perf_event.c 120.8 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22
#include <linux/vmstat.h>
23
#include <linux/vmalloc.h>
24 25
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
26 27 28
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
29
#include <linux/kernel_stat.h>
30
#include <linux/perf_event.h>
L
Li Zefan 已提交
31
#include <linux/ftrace_event.h>
32
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
33

34 35
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
36
/*
37
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
38 39 40
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

41
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
42 43 44
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

45 46 47 48
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
49

50
/*
51
 * perf event paranoia level:
52 53
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
54
 *   1 - disallow cpu events for unpriv
55
 *   2 - disallow kernel profiling for unpriv
56
 */
57
int sysctl_perf_event_paranoid __read_mostly = 1;
58

59 60
static inline bool perf_paranoid_tracepoint_raw(void)
{
61
	return sysctl_perf_event_paranoid > -1;
62 63
}

64 65
static inline bool perf_paranoid_cpu(void)
{
66
	return sysctl_perf_event_paranoid > 0;
67 68 69 70
}

static inline bool perf_paranoid_kernel(void)
{
71
	return sysctl_perf_event_paranoid > 1;
72 73
}

74
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75 76

/*
77
 * max perf event sample rate
78
 */
79
int sysctl_perf_event_sample_rate __read_mostly = 100000;
80

81
static atomic64_t perf_event_id;
82

T
Thomas Gleixner 已提交
83
/*
84
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
85
 */
86
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
87 88 89 90

/*
 * Architecture provided APIs - weak aliases:
 */
91
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
92
{
93
	return NULL;
T
Thomas Gleixner 已提交
94 95
}

96 97 98
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

99 100
void __weak hw_perf_event_setup(int cpu)	{ barrier(); }
void __weak hw_perf_event_setup_online(int cpu)	{ barrier(); }
101 102

int __weak
103
hw_perf_group_sched_in(struct perf_event *group_leader,
104
	       struct perf_cpu_context *cpuctx,
105
	       struct perf_event_context *ctx, int cpu)
106 107 108
{
	return 0;
}
T
Thomas Gleixner 已提交
109

110
void __weak perf_event_print_debug(void)	{ }
111

112
static DEFINE_PER_CPU(int, perf_disable_count);
113 114 115

void __perf_disable(void)
{
116
	__get_cpu_var(perf_disable_count)++;
117 118 119 120
}

bool __perf_enable(void)
{
121
	return !--__get_cpu_var(perf_disable_count);
122 123 124 125 126 127 128 129 130 131 132 133 134 135
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

136
static void get_ctx(struct perf_event_context *ctx)
137
{
138
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139 140
}

141 142
static void free_ctx(struct rcu_head *head)
{
143
	struct perf_event_context *ctx;
144

145
	ctx = container_of(head, struct perf_event_context, rcu_head);
146 147 148
	kfree(ctx);
}

149
static void put_ctx(struct perf_event_context *ctx)
150
{
151 152 153
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
154 155 156
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
157
	}
158 159
}

160
static void unclone_ctx(struct perf_event_context *ctx)
161 162 163 164 165 166 167
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

168
/*
169
 * If we inherit events we want to return the parent event id
170 171
 * to userspace.
 */
172
static u64 primary_event_id(struct perf_event *event)
173
{
174
	u64 id = event->id;
175

176 177
	if (event->parent)
		id = event->parent->id;
178 179 180 181

	return id;
}

182
/*
183
 * Get the perf_event_context for a task and lock it.
184 185 186
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
187
static struct perf_event_context *
188
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189
{
190
	struct perf_event_context *ctx;
191 192 193

	rcu_read_lock();
 retry:
194
	ctx = rcu_dereference(task->perf_event_ctxp);
195 196 197 198
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
199
		 * perf_event_task_sched_out, though the
200 201 202 203 204 205 206
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
		spin_lock_irqsave(&ctx->lock, *flags);
207
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 209 210
			spin_unlock_irqrestore(&ctx->lock, *flags);
			goto retry;
		}
211 212 213 214 215

		if (!atomic_inc_not_zero(&ctx->refcount)) {
			spin_unlock_irqrestore(&ctx->lock, *flags);
			ctx = NULL;
		}
216 217 218 219 220 221 222 223 224 225
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
226
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227
{
228
	struct perf_event_context *ctx;
229 230 231 232 233 234 235 236 237 238
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
		spin_unlock_irqrestore(&ctx->lock, flags);
	}
	return ctx;
}

239
static void perf_unpin_context(struct perf_event_context *ctx)
240 241 242 243 244 245 246 247 248
{
	unsigned long flags;

	spin_lock_irqsave(&ctx->lock, flags);
	--ctx->pin_count;
	spin_unlock_irqrestore(&ctx->lock, flags);
	put_ctx(ctx);
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static inline u64 perf_clock(void)
{
	return cpu_clock(smp_processor_id());
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

277 278 279 280 281 282
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
283 284 285 286 287 288 289 290 291

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

292
/*
293
 * Add a event from the lists for its context.
294 295
 * Must be called with ctx->mutex and ctx->lock held.
 */
296
static void
297
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
298
{
299
	struct perf_event *group_leader = event->group_leader;
300 301

	/*
302 303
	 * Depending on whether it is a standalone or sibling event,
	 * add it straight to the context's event list, or to the group
304 305
	 * leader's sibling list:
	 */
306 307
	if (group_leader == event)
		list_add_tail(&event->group_entry, &ctx->group_list);
P
Peter Zijlstra 已提交
308
	else {
309
		list_add_tail(&event->group_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
310 311
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
312

313 314 315
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
316
		ctx->nr_stat++;
317 318
}

319
/*
320
 * Remove a event from the lists for its context.
321
 * Must be called with ctx->mutex and ctx->lock held.
322
 */
323
static void
324
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
325
{
326
	struct perf_event *sibling, *tmp;
327

328
	if (list_empty(&event->group_entry))
329
		return;
330 331
	ctx->nr_events--;
	if (event->attr.inherit_stat)
332
		ctx->nr_stat--;
333

334 335
	list_del_init(&event->group_entry);
	list_del_rcu(&event->event_entry);
336

337 338
	if (event->group_leader != event)
		event->group_leader->nr_siblings--;
P
Peter Zijlstra 已提交
339

340
	update_event_times(event);
341 342
	event->state = PERF_EVENT_STATE_OFF;

343
	/*
344 345
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
346 347
	 * to the context list directly:
	 */
348
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
349

350
		list_move_tail(&sibling->group_entry, &ctx->group_list);
351 352 353 354
		sibling->group_leader = sibling;
	}
}

355
static void
356
event_sched_out(struct perf_event *event,
357
		  struct perf_cpu_context *cpuctx,
358
		  struct perf_event_context *ctx)
359
{
360
	if (event->state != PERF_EVENT_STATE_ACTIVE)
361 362
		return;

363 364 365 366
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
367
	}
368 369 370
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
371

372
	if (!is_software_event(event))
373 374
		cpuctx->active_oncpu--;
	ctx->nr_active--;
375
	if (event->attr.exclusive || !cpuctx->active_oncpu)
376 377 378
		cpuctx->exclusive = 0;
}

379
static void
380
group_sched_out(struct perf_event *group_event,
381
		struct perf_cpu_context *cpuctx,
382
		struct perf_event_context *ctx)
383
{
384
	struct perf_event *event;
385

386
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
387 388
		return;

389
	event_sched_out(group_event, cpuctx, ctx);
390 391 392 393

	/*
	 * Schedule out siblings (if any):
	 */
394 395
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
396

397
	if (group_event->attr.exclusive)
398 399 400
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
401
/*
402
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
403
 *
404
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
405 406
 * remove it from the context list.
 */
407
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
408 409
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
410 411
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
412 413 414 415 416 417

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
418
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
419 420
		return;

421
	spin_lock(&ctx->lock);
422 423
	/*
	 * Protect the list operation against NMI by disabling the
424
	 * events on a global level.
425 426
	 */
	perf_disable();
T
Thomas Gleixner 已提交
427

428
	event_sched_out(event, cpuctx, ctx);
429

430
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
431 432 433

	if (!ctx->task) {
		/*
434
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
435 436 437
		 * reservation:
		 */
		cpuctx->max_pertask =
438 439
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
440 441
	}

442
	perf_enable();
443
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
444 445 446 447
}


/*
448
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
449
 *
450
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
451
 *
452
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
453
 * call when the task is on a CPU.
454
 *
455 456
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
457 458
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
459
 * When called from perf_event_exit_task, it's OK because the
460
 * context has been detached from its task.
T
Thomas Gleixner 已提交
461
 */
462
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
463
{
464
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
465 466 467 468
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
469
		 * Per cpu events are removed via an smp call and
T
Thomas Gleixner 已提交
470 471
		 * the removal is always sucessful.
		 */
472 473 474
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
475 476 477 478
		return;
	}

retry:
479 480
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
481 482 483 484 485

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
486
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
T
Thomas Gleixner 已提交
487 488 489 490 491 492
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
493
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
494 495
	 * succeed.
	 */
P
Peter Zijlstra 已提交
496
	if (!list_empty(&event->group_entry))
497
		list_del_event(event, ctx);
T
Thomas Gleixner 已提交
498 499 500
	spin_unlock_irq(&ctx->lock);
}

501
/*
502
 * Update total_time_enabled and total_time_running for all events in a group.
503
 */
504
static void update_group_times(struct perf_event *leader)
505
{
506
	struct perf_event *event;
507

