpu_clock_perf_event_enable(struct perf_event *event)
4386
{
4387
	struct hw_perf_event *hwc = &event->hw;
4388 4389 4390
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4391
	perf_swevent_start_hrtimer(event);
4392 4393 4394 4395

	return 0;
}

4396
static void cpu_clock_perf_event_disable(struct perf_event *event)
4397
{
4398
	perf_swevent_cancel_hrtimer(event);
4399
	cpu_clock_perf_event_update(event);
4400 4401
}

4402
static void cpu_clock_perf_event_read(struct perf_event *event)
4403
{
4404
	cpu_clock_perf_event_update(event);
4405 4406
}

4407
static const struct pmu perf_ops_cpu_clock = {
4408 4409 4410
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4411 4412
};

4413
/*
4414
 * Software event: task time clock
4415 4416
 */

4417
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4418
{
4419
	u64 prev;
I
Ingo Molnar 已提交
4420 4421
	s64 delta;

4422
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4423
	delta = now - prev;
4424
	atomic64_add(delta, &event->count);
4425 4426
}

4427
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4428
{
4429
	struct hw_perf_event *hwc = &event->hw;
4430 4431
	u64 now;

4432
	now = event->ctx->time;
4433

4434
	atomic64_set(&hwc->prev_count, now);
4435 4436

	perf_swevent_start_hrtimer(event);
4437 4438

	return 0;
I
Ingo Molnar 已提交
4439 4440
}

4441
static void task_clock_perf_event_disable(struct perf_event *event)
4442
{
4443
	perf_swevent_cancel_hrtimer(event);
4444
	task_clock_perf_event_update(event, event->ctx->time);
4445

4446
}
I
Ingo Molnar 已提交
4447

4448
static void task_clock_perf_event_read(struct perf_event *event)
4449
{
4450 4451 4452
	u64 time;

	if (!in_nmi()) {
4453 4454
		update_context_time(event->ctx);
		time = event->ctx->time;
4455 4456
	} else {
		u64 now = perf_clock();
4457 4458
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4459 4460
	}

4461
	task_clock_perf_event_update(event, time);
4462 4463
}

4464
static const struct pmu perf_ops_task_clock = {
4465 4466 4467
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4468 4469
};

4470 4471 4472 4473 4474 4475 4476 4477
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
swevent_hlist_deref(struct perf_cpu_context *cpuctx)
{
	return rcu_dereference_protected(cpuctx->swevent_hlist,
					 lockdep_is_held(&cpuctx->hlist_mutex));
}

4478 4479 4480 4481 4482 4483 4484 4485 4486 4487
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
{
4488
	struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4489

4490
	if (!hlist)
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
		return;

	rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);

	mutex_lock(&cpuctx->hlist_mutex);

	if (!--cpuctx->hlist_refcount)
		swevent_hlist_release(cpuctx);

	mutex_unlock(&cpuctx->hlist_mutex);
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	int err = 0;

	mutex_lock(&cpuctx->hlist_mutex);

4529
	if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	cpuctx->hlist_refcount++;
 exit:
	mutex_unlock(&cpuctx->hlist_mutex);

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
 fail:
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4576 4577
#ifdef CONFIG_EVENT_TRACING

4578 4579 4580
static const struct pmu perf_ops_tracepoint = {
	.enable		= perf_trace_enable,
	.disable	= perf_trace_disable,
P
Peter Zijlstra 已提交
4581 4582
	.start		= perf_swevent_int,
	.stop		= perf_swevent_void,
4583
	.read		= perf_swevent_read,
P
Peter Zijlstra 已提交
4584
	.unthrottle	= perf_swevent_void,
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
};

static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
4601 4602 4603 4604
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
4605 4606 4607 4608 4609 4610 4611 4612 4613
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4614
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
4615 4616
{
	struct perf_sample_data data;
4617 4618 4619
	struct perf_event *event;
	struct hlist_node *node;

4620 4621 4622 4623 4624 4625 4626 4627
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

4628 4629 4630
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
			perf_swevent_add(event, count, 1, &data, regs);
4631
	}
4632 4633

	perf_swevent_put_recursion_context(rctx);
4634 4635 4636
}
EXPORT_SYMBOL_GPL(perf_tp_event);

4637
static void tp_perf_event_destroy(struct perf_event *event)
4638
{
4639
	perf_trace_destroy(event);
4640 4641
}

4642
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4643
{
4644 4645
	int err;

4646 4647 4648 4649
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4650
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4651
			perf_paranoid_tracepoint_raw() &&
4652 4653 4654
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4655 4656
	err = perf_trace_init(event);
	if (err)
4657 4658
		return NULL;

4659
	event->destroy = tp_perf_event_destroy;
4660

4661
	return &perf_ops_tracepoint;
4662
}
L
Li Zefan 已提交
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4687
#else
L
Li Zefan 已提交
4688

4689
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4690 4691 4692
{
	return NULL;
}
L
Li Zefan 已提交
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4703
#endif /* CONFIG_EVENT_TRACING */
4704

4705 4706 4707 4708 4709 4710 4711 4712 4713
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
4714 4715

	err = register_perf_hw_breakpoint(bp);
4716 4717 4718 4719 4720 4721 4722 4723
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

4724
void perf_bp_event(struct perf_event *bp, void *data)
4725
{
4726 4727 4728
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

4729
	perf_sample_data_init(&sample, bp->attr.bp_addr);
4730 4731 4732

	if (!perf_exclude_event(bp, regs))
		perf_swevent_add(bp, 1, 1, &sample, regs);
4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
}
#else
static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4745
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4746

4747
static void sw_perf_event_destroy(struct perf_event *event)
4748
{
4749
	u64 event_id = event->attr.config;
4750

4751
	WARN_ON(event->parent);
4752

4753
	atomic_dec(&perf_swevent_enabled[event_id]);
4754
	swevent_hlist_put(event);
4755 4756
}

4757
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4758
{
4759
	const struct pmu *pmu = NULL;
4760
	u64 event_id = event->attr.config;
4761

4762
	/*
4763
	 * Software events (currently) can't in general distinguish
4764 4765 4766 4767 4768
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4769
	switch (event_id) {
4770
	case PERF_COUNT_SW_CPU_CLOCK:
4771
		pmu = &perf_ops_cpu_clock;
4772

4773
		break;
4774
	case PERF_COUNT_SW_TASK_CLOCK:
4775
		/*
4776 4777
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4778
		 */
4779
		if (event->ctx->task)
4780
			pmu = &perf_ops_task_clock;
4781
		else
4782
			pmu = &perf_ops_cpu_clock;
4783

4784
		break;
4785 4786 4787 4788 4789
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4790 4791
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4792
		if (!event->parent) {
4793 4794 4795 4796 4797 4798
			int err;

			err = swevent_hlist_get(event);
			if (err)
				return ERR_PTR(err);

4799 4800
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4801
		}
4802
		pmu = &perf_ops_generic;
4803
		break;
4804
	}
4805

4806
	return pmu;
4807 4808
}

T
Thomas Gleixner 已提交
4809
/*
4810
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4811
 */
4812 4813
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4814
		   int cpu,
4815 4816 4817
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4818
		   perf_overflow_handler_t overflow_handler,
4819
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4820
{
4821
	const struct pmu *pmu;
4822 4823
	struct perf_event *event;
	struct hw_perf_event *hwc;
4824
	long err;
T
Thomas Gleixner 已提交
4825

4826 4827
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4828
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4829

4830
	/*
4831
	 * Single events are their own group leaders, with an
4832 4833 4834
	 * empty sibling list:
	 */
	if (!group_leader)
4835
		group_leader = event;
4836

4837 4838
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4839

4840 4841 4842 4843
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4844

4845
	mutex_init(&event->mmap_mutex);
4846

4847 4848 4849 4850 4851 4852
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4853

4854
	event->parent		= parent_event;
4855

4856 4857
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4858

4859
	event->state		= PERF_EVENT_STATE_INACTIVE;
4860

4861 4862
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
4863
	
4864
	event->overflow_handler	= overflow_handler;
4865

4866
	if (attr->disabled)
4867
		event->state = PERF_EVENT_STATE_OFF;
4868

4869
	pmu = NULL;
4870

4871
	hwc = &event->hw;
4872
	hwc->sample_period = attr->sample_period;
4873
	if (attr->freq && attr->sample_freq)
4874
		hwc->sample_period = 1;
4875
	hwc->last_period = hwc->sample_period;
4876 4877

	atomic64_set(&hwc->period_left, hwc->sample_period);
4878

4879
	/*
4880
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4881
	 */
4882
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4883 4884
		goto done;