508 509 510
	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
511 512
}

513
/*
514
 * Cross CPU call to disable a performance event
515
 */
516
static void __perf_event_disable(void *info)
517
{
518
	struct perf_event *event = info;
519
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
520
	struct perf_event_context *ctx = event->ctx;
521 522

	/*
523 524
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
525
	 */
526
	if (ctx->task && cpuctx->task_ctx != ctx)
527 528
		return;

529
	spin_lock(&ctx->lock);
530 531

	/*
532
	 * If the event is on, turn it off.
533 534
	 * If it is in error state, leave it in error state.
	 */
535
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
536
		update_context_time(ctx);
537 538 539
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
540
		else
541 542
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
543 544
	}

545
	spin_unlock(&ctx->lock);
546 547 548
}

/*
549
 * Disable a event.
550
 *
551 552
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
553
 * remains valid.  This condition is satisifed when called through
554 555 556 557
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
558
 * is the current context on this CPU and preemption is disabled,
559
 * hence we can't get into perf_event_task_sched_out for this context.
560
 */
561
static void perf_event_disable(struct perf_event *event)
562
{
563
	struct perf_event_context *ctx = event->ctx;
564 565 566 567
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
568
		 * Disable the event on the cpu that it's on
569
		 */
570 571
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
572 573 574 575
		return;
	}

 retry:
576
	task_oncpu_function_call(task, __perf_event_disable, event);
577 578 579

	spin_lock_irq(&ctx->lock);
	/*
580
	 * If the event is still active, we need to retry the cross-call.
581
	 */
582
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
583 584 585 586 587 588 589 590
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
591 592 593
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
594
	}
595 596 597 598

	spin_unlock_irq(&ctx->lock);
}

599
static int
600
event_sched_in(struct perf_event *event,
601
		 struct perf_cpu_context *cpuctx,
602
		 struct perf_event_context *ctx,
603 604
		 int cpu)
{
605
	if (event->state <= PERF_EVENT_STATE_OFF)
606 607
		return 0;

608 609
	event->state = PERF_EVENT_STATE_ACTIVE;
	event->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
610 611 612 613 614
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

615 616 617
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
618 619 620
		return -EAGAIN;
	}

621
	event->tstamp_running += ctx->time - event->tstamp_stopped;
622

623
	if (!is_software_event(event))
624
		cpuctx->active_oncpu++;
625 626
	ctx->nr_active++;

627
	if (event->attr.exclusive)
628 629
		cpuctx->exclusive = 1;

630 631 632
	return 0;
}

633
static int
634
group_sched_in(struct perf_event *group_event,
635
	       struct perf_cpu_context *cpuctx,
636
	       struct perf_event_context *ctx,
637 638
	       int cpu)
{
639
	struct perf_event *event, *partial_group;
640 641
	int ret;

642
	if (group_event->state == PERF_EVENT_STATE_OFF)
643 644
		return 0;

645
	ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
646 647 648
	if (ret)
		return ret < 0 ? ret : 0;

649
	if (event_sched_in(group_event, cpuctx, ctx, cpu))
650 651 652 653 654
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
655 656 657
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event_sched_in(event, cpuctx, ctx, cpu)) {
			partial_group = event;
658 659 660 661 662 663 664 665 666 667 668
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
669 670
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
671
			break;
672
		event_sched_out(event, cpuctx, ctx);
673
	}
674
	event_sched_out(group_event, cpuctx, ctx);
675 676 677 678

	return -EAGAIN;
}

679
/*
680 681
 * Return 1 for a group consisting entirely of software events,
 * 0 if the group contains any hardware events.
682
 */
683
static int is_software_only_group(struct perf_event *leader)
684
{
685
	struct perf_event *event;
686

687
	if (!is_software_event(leader))
688
		return 0;
P
Peter Zijlstra 已提交
689

690 691
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		if (!is_software_event(event))
692
			return 0;
P
Peter Zijlstra 已提交
693

694 695 696 697
	return 1;
}

/*
698
 * Work out whether we can put this event group on the CPU now.
699
 */
700
static int group_can_go_on(struct perf_event *event,
701 702 703 704
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
705
	 * Groups consisting entirely of software events can always go on.
706
	 */
707
	if (is_software_only_group(event))
708 709 710
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
711
	 * events can go on.
712 713 714 715 716
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
717
	 * events on the CPU, it can't go on.
718
	 */
719
	if (event->attr.exclusive && cpuctx->active_oncpu)
720 721 722 723 724 725 726 727
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

728 729
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
730
{
731 732 733 734
	list_add_event(event, ctx);
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
735 736
}

T
Thomas Gleixner 已提交
737
/*
738
 * Cross CPU call to install and enable a performance event
739 740
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
741 742 743 744
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
745 746 747
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
T
Thomas Gleixner 已提交
748
	int cpu = smp_processor_id();
749
	int err;
T
Thomas Gleixner 已提交
750 751 752 753 754

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
755
	 * Or possibly this is the right context but it isn't
756
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
757
	 */
758
	if (ctx->task && cpuctx->task_ctx != ctx) {
759
		if (cpuctx->task_ctx || ctx->task != current)
760 761 762
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
763

764
	spin_lock(&ctx->lock);
765
	ctx->is_active = 1;
766
	update_context_time(ctx);
T
Thomas Gleixner 已提交
767 768 769

	/*
	 * Protect the list operation against NMI by disabling the
770
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
771
	 */
772
	perf_disable();
T
Thomas Gleixner 已提交
773

774
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
775

776
	/*
777
	 * Don't put the event on if it is disabled or if
778 779
	 * it is in a group and the group isn't on.
	 */
780 781
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
782 783
		goto unlock;

784
	/*
785 786 787
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
788
	 */
789
	if (!group_can_go_on(event, cpuctx, 1))
790 791
		err = -EEXIST;
	else
792
		err = event_sched_in(event, cpuctx, ctx, cpu);
793

794 795
	if (err) {
		/*
796
		 * This event couldn't go on.  If it is in a group
797
		 * then we have to pull the whole group off.
798
		 * If the event group is pinned then put it in error state.
799
		 */
800
		if (leader != event)
801
			group_sched_out(leader, cpuctx, ctx);
802
		if (leader->attr.pinned) {
803
			update_group_times(leader);
804
			leader->state = PERF_EVENT_STATE_ERROR;
805
		}
806
	}
T
Thomas Gleixner 已提交
807

808
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
809 810
		cpuctx->max_pertask--;

811
 unlock:
812
	perf_enable();
813

814
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
815 816 817
}

/*
818
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
819
 *
820 821
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
822
 *
823
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
824 825
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
826 827
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
828 829
 */
static void
830 831
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
832 833 834 835 836 837
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
838
		 * Per cpu events are installed via an smp call and
T
Thomas Gleixner 已提交
839 840 841
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
842
					 event, 1);
T
Thomas Gleixner 已提交
843 844 845 846 847
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
848
				 event);
T
Thomas Gleixner 已提交
849 850 851 852 853

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
854
	if (ctx->is_active && list_empty(&event->group_entry)) {
T
Thomas Gleixner 已提交
855 856 857 858 859 860
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
861
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
862 863
	 * succeed.
	 */
864 865
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
866 867 868
	spin_unlock_irq(&ctx->lock);
}

869
/*
870
 * Put a event into inactive state and update time fields.
871 872 873 874 875 876
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
877 878
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
879
{
880
	struct perf_event *sub;
881

882 883 884 885
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
886 887 888 889
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

890
/*
891
 * Cross CPU call to enable a performance event
892
 */
893
static void __perf_event_enable(void *info)
894
{
895
	struct perf_event *event = info;
896
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
897 898
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
899
	int err;
900

901
	/*
902 903
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
904
	 */
905
	if (ctx->task && cpuctx->task_ctx != ctx) {
906
		if (cpuctx->task_ctx || ctx->task != current)
907 908 909
			return;
		cpuctx->task_ctx = ctx;
	}
910

911
	spin_lock(&ctx->lock);
912
	ctx->is_active = 1;
913
	update_context_time(ctx);
914

915
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
916
		goto unlock;
917
	__perf_event_mark_enabled(event, ctx);
918 919

	/*
920
	 * If the event is in a group and isn't the group leader,
921
	 * then don't put it on unless the group is on.
922
	 */
923
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
924
		goto unlock;
925

926
	if (!group_can_go_on(event, cpuctx, 1)) {
927
		err = -EEXIST;
928
	} else {
929
		perf_disable();
930 931
		if (event == leader)
			err = group_sched_in(event, cpuctx, ctx,
932 933
					     smp_processor_id());
		else
934
			err = event_sched_in(event, cpuctx, ctx,
935
					       smp_processor_id());
936
		perf_enable();
937
	}
938 939 940

	if (err) {
		/*
941
		 * If this event can't go on and it's part of a
942 943
		 * group, then the whole group has to come off.
		 */
944
		if (leader != event)
945
			group_sched_out(leader, cpuctx, ctx);
946
		if (leader->attr.pinned) {
947
			update_group_times(leader);
948
			leader->state = PERF_EVENT_STATE_ERROR;
949
		}
950 951 952
	}

 unlock:
953
	spin_unlock(&ctx->lock);
954 955 956
}

/*
957
 * Enable a event.
958
 *
959 960
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
961
 * remains valid.  This condition is satisfied when called through
962 963
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
964
 */
965
static void perf_event_enable(struct perf_event *event)
966
{
967
	struct perf_event_context *ctx = event->ctx;
968 969 970 971
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
972
		 * Enable the event on the cpu that it's on
973
		 */
974 975
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
976 977 978 979
		return;
	}

	spin_lock_irq(&ctx->lock);
980
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
981 982 983
		goto out;

	/*
984 985
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
986 987 988 989
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
990 991
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
992 993 994

 retry:
	spin_unlock_irq(&ctx->lock);
995
	task_oncpu_function_call(task, __perf_event_enable, event);
996 997 998 999

	spin_lock_irq(&ctx->lock);

	/*
1000
	 * If the context is active and the event is still off,
1001 1002
	 * we need to retry the cross-call.
	 */
1003
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1004 1005 1006 1007 1008 1009
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1010 1011
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1012

1013 1014 1015 1016
 out:
	spin_unlock_irq(&ctx->lock);
}

1017
static int perf_event_refresh(struct perf_event *event, int refresh)
1018
{
1019
	/*
1020
	 * not supported on inherited events
1021
	 */
1022
	if (event->attr.inherit)
1023 1024
		return -EINVAL;

1025 1026
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1027 1028

	return 0;
1029 1030
}

1031
void __perf_event_sched_out(struct perf_event_context *ctx,
1032 1033
			      struct perf_cpu_context *cpuctx)
{
1034
	struct perf_event *event;
1035

1036 1037
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
1038
	if (likely(!ctx->nr_events))
1039
		goto out;
1040
	update_context_time(ctx);
1041

1042
	perf_disable();
P
Peter Zijlstra 已提交
1043
	if (ctx->nr_active) {
1044 1045
		list_for_each_entry(event, &ctx->group_list, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1046
	}
1047
	perf_enable();
1048
 out:
1049 1050 1051
	spin_unlock(&ctx->lock);
}

1052 1053 1054
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1055 1056 1057 1058
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1059
 * in them directly with an fd; we can only enable/disable all
1060
 * events via prctl, or enable/disable all events in a family
1061 1062
 * via ioctl, which will have the same effect on both contexts.
 */
1063 1064
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1065 1066
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1067
		&& ctx1->parent_gen == ctx2->parent_gen
1068
		&& !ctx1->pin_count && !ctx2->pin_count;
1069 1070
}

1071 1072
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1073 1074 1075
{
	u64 value;

1076
	if (!event->attr.inherit_stat)
1077 1078 1079
		return;

	/*
1080
	 * Update the event value, we cannot use perf_event_read()
1081 1082
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1083
	 * we know the event must be on the current CPU, therefore we
1084 1085
	 * don't need to use it.
	 */
1086 1087
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1088 1089
		event->pmu->read(event);
		/* fall-through */
1090

1091 1092
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1093 1094 1095 1096 1097 1098 1099
		break;

	default:
		break;
	}

	/*
1100
	 * In order to keep per-task stats reliable we need to flip the event
1101 1102
	 * values when we flip the contexts.
	 */
1103 1104 1105
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1106

1107 1108
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1109

1110
	/*
1111
	 * Since we swizzled the values, update the user visible data too.
1112
	 */
1113 1114
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1115 1116 1117 1118 1119
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1120 1121
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1122
{
1123
	struct perf_event *event, *next_event;
1124 1125 1126 1127

	if (!ctx->nr_stat)
		return;

1128 1129
	update_context_time(ctx);

1130 1131
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1132

1133 1134
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1135

1136 1137
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1138

1139
		__perf_event_sync_stat(event, next_event);
1140

1141 1142
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1143 1144 1145
	}
}

T
Thomas Gleixner 已提交
1146
/*
1147
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1148 1149
 * with interrupts disabled.
 *
1150
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1151
 *
I
Ingo Molnar 已提交
1152
 * This does not protect us against NMI, but disable()
1153 1154 1155
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1156
 */
1157
void perf_event_task_sched_out(struct task_struct *task,
1158
				 struct task_struct *next, int cpu)
T
Thomas Gleixner 已提交
1159 1160
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1161 1162 1163
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1164
	struct pt_regs *regs;
1165
	int do_switch = 1;
T
Thomas Gleixner 已提交
1166

1167
	regs = task_pt_regs(task);
1168
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1169

1170
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1171 1172
		return;

1173 1174
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1175
	next_ctx = next->perf_event_ctxp;
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
		spin_lock(&ctx->lock);
		spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
		if (context_equiv(ctx, next_ctx)) {
1190 1191
			/*
			 * XXX do we need a memory barrier of sorts
1192
			 * wrt to rcu_dereference() of perf_event_ctxp
1193
			 */
1194 1195
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1196 1197 1198
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1199

1200
			perf_event_sync_stat(ctx, next_ctx);
1201 1202 1203
		}
		spin_unlock(&next_ctx->lock);
		spin_unlock(&ctx->lock);
1204
	}
1205
	rcu_read_unlock();
1206

1207
	if (do_switch) {
1208
		__perf_event_sched_out(ctx, cpuctx);
1209 1210
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1211 1212
}

1213 1214 1215
/*
 * Called with IRQs disabled
 */
1216
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1217 1218 1219
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1220 1221
	if (!cpuctx->task_ctx)
		return;
1222 1223 1224 1225

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1226
	__perf_event_sched_out(ctx, cpuctx);
1227 1228 1229
	cpuctx->task_ctx = NULL;
}

1230 1231 1232
/*
 * Called with IRQs disabled
 */
1233
static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1234
{
1235
	__perf_event_sched_out(&cpuctx->ctx, cpuctx);
1236 1237
}

1238
static void
1239
__perf_event_sched_in(struct perf_event_context *ctx,
1240
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
1241
{
1242
	struct perf_event *event;
1243
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
1244

1245 1246
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
1247
	if (likely(!ctx->nr_events))
1248
		goto out;
T
Thomas Gleixner 已提交
1249

1250
	ctx->timestamp = perf_clock();
1251

1252
	perf_disable();
1253 1254 1255 1256 1257

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
1258 1259 1260
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF ||
		    !event->attr.pinned)
1261
			continue;
1262
		if (event->cpu != -1 && event->cpu != cpu)
1263 1264
			continue;

1265 1266
		if (group_can_go_on(event, cpuctx, 1))
			group_sched_in(event, cpuctx, ctx, cpu);
1267 1268 1269 1270 1271

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1272 1273 1274
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1275
		}
1276 1277
	}

1278
	list_for_each_entry(event, &ctx->group_list, group_entry) {
1279
		/*
1280 1281
		 * Ignore events in OFF or ERROR state, and
		 * ignore pinned events since we did them already.
1282
		 */
1283 1284
		if (event->state <= PERF_EVENT_STATE_OFF ||
		    event->attr.pinned)
1285 1286
			continue;

1287 1288
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1289
		 * of events:
1290
		 */
1291
		if (event->cpu != -1 && event->cpu != cpu)
T
Thomas Gleixner 已提交
1292 1293
			continue;

1294 1295
		if (group_can_go_on(event, cpuctx, can_add_hw))
			if (group_sched_in(event, cpuctx, ctx, cpu))
1296
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1297
	}
1298
	perf_enable();
1299
 out:
T
Thomas Gleixner 已提交
1300
	spin_unlock(&ctx->lock);
1301 1302 1303
}

/*
1304
 * Called from scheduler to add the events of the current task
1305 1306
 * with interrupts disabled.
 *
1307
 * We restore the event value and then enable it.
1308 1309
 *
 * This does not protect us against NMI, but enable()
1310 1311 1312
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1313
 */
1314
void perf_event_task_sched_in(struct task_struct *task, int cpu)
1315 1316
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1317
	struct perf_event_context *ctx = task->perf_event_ctxp;
1318

1319 1320
	if (likely(!ctx))
		return;
1321 1322
	if (cpuctx->task_ctx == ctx)
		return;
1323
	__perf_event_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
1324 1325 1326
	cpuctx->task_ctx = ctx;
}

1327
static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1328
{
1329
	struct perf_event_context *ctx = &cpuctx->ctx;
1330

1331
	__perf_event_sched_in(ctx, cpuctx, cpu);
1332 1333
}

1334 1335
#define MAX_INTERRUPTS (~0ULL)

1336
static void perf_log_throttle(struct perf_event *event, int enable);
1337

1338
static void perf_adjust_period(struct perf_event *event, u64 events)
1339
{
1340
	struct hw_perf_event *hwc = &event->hw;
1341 1342 1343 1344
	u64 period, sample_period;
	s64 delta;

	events *= hwc->sample_period;
1345
	period = div64_u64(events, event->attr.sample_freq);
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
}

1358
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1359
{
1360 1361
	struct perf_event *event;
	struct hw_perf_event *hwc;
1362
	u64 interrupts, freq;
1363 1364

	spin_lock(&ctx->lock);
1365
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1366
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1367 1368
			continue;

1369
		hwc = &event->hw;
1370 1371 1372

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1373

1374
		/*
1375
		 * unthrottle events on the tick
1376
		 */
1377
		if (interrupts == MAX_INTERRUPTS) {
1378 1379 1380
			perf_log_throttle(event, 1);
			event->pmu->unthrottle(event);
			interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1381 1382
		}

1383
		if (!event->attr.freq || !event->attr.sample_freq)
1384 1385
			continue;