4885
	switch (attr->type) {
4886
	case PERF_TYPE_RAW:
4887
	case PERF_TYPE_HARDWARE:
4888
	case PERF_TYPE_HW_CACHE:
4889
		pmu = hw_perf_event_init(event);
4890 4891 4892
		break;

	case PERF_TYPE_SOFTWARE:
4893
		pmu = sw_perf_event_init(event);
4894 4895 4896
		break;

	case PERF_TYPE_TRACEPOINT:
4897
		pmu = tp_perf_event_init(event);
4898
		break;
4899

4900 4901 4902 4903 4904
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4905 4906
	default:
		break;
4907
	}
4908 4909
done:
	err = 0;
4910
	if (!pmu)
4911
		err = -EINVAL;
4912 4913
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4914

4915
	if (err) {
4916 4917 4918
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4919
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4920
	}
4921

4922
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4923

4924 4925
	if (!event->parent) {
		atomic_inc(&nr_events);
4926
		if (event->attr.mmap || event->attr.mmap_data)
4927 4928 4929 4930 4931
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4932
	}
4933

4934
	return event;
T
Thomas Gleixner 已提交
4935 4936
}

4937 4938
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4939 4940
{
	u32 size;
4941
	int ret;
4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4966 4967 4968
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4969 4970
	 */
	if (size > sizeof(*attr)) {
4971 4972 4973
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4974

4975 4976
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4977

4978
		for (; addr < end; addr++) {
4979 4980 4981 4982 4983 4984
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4985
		size = sizeof(*attr);
4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

4999
	if (attr->__reserved_1)
5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5017 5018
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5019
{
5020
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5021 5022
	int ret = -EINVAL;

5023
	if (!output_event)
5024 5025
		goto set;

5026 5027
	/* don't allow circular references */
	if (event == output_event)
5028 5029
		goto out;

5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5042
set:
5043
	mutex_lock(&event->mmap_mutex);
5044 5045 5046
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5047

5048 5049
	if (output_event) {
		/* get the buffer we want to redirect to */
5050 5051
		buffer = perf_buffer_get(output_event);
		if (!buffer)
5052
			goto unlock;
5053 5054
	}

5055 5056
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
5057
	ret = 0;
5058 5059 5060
unlock:
	mutex_unlock(&event->mmap_mutex);

5061 5062
	if (old_buffer)
		perf_buffer_put(old_buffer);
5063 5064 5065 5066
out:
	return ret;
}

T
Thomas Gleixner 已提交
5067
/**
5068
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5069
 *
5070
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5071
 * @pid:		target pid
I
Ingo Molnar 已提交
5072
 * @cpu:		target cpu
5073
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5074
 */
5075 5076
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5077
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5078
{
5079
	struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5080 5081 5082
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5083
	struct file *group_file = NULL;
5084
	int event_fd;
5085
	int fput_needed = 0;
5086
	int err;
T
Thomas Gleixner 已提交
5087

5088
	/* for future expandability... */
5089
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5090 5091
		return -EINVAL;

5092 5093 5094
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
5095

5096 5097 5098 5099 5100
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

5101
	if (attr.freq) {
5102
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
5103 5104 5105
			return -EINVAL;
	}

5106 5107 5108 5109
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

5110
	/*
I
Ingo Molnar 已提交
5111 5112 5113
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
5114 5115 5116 5117
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_fd;
	}
I
Ingo Molnar 已提交
5118

5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
			goto err_put_context;
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

I
Ingo Molnar 已提交
5132
	/*
5133
	 * Look up the group leader (we will attach this event to it):
5134
	 */
5135
	if (group_leader) {
5136
		err = -EINVAL;
5137 5138

		/*
I
Ingo Molnar 已提交
5139 5140 5141 5142 5143 5144 5145 5146
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
5147
		 */
I
Ingo Molnar 已提交
5148 5149
		if (group_leader->ctx != ctx)
			goto err_put_context;
5150 5151 5152
		/*
		 * Only a group leader can be exclusive or pinned
		 */
5153
		if (attr.exclusive || attr.pinned)
5154
			goto err_put_context;
5155 5156
	}

5157
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5158
				     NULL, NULL, GFP_KERNEL);
5159 5160
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
T
Thomas Gleixner 已提交
5161
		goto err_put_context;
5162 5163 5164 5165 5166 5167 5168
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
			goto err_free_put_context;
	}
T
Thomas Gleixner 已提交
5169

5170 5171 5172
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
5173
		goto err_free_put_context;
5174
	}
5175