1386 1387 1388
		/*
		 * if the specified freq < HZ then we need to skip ticks
		 */
1389 1390
		if (event->attr.sample_freq < HZ) {
			freq = event->attr.sample_freq;
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403

			hwc->freq_count += freq;
			hwc->freq_interrupts += interrupts;

			if (hwc->freq_count < HZ)
				continue;

			interrupts = hwc->freq_interrupts;
			hwc->freq_interrupts = 0;
			hwc->freq_count -= HZ;
		} else
			freq = HZ;

1404
		perf_adjust_period(event, freq * interrupts);
1405

1406 1407 1408 1409 1410 1411 1412
		/*
		 * In order to avoid being stalled by an (accidental) huge
		 * sample period, force reset the sample period if we didn't
		 * get any events in this freq period.
		 */
		if (!interrupts) {
			perf_disable();
1413
			event->pmu->disable(event);
1414
			atomic64_set(&hwc->period_left, 0);
1415
			event->pmu->enable(event);
1416 1417
			perf_enable();
		}
1418 1419 1420 1421
	}
	spin_unlock(&ctx->lock);
}

1422
/*
1423
 * Round-robin a context's events:
1424
 */
1425
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1426
{
1427
	struct perf_event *event;
T
Thomas Gleixner 已提交
1428

1429
	if (!ctx->nr_events)
T
Thomas Gleixner 已提交
1430 1431 1432 1433
		return;

	spin_lock(&ctx->lock);
	/*
1434
	 * Rotate the first entry last (works just fine for group events too):
T
Thomas Gleixner 已提交
1435
	 */
1436
	perf_disable();
1437 1438
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		list_move_tail(&event->group_entry, &ctx->group_list);
T
Thomas Gleixner 已提交
1439 1440
		break;
	}
1441
	perf_enable();
T
Thomas Gleixner 已提交
1442 1443

	spin_unlock(&ctx->lock);
1444 1445
}

1446
void perf_event_task_tick(struct task_struct *curr, int cpu)
1447
{
1448
	struct perf_cpu_context *cpuctx;
1449
	struct perf_event_context *ctx;
1450

1451
	if (!atomic_read(&nr_events))
1452 1453 1454
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
1455
	ctx = curr->perf_event_ctxp;
1456

1457
	perf_ctx_adjust_freq(&cpuctx->ctx);
1458
	if (ctx)
1459
		perf_ctx_adjust_freq(ctx);
1460

1461
	perf_event_cpu_sched_out(cpuctx);
1462
	if (ctx)
1463
		__perf_event_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1464

1465
	rotate_ctx(&cpuctx->ctx);
1466 1467
	if (ctx)
		rotate_ctx(ctx);
1468

1469
	perf_event_cpu_sched_in(cpuctx, cpu);
1470
	if (ctx)
1471
		perf_event_task_sched_in(curr, cpu);
T
Thomas Gleixner 已提交
1472 1473
}

1474
/*
1475
 * Enable all of a task's events that have been marked enable-on-exec.
1476 1477
 * This expects task == current.
 */
1478
static void perf_event_enable_on_exec(struct task_struct *task)
1479
{
1480 1481
	struct perf_event_context *ctx;
	struct perf_event *event;
1482 1483 1484 1485
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
1486 1487
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1488 1489
		goto out;

1490
	__perf_event_task_sched_out(ctx);
1491 1492 1493

	spin_lock(&ctx->lock);

1494 1495
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		if (!event->attr.enable_on_exec)
1496
			continue;
1497 1498
		event->attr.enable_on_exec = 0;
		if (event->state >= PERF_EVENT_STATE_INACTIVE)
1499
			continue;
1500
		__perf_event_mark_enabled(event, ctx);
1501 1502 1503 1504
		enabled = 1;
	}

	/*
1505
	 * Unclone this context if we enabled any event.
1506
	 */
1507 1508
	if (enabled)
		unclone_ctx(ctx);
1509 1510 1511

	spin_unlock(&ctx->lock);

1512
	perf_event_task_sched_in(task, smp_processor_id());
1513 1514 1515 1516
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1517
/*
1518
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1519
 */
1520
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1521
{
1522
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1523 1524
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1525

1526 1527 1528 1529
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1530 1531
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1532 1533 1534 1535
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

P
Peter Zijlstra 已提交
1536
	spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1537
	update_context_time(ctx);
1538
	update_event_times(event);
P
Peter Zijlstra 已提交
1539 1540
	spin_unlock(&ctx->lock);

P
Peter Zijlstra 已提交
1541
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1542 1543
}

1544
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1545 1546
{
	/*
1547 1548
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1549
	 */
1550 1551 1552 1553
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1554 1555 1556 1557 1558
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

		spin_lock_irqsave(&ctx->lock, flags);
		update_context_time(ctx);
1559
		update_event_times(event);
P
Peter Zijlstra 已提交
1560
		spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1561 1562
	}

1563
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1564 1565
}

1566
/*
1567
 * Initialize the perf_event context in a task_struct:
1568 1569
 */
static void
1570
__perf_event_init_context(struct perf_event_context *ctx,
1571 1572 1573 1574 1575
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
	mutex_init(&ctx->mutex);
1576
	INIT_LIST_HEAD(&ctx->group_list);
1577 1578 1579 1580 1581
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1582
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1583
{
1584
	struct perf_event_context *ctx;
1585
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1586
	struct task_struct *task;
1587
	unsigned long flags;
1588
	int err;
T
Thomas Gleixner 已提交
1589 1590

	/*
1591
	 * If cpu is not a wildcard then this is a percpu event:
T
Thomas Gleixner 已提交
1592 1593
	 */
	if (cpu != -1) {
1594
		/* Must be root to operate on a CPU event: */
1595
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1596 1597 1598 1599 1600 1601
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
1602
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1603 1604 1605 1606 1607 1608 1609 1610
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1611
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1628
	/*
1629
	 * Can't attach events to a dying task.
1630 1631 1632 1633 1634
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1635
	/* Reuse ptrace permission checks for now. */
1636 1637 1638 1639 1640
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1641
	ctx = perf_lock_task_context(task, &flags);
1642
	if (ctx) {
1643
		unclone_ctx(ctx);
1644
		spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1645 1646
	}

1647
	if (!ctx) {
1648
		ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1649 1650 1651
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1652
		__perf_event_init_context(ctx, task);
1653
		get_ctx(ctx);
1654
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1655 1656 1657 1658 1659
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1660
			goto retry;
1661
		}
1662
		get_task_struct(task);
1663 1664
	}

1665
	put_task_struct(task);
T
Thomas Gleixner 已提交
1666
	return ctx;
1667 1668 1669 1670

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1671 1672
}

L
Li Zefan 已提交
1673 1674
static void perf_event_free_filter(struct perf_event *event);

1675
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1676
{
1677
	struct perf_event *event;
P
Peter Zijlstra 已提交
1678

1679 1680 1681
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1682
	perf_event_free_filter(event);
1683
	kfree(event);
P
Peter Zijlstra 已提交
1684 1685
}

1686
static void perf_pending_sync(struct perf_event *event);
1687

1688
static void free_event(struct perf_event *event)
1689
{
1690
	perf_pending_sync(event);
1691

1692 1693 1694 1695 1696 1697 1698 1699
	if (!event->parent) {
		atomic_dec(&nr_events);
		if (event->attr.mmap)
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1700
	}
1701

1702 1703 1704
	if (event->output) {
		fput(event->output->filp);
		event->output = NULL;
1705 1706
	}

1707 1708
	if (event->destroy)
		event->destroy(event);
1709

1710 1711
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1712 1713
}

1714
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
1715
{
1716
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1717

1718
	WARN_ON_ONCE(ctx->parent_ctx);
1719
	mutex_lock(&ctx->mutex);
1720
	perf_event_remove_from_context(event);
1721
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1722

1723 1724 1725 1726
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1727

1728
	free_event(event);
T
Thomas Gleixner 已提交
1729 1730 1731

	return 0;
}
1732
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
1733

1734 1735 1736 1737
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
1738
{
1739
	struct perf_event *event = file->private_data;
1740

1741
	file->private_data = NULL;
1742

1743
	return perf_event_release_kernel(event);
1744 1745
}

1746
static int perf_event_read_size(struct perf_event *event)
1747 1748 1749 1750 1751
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1752
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1753 1754
		size += sizeof(u64);

1755
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1756 1757
		size += sizeof(u64);

1758
	if (event->attr.read_format & PERF_FORMAT_ID)
1759 1760
		entry += sizeof(u64);

1761 1762
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1763 1764 1765 1766 1767 1768 1769 1770
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1771
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1772
{
1773
	struct perf_event *child;
1774 1775
	u64 total = 0;

1776 1777 1778
	*enabled = 0;
	*running = 0;

1779
	mutex_lock(&event->child_mutex);
1780
	total += perf_event_read(event);
1781 1782 1783 1784 1785 1786
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
1787
		total += perf_event_read(child);
1788 1789 1790
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
1791
	mutex_unlock(&event->child_mutex);
1792 1793 1794

	return total;
}
1795
EXPORT_SYMBOL_GPL(perf_event_read_value);
1796

1797
static int perf_event_read_group(struct perf_event *event,
1798 1799
				   u64 read_format, char __user *buf)
{
1800
	struct perf_event *leader = event->group_leader, *sub;
1801 1802
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
1803
	u64 values[5];
1804
	u64 count, enabled, running;
1805

1806
	mutex_lock(&ctx->mutex);
1807
	count = perf_event_read_value(leader, &enabled, &running);
1808 1809

	values[n++] = 1 + leader->nr_siblings;
1810 1811 1812 1813
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1814 1815 1816
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
1817 1818 1819 1820

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
1821
		goto unlock;
1822

1823
	ret = size;
1824

1825
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1826
		n = 0;
1827

1828
		values[n++] = perf_event_read_value(sub, &enabled, &running);
1829 1830 1831 1832 1833
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

1834
		if (copy_to_user(buf + ret, values, size)) {
1835 1836 1837
			ret = -EFAULT;
			goto unlock;
		}
1838 1839

		ret += size;
1840
	}
1841 1842
unlock:
	mutex_unlock(&ctx->mutex);
1843

1844
	return ret;
1845 1846
}

1847
static int perf_event_read_one(struct perf_event *event,
1848 1849
				 u64 read_format, char __user *buf)
{
1850
	u64 enabled, running;
1851 1852 1853
	u64 values[4];
	int n = 0;

1854 1855 1856 1857 1858
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1859
	if (read_format & PERF_FORMAT_ID)
1860
		values[n++] = primary_event_id(event);
1861 1862 1863 1864 1865 1866 1867

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
1868
/*
1869
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
1870 1871
 */
static ssize_t
1872
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
1873
{
1874
	u64 read_format = event->attr.read_format;
1875
	int ret;
T
Thomas Gleixner 已提交
1876

1877
	/*
1878
	 * Return end-of-file for a read on a event that is in
1879 1880 1881
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
1882
	if (event->state == PERF_EVENT_STATE_ERROR)
1883 1884
		return 0;

1885
	if (count < perf_event_read_size(event))
1886 1887
		return -ENOSPC;

1888
	WARN_ON_ONCE(event->ctx->parent_ctx);
1889
	if (read_format & PERF_FORMAT_GROUP)
1890
		ret = perf_event_read_group(event, read_format, buf);
1891
	else
1892
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
1893

1894
	return ret;
T
Thomas Gleixner 已提交
1895 1896 1897 1898 1899
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
1900
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
1901

1902
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
1903 1904 1905 1906
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
1907
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
1908
	struct perf_mmap_data *data;
1909
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1910 1911

	rcu_read_lock();
1912
	data = rcu_dereference(event->data);
P
Peter Zijlstra 已提交
1913
	if (data)
1914
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1915
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1916

1917
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
1918 1919 1920 1921

	return events;
}

1922
static void perf_event_reset(struct perf_event *event)
1923
{
1924 1925 1926
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
1927 1928
}

1929
/*
1930 1931 1932 1933
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
1934
 */
1935 1936
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1937
{
1938
	struct perf_event *child;
P
Peter Zijlstra 已提交
1939

1940 1941 1942 1943
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
1944
		func(child);
1945
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
1946 1947
}

1948 1949
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1950
{
1951 1952
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
1953

1954 1955
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
1956
	event = event->group_leader;
1957

1958 1959 1960 1961
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
1962
	mutex_unlock(&ctx->mutex);
1963 1964
}

1965
static int perf_event_period(struct perf_event *event, u64 __user *arg)
1966
{
1967
	struct perf_event_context *ctx = event->ctx;
1968 1969 1970 1971
	unsigned long size;
	int ret = 0;
	u64 value;

1972
	if (!event->attr.sample_period)
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	spin_lock_irq(&ctx->lock);
1983 1984
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
1985 1986 1987 1988
			ret = -EINVAL;
			goto unlock;
		}

1989
		event->attr.sample_freq = value;
1990
	} else {
1991 1992
		event->attr.sample_period = value;
		event->hw.sample_period = value;
1993 1994 1995 1996 1997 1998 1999
	}
unlock:
	spin_unlock_irq(&ctx->lock);

	return ret;
}

L
Li Zefan 已提交
2000 2001
static int perf_event_set_output(struct perf_event *event, int output_fd);
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2002

2003 2004
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2005 2006
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2007
	u32 flags = arg;
2008 2009

	switch (cmd) {
2010 2011
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2012
		break;
2013 2014
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2015
		break;
2016 2017
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2018
		break;
P
Peter Zijlstra 已提交
2019

2020 2021
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2022

2023 2024
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2025

2026 2027
	case PERF_EVENT_IOC_SET_OUTPUT:
		return perf_event_set_output(event, arg);
2028

L
Li Zefan 已提交
2029 2030 2031
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2032
	default:
P
Peter Zijlstra 已提交
2033
		return -ENOTTY;
2034
	}
P
Peter Zijlstra 已提交
2035 2036

	if (flags & PERF_IOC_FLAG_GROUP)
2037
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2038
	else
2039
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2040 2041

	return 0;
2042 2043
}

2044
int perf_event_task_enable(void)
2045
{
2046
	struct perf_event *event;
2047

2048 2049 2050 2051
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2052 2053 2054 2055

	return 0;
}

2056
int perf_event_task_disable(void)
2057
{
2058
	struct perf_event *event;
2059

2060 2061 2062 2063
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2064 2065 2066 2067

	return 0;
}

2068 2069
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2070 2071
#endif

2072
static int perf_event_index(struct perf_event *event)
2073
{
2074
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2075 2076
		return 0;

2077
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2078 2079
}

2080 2081 2082 2083 2084
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2085
void perf_event_update_userpage(struct perf_event *event)
2086
{
2087
	struct perf_event_mmap_page *userpg;
2088
	struct perf_mmap_data *data;
2089 2090

	rcu_read_lock();
2091
	data = rcu_dereference(event->data);
2092 2093 2094 2095
	if (!data)
		goto unlock;

	userpg = data->user_page;
2096

2097 2098 2099 2100 2101
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2102
	++userpg->lock;
2103
	barrier();
2104 2105 2106 2107
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2108

2109 2110
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2111

2112 2113
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2114

2115
	barrier();
2116
	++userpg->lock;
2117
	preempt_enable();
2118
unlock:
2119
	rcu_read_unlock();
2120 2121
}

2122
static unsigned long perf_data_size(struct perf_mmap_data *data)
2123
{
2124 2125
	return data->nr_pages << (PAGE_SHIFT + data->data_order);
}
2126

2127
#ifndef CONFIG_PERF_USE_VMALLOC
2128

2129 2130 2131
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2132

2133 2134 2135 2136 2137
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > data->nr_pages)
		return NULL;
2138

2139 2140
	if (pgoff == 0)
		return virt_to_page(data->user_page);
2141

2142
	return virt_to_page(data->data_pages[pgoff - 1]);
2143 2144
}

2145 2146
static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2147 2148 2149 2150 2151
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

2152
	WARN_ON(atomic_read(&event->mmap_count));
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

2171
	data->data_order = 0;
2172 2173
	data->nr_pages = nr_pages;

2174
	return data;
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
2186
	return NULL;
2187 2188
}

2189 2190
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2191
	struct page *page = virt_to_page((void *)addr);
2192 2193 2194 2195 2196

	page->mapping = NULL;
	__free_page(page);
}

2197
static void perf_mmap_data_free(struct perf_mmap_data *data)
2198 2199 2200
{
	int i;

2201
	perf_mmap_free_page((unsigned long)data->user_page);
2202
	for (i = 0; i < data->nr_pages; i++)
2203
		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
}

#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > (1UL << data->data_order))
		return NULL;

	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void perf_mmap_data_free_work(struct work_struct *work)
{
	struct perf_mmap_data *data;
	void *base;
	int i, nr;

	data = container_of(work, struct perf_mmap_data, work);
	nr = 1 << data->data_order;

	base = data->user_page;
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
}

static void perf_mmap_data_free(struct perf_mmap_data *data)
{
	schedule_work(&data->work);
}

static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	void *all_buf;

	WARN_ON(atomic_read(&event->mmap_count));
2259

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
	size = sizeof(struct perf_mmap_data);
	size += sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	INIT_WORK(&data->work, perf_mmap_data_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	data->user_page = all_buf;
	data->data_pages[0] = all_buf + PAGE_SIZE;
	data->data_order = ilog2(nr_pages);
	data->nr_pages = 1;

	return data;

fail_all_buf:
	kfree(data);

fail:
	return NULL;
}

#endif

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
{
	long max_size = perf_data_size(data);

	atomic_set(&data->lock, -1);

	if (event->attr.watermark) {
		data->watermark = min_t(long, max_size,
					event->attr.wakeup_watermark);
	}

	if (!data->watermark)
2337
		data->watermark = max_size / 2;
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348


	rcu_assign_pointer(event->data, data);
}

static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data;

	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
	perf_mmap_data_free(data);
2349 2350 2351
	kfree(data);
}

2352
static void perf_mmap_data_release(struct perf_event *event)
2353
{
2354
	struct perf_mmap_data *data = event->data;
2355

2356
	WARN_ON(atomic_read(&event->mmap_count));
2357

2358
	rcu_assign_pointer(event->data, NULL);
2359
	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2360 2361 2362 2363
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2364
	struct perf_event *event = vma->vm_file->private_data;
2365

2366
	atomic_inc(&event->mmap_count);
2367 2368 2369 2370
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2371
	struct perf_event *event = vma->vm_file->private_data;
2372

2373 2374
	WARN_ON_ONCE(event->ctx->parent_ctx);
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2375
		unsigned long size = perf_data_size(event->data);
2376 2377
		struct user_struct *user = current_user();