5176
	event->filp = event_file;
5177
	WARN_ON_ONCE(ctx->parent_ctx);
5178
	mutex_lock(&ctx->mutex);
5179
	perf_install_in_context(ctx, event, cpu);
5180
	++ctx->generation;
5181
	mutex_unlock(&ctx->mutex);
5182

5183
	event->owner = current;
5184
	get_task_struct(current);
5185 5186 5187
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
5188

5189 5190 5191 5192 5193 5194
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
5195 5196 5197
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
5198

5199
err_free_put_context:
5200
	free_event(event);
T
Thomas Gleixner 已提交
5201
err_put_context:
5202
	fput_light(group_file, fput_needed);
5203 5204 5205
	put_ctx(ctx);
err_fd:
	put_unused_fd(event_fd);
5206
	return err;
T
Thomas Gleixner 已提交
5207 5208
}

5209 5210 5211 5212 5213 5214 5215 5216 5217
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5218 5219
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
5220 5221 5222 5223 5224 5225 5226 5227 5228 5229
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
5230 5231 5232 5233
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_exit;
	}
5234 5235

	event = perf_event_alloc(attr, cpu, ctx, NULL,
5236
				 NULL, overflow_handler, GFP_KERNEL);
5237 5238
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
5239
		goto err_put_context;
5240
	}
5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

5257 5258 5259 5260
 err_put_context:
	put_ctx(ctx);
 err_exit:
	return ERR_PTR(err);
5261 5262 5263
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

5264
/*
5265
 * inherit a event from parent task to child task:
5266
 */
5267 5268
static struct perf_event *
inherit_event(struct perf_event *parent_event,
5269
	      struct task_struct *parent,
5270
	      struct perf_event_context *parent_ctx,
5271
	      struct task_struct *child,
5272 5273
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
5274
{
5275
	struct perf_event *child_event;
5276

5277
	/*
5278 5279
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
5280 5281 5282
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
5283 5284
	if (parent_event->parent)
		parent_event = parent_event->parent;
5285

5286 5287 5288
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
5289
					   NULL, GFP_KERNEL);
5290 5291
	if (IS_ERR(child_event))
		return child_event;
5292
	get_ctx(child_ctx);
5293

5294
	/*
5295
	 * Make the child state follow the state of the parent event,
5296
	 * not its attr.disabled bit.  We hold the parent's mutex,
5297
	 * so we won't race with perf_event_{en, dis}able_family.
5298
	 */
5299 5300
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
5301
	else
5302
		child_event->state = PERF_EVENT_STATE_OFF;
5303

5304 5305 5306 5307 5308 5309 5310 5311 5312
	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		atomic64_set(&hwc->period_left, sample_period);
	}
5313

5314 5315
	child_event->overflow_handler = parent_event->overflow_handler;

5316 5317 5318
	/*
	 * Link it up in the child's context:
	 */
5319
	add_event_to_ctx(child_event, child_ctx);
5320 5321 5322

	/*
	 * Get a reference to the parent filp - we will fput it
5323
	 * when the child event exits. This is safe to do because
5324 5325 5326
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
5327
	atomic_long_inc(&parent_event->filp->f_count);
5328

5329
	/*
5330
	 * Link this into the parent event's child list
5331
	 */
5332 5333 5334 5335
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5336

5337
	return child_event;
5338 5339
}

5340
static int inherit_group(struct perf_event *parent_event,
5341
	      struct task_struct *parent,
5342
	      struct perf_event_context *parent_ctx,
5343
	      struct task_struct *child,
5344
	      struct perf_event_context *child_ctx)
5345
{
5346 5347 5348
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
5349

5350
	leader = inherit_event(parent_event, parent, parent_ctx,
5351
				 child, NULL, child_ctx);
5352 5353
	if (IS_ERR(leader))
		return PTR_ERR(leader);
5354 5355
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
5356 5357 5358
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
5359
	}
5360 5361 5362
	return 0;
}

5363
static void sync_child_event(struct perf_event *child_event,
5364
			       struct task_struct *child)
5365
{
5366
	struct perf_event *parent_event = child_event->parent;
5367
	u64 child_val;
5368

5369 5370
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5371

5372
	child_val = atomic64_read(&child_event->count);
5373 5374 5375 5376

	/*
	 * Add back the child's count to the parent's count:
	 */
5377 5378 5379 5380 5381
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5382 5383

	/*
5384
	 * Remove this event from the parent's list
5385
	 */
5386 5387 5388 5389
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5390 5391