2378
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2379
		vma->vm_mm->locked_vm -= event->data->nr_locked;
2380
		perf_mmap_data_release(event);
2381
		mutex_unlock(&event->mmap_mutex);
2382
	}
2383 2384
}

2385
static const struct vm_operations_struct perf_mmap_vmops = {
2386 2387 2388 2389
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2390 2391 2392 2393
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2394
	struct perf_event *event = file->private_data;
2395
	unsigned long user_locked, user_lock_limit;
2396
	struct user_struct *user = current_user();
2397
	unsigned long locked, lock_limit;
2398
	struct perf_mmap_data *data;
2399 2400
	unsigned long vma_size;
	unsigned long nr_pages;
2401
	long user_extra, extra;
2402
	int ret = 0;
2403

2404
	if (!(vma->vm_flags & VM_SHARED))
2405
		return -EINVAL;
2406 2407 2408 2409

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2410 2411 2412 2413 2414
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2415 2416
		return -EINVAL;

2417
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2418 2419
		return -EINVAL;

2420 2421
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2422

2423 2424 2425
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
	if (event->output) {
2426 2427 2428 2429
		ret = -EINVAL;
		goto unlock;
	}

2430 2431
	if (atomic_inc_not_zero(&event->mmap_count)) {
		if (nr_pages != event->data->nr_pages)
2432 2433 2434 2435
			ret = -EINVAL;
		goto unlock;
	}

2436
	user_extra = nr_pages + 1;
2437
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2438 2439 2440 2441 2442 2443

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2444
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2445

2446 2447 2448
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2449 2450 2451

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
2452
	locked = vma->vm_mm->locked_vm + extra;
2453

2454 2455
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2456 2457 2458
		ret = -EPERM;
		goto unlock;
	}
2459

2460
	WARN_ON(event->data);
2461 2462 2463 2464

	data = perf_mmap_data_alloc(event, nr_pages);
	ret = -ENOMEM;
	if (!data)
2465 2466
		goto unlock;

2467 2468 2469
	ret = 0;
	perf_mmap_data_init(event, data);

2470
	atomic_set(&event->mmap_count, 1);
2471
	atomic_long_add(user_extra, &user->locked_vm);
2472
	vma->vm_mm->locked_vm += extra;
2473
	event->data->nr_locked = extra;
2474
	if (vma->vm_flags & VM_WRITE)
2475
		event->data->writable = 1;
2476

2477
unlock:
2478
	mutex_unlock(&event->mmap_mutex);
2479 2480 2481

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2482 2483

	return ret;
2484 2485
}

P
Peter Zijlstra 已提交
2486 2487 2488
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2489
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2490 2491 2492
	int retval;

	mutex_lock(&inode->i_mutex);
2493
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2494 2495 2496 2497 2498 2499 2500 2501
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2502 2503 2504 2505
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2506 2507
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2508
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2509
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2510 2511
};

2512
/*
2513
 * Perf event wakeup
2514 2515 2516 2517 2518
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2519
void perf_event_wakeup(struct perf_event *event)
2520
{
2521
	wake_up_all(&event->waitq);
2522

2523 2524 2525
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2526
	}
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2538
static void perf_pending_event(struct perf_pending_entry *entry)
2539
{
2540 2541
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2542

2543 2544 2545
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2546 2547
	}

2548 2549 2550
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2551 2552 2553
	}
}

2554
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2555

2556
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2557 2558 2559
	PENDING_TAIL,
};

2560 2561
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2562
{
2563
	struct perf_pending_entry **head;
2564

2565
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2566 2567
		return;

2568 2569 2570
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2571 2572

	do {
2573 2574
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2575

2576
	set_perf_event_pending();
2577

2578
	put_cpu_var(perf_pending_head);
2579 2580 2581 2582
}

static int __perf_pending_run(void)
{
2583
	struct perf_pending_entry *list;
2584 2585
	int nr = 0;

2586
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2587
	while (list != PENDING_TAIL) {
2588 2589
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2590 2591 2592

		list = list->next;

2593 2594
		func = entry->func;
		entry->next = NULL;
2595 2596 2597 2598 2599 2600 2601
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2602
		func(entry);
2603 2604 2605 2606 2607 2608
		nr++;
	}

	return nr;
}

2609
static inline int perf_not_pending(struct perf_event *event)
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2624
	return event->pending.next == NULL;
2625 2626
}

2627
static void perf_pending_sync(struct perf_event *event)
2628
{
2629
	wait_event(event->waitq, perf_not_pending(event));
2630 2631
}

2632
void perf_event_do_pending(void)
2633 2634 2635 2636
{
	__perf_pending_run();
}

2637 2638 2639 2640
/*
 * Callchain support -- arch specific
 */

2641
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2642 2643 2644 2645
{
	return NULL;
}

2646 2647 2648
/*
 * Output
 */
2649 2650
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
			      unsigned long offset, unsigned long head)
2651 2652 2653 2654 2655 2656
{
	unsigned long mask;

	if (!data->writable)
		return true;

2657
	mask = perf_data_size(data) - 1;
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2668
static void perf_output_wakeup(struct perf_output_handle *handle)
2669
{
2670 2671
	atomic_set(&handle->data->poll, POLL_IN);

2672
	if (handle->nmi) {
2673 2674 2675
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2676
	} else
2677
		perf_event_wakeup(handle->event);
2678 2679
}

2680 2681 2682
/*
 * Curious locking construct.
 *
2683 2684
 * We need to ensure a later event_id doesn't publish a head when a former
 * event_id isn't done writing. However since we need to deal with NMIs we
2685 2686 2687 2688 2689 2690
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
2691
 * event_id completes.
2692 2693 2694 2695
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2696
	int cur, cpu = get_cpu();
2697 2698 2699

	handle->locked = 0;

2700 2701 2702 2703 2704 2705 2706 2707
	for (;;) {
		cur = atomic_cmpxchg(&data->lock, -1, cpu);
		if (cur == -1) {
			handle->locked = 1;
			break;
		}
		if (cur == cpu)
			break;
2708 2709

		cpu_relax();
2710
	}
2711 2712 2713 2714 2715
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2716 2717
	unsigned long head;
	int cpu;
2718

2719
	data->done_head = data->head;
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2730
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2731 2732 2733
		data->user_page->data_head = head;

	/*
2734
	 * NMI can happen here, which means we can miss a done_head update.
2735 2736
	 */

2737
	cpu = atomic_xchg(&data->lock, -1);
2738 2739 2740 2741 2742
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2743
	if (unlikely(atomic_long_read(&data->done_head))) {
2744 2745 2746
		/*
		 * Since we had it locked, we can lock it again.
		 */
2747
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2748 2749 2750 2751 2752
			cpu_relax();

		goto again;
	}

2753
	if (atomic_xchg(&data->wakeup, 0))
2754 2755
		perf_output_wakeup(handle);
out:
2756
	put_cpu();
2757 2758
}

2759 2760
void perf_output_copy(struct perf_output_handle *handle,
		      const void *buf, unsigned int len)
2761 2762
{
	unsigned int pages_mask;
2763
	unsigned long offset;
2764 2765 2766 2767 2768 2769 2770 2771
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
2772 2773
		unsigned long page_offset;
		unsigned long page_size;
2774 2775 2776
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
2777 2778 2779
		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
		page_offset = offset & (page_size - 1);
		size	    = min_t(unsigned int, page_size - page_offset, len);
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

2797
int perf_output_begin(struct perf_output_handle *handle,
2798
		      struct perf_event *event, unsigned int size,
2799
		      int nmi, int sample)
2800
{
2801
	struct perf_event *output_event;
2802
	struct perf_mmap_data *data;
2803
	unsigned long tail, offset, head;
2804 2805 2806 2807 2808 2809
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2810

2811
	rcu_read_lock();
2812
	/*
2813
	 * For inherited events we send all the output towards the parent.
2814
	 */
2815 2816
	if (event->parent)
		event = event->parent;
2817

2818 2819 2820
	output_event = rcu_dereference(event->output);
	if (output_event)
		event = output_event;
2821

2822
	data = rcu_dereference(event->data);
2823 2824 2825
	if (!data)
		goto out;

2826
	handle->data	= data;
2827
	handle->event	= event;
2828 2829
	handle->nmi	= nmi;
	handle->sample	= sample;
2830

2831
	if (!data->nr_pages)
2832
		goto fail;
2833

2834 2835 2836 2837
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

2838 2839
	perf_output_lock(handle);

2840
	do {
2841 2842 2843 2844 2845 2846 2847
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
		tail = ACCESS_ONCE(data->user_page->data_tail);
		smp_rmb();
2848
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
2849
		head += size;
2850
		if (unlikely(!perf_output_space(data, tail, offset, head)))
2851
			goto fail;
2852
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2853

2854
	handle->offset	= offset;
2855
	handle->head	= head;
2856

2857
	if (head - tail > data->watermark)
2858
		atomic_set(&data->wakeup, 1);
2859

2860
	if (have_lost) {
2861
		lost_event.header.type = PERF_RECORD_LOST;
2862 2863
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
2864
		lost_event.id          = event->id;
2865 2866 2867 2868 2869
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

2870
	return 0;
2871

2872
fail:
2873 2874
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
2875 2876
out:
	rcu_read_unlock();
2877

2878 2879
	return -ENOSPC;
}
2880

2881
void perf_output_end(struct perf_output_handle *handle)
2882
{
2883
	struct perf_event *event = handle->event;
2884 2885
	struct perf_mmap_data *data = handle->data;

2886
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
2887

2888
	if (handle->sample && wakeup_events) {
2889
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2890
		if (events >= wakeup_events) {
2891
			atomic_sub(wakeup_events, &data->events);
2892
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2893
		}
2894 2895 2896
	}

	perf_output_unlock(handle);
2897
	rcu_read_unlock();
2898 2899
}

2900
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2901 2902
{
	/*
2903
	 * only top level events have the pid namespace they were created in
2904
	 */
2905 2906
	if (event->parent)
		event = event->parent;
2907

2908
	return task_tgid_nr_ns(p, event->ns);
2909 2910
}

2911
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2912 2913
{
	/*
2914
	 * only top level events have the pid namespace they were created in
2915
	 */
2916 2917
	if (event->parent)
		event = event->parent;
2918

2919
	return task_pid_nr_ns(p, event->ns);
2920 2921
}

2922
static void perf_output_read_one(struct perf_output_handle *handle,
2923
				 struct perf_event *event)
2924
{
2925
	u64 read_format = event->attr.read_format;
2926 2927 2928
	u64 values[4];
	int n = 0;

2929
	values[n++] = atomic64_read(&event->count);
2930
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2931 2932
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2933 2934
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2935 2936
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2937 2938
	}
	if (read_format & PERF_FORMAT_ID)
2939
		values[n++] = primary_event_id(event);
2940 2941 2942 2943 2944

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
2945
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2946 2947
 */
static void perf_output_read_group(struct perf_output_handle *handle,
2948
			    struct perf_event *event)
2949
{
2950 2951
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

2963
	if (leader != event)
2964 2965 2966 2967
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
2968
		values[n++] = primary_event_id(leader);
2969 2970 2971

	perf_output_copy(handle, values, n * sizeof(u64));

2972
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2973 2974
		n = 0;

2975
		if (sub != event)
2976 2977 2978 2979
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
2980
			values[n++] = primary_event_id(sub);
2981 2982 2983 2984 2985 2986

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
2987
			     struct perf_event *event)
2988
{
2989 2990
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
2991
	else
2992
		perf_output_read_one(handle, event);
2993 2994
}

2995 2996 2997
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
2998
			struct perf_event *event)
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3029
		perf_output_read(handle, event);
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3067
			 struct perf_event *event,
3068
			 struct pt_regs *regs)
3069
{
3070
	u64 sample_type = event->attr.sample_type;
3071

3072
	data->type = sample_type;
3073

3074
	header->type = PERF_RECORD_SAMPLE;
3075 3076 3077 3078
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3079

3080
	if (sample_type & PERF_SAMPLE_IP) {
3081 3082 3083
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3084
	}
3085

3086
	if (sample_type & PERF_SAMPLE_TID) {
3087
		/* namespace issues */
3088 3089
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3090

3091
		header->size += sizeof(data->tid_entry);
3092 3093
	}

3094
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3095
		data->time = perf_clock();
3096

3097
		header->size += sizeof(data->time);
3098 3099
	}

3100
	if (sample_type & PERF_SAMPLE_ADDR)
3101
		header->size += sizeof(data->addr);
3102

3103
	if (sample_type & PERF_SAMPLE_ID) {
3104
		data->id = primary_event_id(event);
3105

3106 3107 3108 3109
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3110
		data->stream_id = event->id;
3111 3112 3113

		header->size += sizeof(data->stream_id);
	}
3114

3115
	if (sample_type & PERF_SAMPLE_CPU) {
3116 3117
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3118

3119
		header->size += sizeof(data->cpu_entry);
3120 3121
	}

3122
	if (sample_type & PERF_SAMPLE_PERIOD)
3123
		header->size += sizeof(data->period);
3124

3125
	if (sample_type & PERF_SAMPLE_READ)
3126
		header->size += perf_event_read_size(event);
3127

3128
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3129
		int size = 1;
3130

3131 3132 3133 3134 3135 3136
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3137 3138
	}

3139
	if (sample_type & PERF_SAMPLE_RAW) {
3140 3141 3142 3143 3144 3145 3146 3147
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3148
		header->size += size;
3149
	}
3150
}
3151

3152
static void perf_event_output(struct perf_event *event, int nmi,
3153 3154 3155 3156 3157
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3158

3159
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3160

3161
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3162
		return;
3163

3164
	perf_output_sample(&handle, &header, data, event);
3165

3166
	perf_output_end(&handle);
3167 3168
}

3169
/*
3170
 * read event_id
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3181
perf_event_read_event(struct perf_event *event,
3182 3183 3184
			struct task_struct *task)
{
	struct perf_output_handle handle;
3185
	struct perf_read_event read_event = {
3186
		.header = {
3187
			.type = PERF_RECORD_READ,
3188
			.misc = 0,
3189
			.size = sizeof(read_event) + perf_event_read_size(event),
3190
		},
3191 3192
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3193
	};
3194
	int ret;
3195

3196
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3197 3198 3199
	if (ret)
		return;

3200
	perf_output_put(&handle, read_event);
3201
	perf_output_read(&handle, event);
3202

3203 3204 3205
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3206
/*
P
Peter Zijlstra 已提交
3207 3208 3209
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3210 3211
 */

P
Peter Zijlstra 已提交
3212
struct perf_task_event {
3213
	struct task_struct		*task;
3214
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3215 3216 3217 3218 3219 3220

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3221 3222
		u32				tid;
		u32				ptid;
3223
		u64				time;
3224
	} event_id;
P
Peter Zijlstra 已提交
3225 3226
};

3227
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3228
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3229 3230
{
	struct perf_output_handle handle;
3231
	int size;
P
Peter Zijlstra 已提交
3232
	struct task_struct *task = task_event->task;
3233 3234
	int ret;

3235 3236
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3237 3238 3239 3240

	if (ret)
		return;

3241 3242
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3243

3244 3245
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3246

3247
	task_event->event_id.time = perf_clock();
3248

3249
	perf_output_put(&handle, task_event->event_id);
3250

P
Peter Zijlstra 已提交
3251 3252 3253
	perf_output_end(&handle);
}

3254
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3255
{
3256
	if (event->attr.comm || event->attr.mmap || event->attr.task)
P
Peter Zijlstra 已提交
3257 3258 3259 3260 3261
		return 1;

	return 0;
}

3262
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3263
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3264
{
3265
	struct perf_event *event;
P
Peter Zijlstra 已提交
3266

3267 3268 3269
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3270 3271 3272
	}
}

3273
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3274 3275
{
	struct perf_cpu_context *cpuctx;
3276
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3277

3278
	rcu_read_lock();
P
Peter Zijlstra 已提交
3279
	cpuctx = &get_cpu_var(perf_cpu_context);
3280
	perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
3281 3282
	put_cpu_var(perf_cpu_context);

3283
	if (!ctx)
3284
		ctx = rcu_dereference(task_event->task->perf_event_ctxp);
P
Peter Zijlstra 已提交
3285
	if (ctx)
3286
		perf_event_task_ctx(ctx, task_event);
P
Peter Zijlstra 已提交
3287 3288 3289
	rcu_read_unlock();
}

3290 3291
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3292
			      int new)
P
Peter Zijlstra 已提交
3293
{
P
Peter Zijlstra 已提交
3294
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3295

3296 3297 3298
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3299 3300
		return;

P
Peter Zijlstra 已提交
3301
	task_event = (struct perf_task_event){
3302 3303
		.task	  = task,
		.task_ctx = task_ctx,
3304
		.event_id    = {
P
Peter Zijlstra 已提交
3305
			.header = {
3306
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3307
				.misc = 0,
3308
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3309
			},
3310 3311
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3312 3313
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3314 3315 3316
		},
	};

3317
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3318 3319
}

3320
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3321
{
3322
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3323 3324
}

3325 3326 3327 3328 3329
/*
 * comm tracking
 */

struct perf_comm_event {
3330 3331
	struct task_struct	*task;
	char			*comm;
3332 3333 3334 3335 3336 3337 3338
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3339
	} event_id;
3340 3341
};

3342
static void perf_event_comm_output(struct perf_event *event,
3343 3344 3345
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3346 3347
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3348 3349 3350 3351

	if (ret)
		return;

3352 3353
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3354

3355
	perf_output_put(&handle, comm_event->event_id);
3356 3357 3358 3359 3360
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3361
static int perf_event_comm_match(struct perf_event *event)
3362
{
3363
	if (event->attr.comm)
3364 3365 3366 3367 3368
		return 1;

	return 0;
}

3369
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3370 3371
				  struct perf_comm_event *comm_event)
{
3372
	struct perf_event *event;
3373

3374 3375 3376
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3377 3378 3379
	}
}

3380
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3381 3382
{
	struct perf_cpu_context *cpuctx;
3383
	struct perf_event_context *ctx;
3384
	unsigned int size;
3385
	char comm[TASK_COMM_LEN];
3386

3387
	memset(comm, 0, sizeof(comm));
3388
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3389
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3390 3391 3392 3393

	comm_event->comm = comm;
	comm_event->comm_size = size;

3394
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3395

3396
	rcu_read_lock();
3397
	cpuctx = &get_cpu_var(perf_cpu_context);
3398
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3399
	put_cpu_var(perf_cpu_context);
3400 3401 3402 3403 3404