	/*
5392
	 * Release the parent event, if this was the last
5393 5394
	 * reference to it.
	 */
5395
	fput(parent_event->filp);
5396 5397
}

5398
static void
5399 5400
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5401
			 struct task_struct *child)
5402
{
5403
	struct perf_event *parent_event;
5404

5405
	perf_event_remove_from_context(child_event);
5406

5407
	parent_event = child_event->parent;
5408
	/*
5409
	 * It can happen that parent exits first, and has events
5410
	 * that are still around due to the child reference. These
5411
	 * events need to be zapped - but otherwise linger.
5412
	 */
5413 5414 5415
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5416
	}
5417 5418 5419
}

/*
5420
 * When a child task exits, feed back event values to parent events.
5421
 */
5422
void perf_event_exit_task(struct task_struct *child)
5423
{
5424 5425
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5426
	unsigned long flags;
5427

5428 5429
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
5430
		return;
P
Peter Zijlstra 已提交
5431
	}
5432

5433
	local_irq_save(flags);
5434 5435 5436 5437 5438 5439
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
5440 5441
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
5442 5443 5444

	/*
	 * Take the context lock here so that if find_get_context is
5445
	 * reading child->perf_event_ctxp, we wait until it has
5446 5447
	 * incremented the context's refcount before we do put_ctx below.
	 */
5448
	raw_spin_lock(&child_ctx->lock);
5449
	child->perf_event_ctxp = NULL;
5450 5451 5452
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5453
	 * the events from it.
5454 5455
	 */
	unclone_ctx(child_ctx);
5456
	update_context_time(child_ctx);
5457
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5458 5459

	/*
5460 5461 5462
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5463
	 */
5464
	perf_event_task(child, child_ctx, 0);
5465

5466 5467 5468
	/*
	 * We can recurse on the same lock type through:
	 *
5469 5470 5471
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5472 5473 5474 5475 5476
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
5477
	mutex_lock(&child_ctx->mutex);
5478

5479
again:
5480 5481 5482 5483 5484
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5485
				 group_entry)
5486
		__perf_event_exit_task(child_event, child_ctx, child);
5487 5488

	/*
5489
	 * If the last event was a group event, it will have appended all
5490 5491 5492
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5493 5494
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5495
		goto again;
5496 5497 5498 5499

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5500 5501
}

5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

5516
	perf_group_detach(event);
5517 5518 5519 5520
	list_del_event(event, ctx);
	free_event(event);
}

5521 5522 5523 5524
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5525
void perf_event_free_task(struct task_struct *task)
5526
{
5527 5528
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5529 5530 5531 5532 5533 5534

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5535 5536
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		perf_free_event(event, ctx);
5537

5538 5539 5540
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				 group_entry)
		perf_free_event(event, ctx);
5541

5542 5543 5544
	if (!list_empty(&ctx->pinned_groups) ||
	    !list_empty(&ctx->flexible_groups))
		goto again;
5545

5546
	mutex_unlock(&ctx->mutex);
5547

5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562
	put_ctx(ctx);
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
		   struct task_struct *child,
		   int *inherited_all)
{
	int ret;
	struct perf_event_context *child_ctx = child->perf_event_ctxp;

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
5563 5564
	}

5565 5566 5567 5568 5569 5570 5571
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
5572

5573 5574 5575 5576
		child_ctx = kzalloc(sizeof(struct perf_event_context),
				    GFP_KERNEL);
		if (!child_ctx)
			return -ENOMEM;
5577

5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589
		__perf_event_init_context(child_ctx, child);
		child->perf_event_ctxp = child_ctx;
		get_task_struct(child);
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
5590 5591
}

5592

5593
/*
5594
 * Initialize the perf_event context in task_struct
5595
 */
5596
int perf_event_init_task(struct task_struct *child)
5597
{
5598
	struct perf_event_context *child_ctx, *parent_ctx;
5599 5600
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5601
	struct task_struct *parent = current;
5602
	int inherited_all = 1;
5603
	int ret = 0;
5604

5605
	child->perf_event_ctxp = NULL;
5606

5607 5608
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5609

5610
	if (likely(!parent->perf_event_ctxp))
5611 5612
		return 0;

5613
	/*
5614 5615
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5616
	 */
5617 5618
	parent_ctx = perf_pin_task_context(parent);

5619 5620 5621 5622 5623 5624 5625
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5626 5627 5628 5629
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5630
	mutex_lock(&parent_ctx->mutex);
5631 5632 5633 5634 5635

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5636 5637 5638 5639 5640 5641
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
			break;
	}
5642

5643 5644 5645 5646
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
5647
			break;
5648 5649
	}

5650 5651
	child_ctx = child->perf_event_ctxp;

5652
	if (child_ctx && inherited_all) {
5653 5654 5655
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5656 5657
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5658
		 * because the list of events and the generation
5659
		 * count can't have changed since we took the mutex.
5660
		 */
5661 5662 5663
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5664
			child_ctx->parent_gen = parent_ctx->parent_gen;
5665 5666 5667 5668 5669
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5670 5671
	}

5672
	mutex_unlock(&parent_ctx->mutex);
5673

5674
	perf_unpin_context(parent_ctx);
5675

5676
	return ret;
5677 5678
}

5679 5680 5681 5682 5683 5684 5685
static void __init perf_event_init_all_cpus(void)
{
	int cpu;
	struct perf_cpu_context *cpuctx;

	for_each_possible_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5686
		mutex_init(&cpuctx->hlist_mutex);
5687 5688 5689 5690
		__perf_event_init_context(&cpuctx->ctx, NULL);
	}
}

5691
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5692
{
5693
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5694

5695
	cpuctx = &per_cpu(perf_cpu_context, cpu);
T
Thomas Gleixner 已提交
5696

5697
	spin_lock(&perf_resource_lock);
5698
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5699
	spin_unlock(&perf_resource_lock);
5700 5701 5702 5703 5704 5705 5706 5707 5708 5709

	mutex_lock(&cpuctx->hlist_mutex);
	if (cpuctx->hlist_refcount > 0) {
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		WARN_ON_ONCE(!hlist);
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	mutex_unlock(&cpuctx->hlist_mutex);
T
Thomas Gleixner 已提交
5710 5711 5712
}

#ifdef CONFIG_HOTPLUG_CPU
5713
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5714 5715
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5716 5717
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5718

5719 5720 5721
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5722
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5723
}
5724
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5725
{
5726
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5727
	struct perf_event_context *ctx = &cpuctx->ctx;
5728

5729 5730 5731 5732
	mutex_lock(&cpuctx->hlist_mutex);
	swevent_hlist_release(cpuctx);
	mutex_unlock(&cpuctx->hlist_mutex);

5733
	mutex_lock(&ctx->mutex);
5734
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5735
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5736 5737
}
#else
5738
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5750
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5751 5752 5753 5754
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5755
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5756 5757 5758 5759 5760 5761 5762 5763 5764
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5765 5766 5767
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5768 5769
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5770
	.priority		= 20,
T
Thomas Gleixner 已提交
5771 5772
};

5773
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5774
{
5775
	perf_event_init_all_cpus();
T
Thomas Gleixner 已提交
5776 5777
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5778 5779
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5780 5781 5782
	register_cpu_notifier(&perf_cpu_nb);
}

5783 5784 5785
static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
					struct sysdev_class_attribute *attr,
					char *buf)
T
Thomas Gleixner 已提交
5786 5787 5788 5789 5790 5791
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
5792
			struct sysdev_class_attribute *attr,
T
Thomas Gleixner 已提交
5793 5794 5795 5796 5797 5798 5799 5800 5801 5802
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5803
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5804 5805
		return -EINVAL;

5806
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5807 5808 5809
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5810
		raw_spin_lock_irq(&cpuctx->ctx.lock);
5811 5812
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5813
		cpuctx->max_pertask = mpt;
5814
		raw_spin_unlock_irq(&cpuctx->ctx.lock);
T
Thomas Gleixner 已提交
5815
	}
5816
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5817 5818 5819 5820

	return count;
}

5821 5822 5823
static ssize_t perf_show_overcommit(struct sysdev_class *class,
				    struct sysdev_class_attribute *attr,
				    char *buf)
T
Thomas Gleixner 已提交
5824 5825 5826 5827 5828
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
5829 5830 5831
perf_set_overcommit(struct sysdev_class *class,
		    struct sysdev_class_attribute *attr,
		    const char *buf, size_t count)
T
Thomas Gleixner 已提交
5832 5833 5834 5835 5836 5837 5838 5839 5840 5841
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5842
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5843
	perf_overcommit = val;
5844
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5871
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5872 5873
};

5874
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5875 5876 5877 5878
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5879
device_initcall(perf_event_sysfs_init);