	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3405
	ctx = rcu_dereference(current->perf_event_ctxp);
3406
	if (ctx)
3407
		perf_event_comm_ctx(ctx, comm_event);
3408
	rcu_read_unlock();
3409 3410
}

3411
void perf_event_comm(struct task_struct *task)
3412
{
3413 3414
	struct perf_comm_event comm_event;

3415 3416
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3417

3418
	if (!atomic_read(&nr_comm_events))
3419
		return;
3420

3421
	comm_event = (struct perf_comm_event){
3422
		.task	= task,
3423 3424
		/* .comm      */
		/* .comm_size */
3425
		.event_id  = {
3426
			.header = {
3427
				.type = PERF_RECORD_COMM,
3428 3429 3430 3431 3432
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3433 3434 3435
		},
	};

3436
	perf_event_comm_event(&comm_event);
3437 3438
}

3439 3440 3441 3442 3443
/*
 * mmap tracking
 */

struct perf_mmap_event {
3444 3445 3446 3447
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3448 3449 3450 3451 3452 3453 3454 3455 3456

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3457
	} event_id;
3458 3459
};

3460
static void perf_event_mmap_output(struct perf_event *event,
3461 3462 3463
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3464 3465
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3466 3467 3468 3469

	if (ret)
		return;

3470 3471
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3472

3473
	perf_output_put(&handle, mmap_event->event_id);
3474 3475
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3476
	perf_output_end(&handle);
3477 3478
}

3479
static int perf_event_mmap_match(struct perf_event *event,
3480 3481
				   struct perf_mmap_event *mmap_event)
{
3482
	if (event->attr.mmap)
3483 3484 3485 3486 3487
		return 1;

	return 0;
}

3488
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3489 3490
				  struct perf_mmap_event *mmap_event)
{
3491
	struct perf_event *event;
3492

3493 3494 3495
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_mmap_match(event, mmap_event))
			perf_event_mmap_output(event, mmap_event);
3496 3497 3498
	}
}

3499
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3500 3501
{
	struct perf_cpu_context *cpuctx;
3502
	struct perf_event_context *ctx;
3503 3504
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3505 3506 3507
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3508
	const char *name;
3509

3510 3511
	memset(tmp, 0, sizeof(tmp));

3512
	if (file) {
3513 3514 3515 3516 3517 3518
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3519 3520 3521 3522
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3523
		name = d_path(&file->f_path, buf, PATH_MAX);
3524 3525 3526 3527 3528
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3529 3530 3531
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3532
			goto got_name;
3533
		}
3534 3535 3536 3537 3538 3539

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3540 3541 3542 3543 3544
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3545
	size = ALIGN(strlen(name)+1, sizeof(u64));
3546 3547 3548 3549

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3550
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3551

3552
	rcu_read_lock();
3553
	cpuctx = &get_cpu_var(perf_cpu_context);
3554
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3555 3556
	put_cpu_var(perf_cpu_context);

3557 3558 3559 3560
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3561
	ctx = rcu_dereference(current->perf_event_ctxp);
3562
	if (ctx)
3563
		perf_event_mmap_ctx(ctx, mmap_event);
3564 3565
	rcu_read_unlock();

3566 3567 3568
	kfree(buf);
}

3569
void __perf_event_mmap(struct vm_area_struct *vma)
3570
{
3571 3572
	struct perf_mmap_event mmap_event;

3573
	if (!atomic_read(&nr_mmap_events))
3574 3575 3576
		return;

	mmap_event = (struct perf_mmap_event){
3577
		.vma	= vma,
3578 3579
		/* .file_name */
		/* .file_size */
3580
		.event_id  = {
3581
			.header = {
3582
				.type = PERF_RECORD_MMAP,
3583 3584 3585 3586 3587
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3588 3589 3590
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
			.pgoff  = vma->vm_pgoff,
3591 3592 3593
		},
	};

3594
	perf_event_mmap_event(&mmap_event);
3595 3596
}

3597 3598 3599 3600
/*
 * IRQ throttle logging
 */

3601
static void perf_log_throttle(struct perf_event *event, int enable)
3602 3603 3604 3605 3606 3607 3608
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3609
		u64				id;
3610
		u64				stream_id;
3611 3612
	} throttle_event = {
		.header = {
3613
			.type = PERF_RECORD_THROTTLE,
3614 3615 3616
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3617
		.time		= perf_clock(),
3618 3619
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3620 3621
	};

3622
	if (enable)
3623
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3624

3625
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3626 3627 3628 3629 3630 3631 3632
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3633
/*
3634
 * Generic event overflow handling, sampling.
3635 3636
 */

3637
static int __perf_event_overflow(struct perf_event *event, int nmi,
3638 3639
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3640
{
3641 3642
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3643 3644
	int ret = 0;

3645
	throttle = (throttle && event->pmu->unthrottle != NULL);
3646

3647
	if (!throttle) {
3648
		hwc->interrupts++;
3649
	} else {
3650 3651
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3652
			if (HZ * hwc->interrupts >
3653
					(u64)sysctl_perf_event_sample_rate) {
3654
				hwc->interrupts = MAX_INTERRUPTS;
3655
				perf_log_throttle(event, 0);
3656 3657 3658 3659
				ret = 1;
			}
		} else {
			/*
3660
			 * Keep re-disabling events even though on the previous
3661
			 * pass we disabled it - just in case we raced with a
3662
			 * sched-in and the event got enabled again:
3663
			 */
3664 3665 3666
			ret = 1;
		}
	}
3667

3668
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3669
		u64 now = perf_clock();
3670 3671 3672 3673 3674
		s64 delta = now - hwc->freq_stamp;

		hwc->freq_stamp = now;

		if (delta > 0 && delta < TICK_NSEC)
3675
			perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3676 3677
	}

3678 3679
	/*
	 * XXX event_limit might not quite work as expected on inherited
3680
	 * events
3681 3682
	 */

3683 3684
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3685
		ret = 1;
3686
		event->pending_kill = POLL_HUP;
3687
		if (nmi) {
3688 3689 3690
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3691
		} else
3692
			perf_event_disable(event);
3693 3694
	}

3695 3696 3697 3698 3699
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

3700
	return ret;
3701 3702
}

3703
int perf_event_overflow(struct perf_event *event, int nmi,
3704 3705
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
3706
{
3707
	return __perf_event_overflow(event, nmi, 1, data, regs);
3708 3709
}

3710
/*
3711
 * Generic software event infrastructure
3712 3713
 */

3714
/*
3715 3716
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
3717 3718 3719 3720
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

3721
static u64 perf_swevent_set_period(struct perf_event *event)
3722
{
3723
	struct hw_perf_event *hwc = &event->hw;
3724 3725 3726 3727 3728
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3729 3730

again:
3731 3732 3733
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3734

3735 3736 3737 3738 3739
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3740

3741
	return nr;
3742 3743
}

3744
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3745 3746
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
3747
{
3748
	struct hw_perf_event *hwc = &event->hw;
3749
	int throttle = 0;
3750

3751
	data->period = event->hw.last_period;
3752 3753
	if (!overflow)
		overflow = perf_swevent_set_period(event);
3754

3755 3756
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3757

3758
	for (; overflow; overflow--) {
3759
		if (__perf_event_overflow(event, nmi, throttle,
3760
					    data, regs)) {
3761 3762 3763 3764 3765 3766
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
3767
		throttle = 1;
3768
	}
3769 3770
}

3771
static void perf_swevent_unthrottle(struct perf_event *event)
3772 3773
{
	/*
3774
	 * Nothing to do, we already reset hwc->interrupts.
3775
	 */
3776
}
3777

3778
static void perf_swevent_add(struct perf_event *event, u64 nr,
3779 3780
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
3781
{
3782
	struct hw_perf_event *hwc = &event->hw;
3783

3784
	atomic64_add(nr, &event->count);
3785

3786 3787 3788
	if (!regs)
		return;

3789 3790
	if (!hwc->sample_period)
		return;
3791

3792 3793 3794 3795
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
3796
		return;
3797

3798
	perf_swevent_overflow(event, 0, nmi, data, regs);
3799 3800
}

3801
static int perf_swevent_is_counting(struct perf_event *event)
3802
{
3803
	/*
3804
	 * The event is active, we're good!
3805
	 */
3806
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3807 3808
		return 1;

3809
	/*
3810
	 * The event is off/error, not counting.
3811
	 */
3812
	if (event->state != PERF_EVENT_STATE_INACTIVE)
3813 3814 3815
		return 0;

	/*
3816
	 * The event is inactive, if the context is active
3817 3818
	 * we're part of a group that didn't make it on the 'pmu',
	 * not counting.
3819
	 */
3820
	if (event->ctx->is_active)
3821 3822 3823 3824 3825 3826 3827 3828
		return 0;

	/*
	 * We're inactive and the context is too, this means the
	 * task is scheduled out, we're counting events that happen
	 * to us, like migration events.
	 */
	return 1;
3829 3830
}

L
Li Zefan 已提交
3831 3832 3833
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data);

3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

3848
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
3849
				enum perf_type_id type,
L
Li Zefan 已提交
3850 3851 3852
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
3853
{
3854
	if (!perf_swevent_is_counting(event))
3855 3856
		return 0;

3857
	if (event->attr.type != type)
3858
		return 0;
3859

3860
	if (event->attr.config != event_id)
3861 3862
		return 0;

3863 3864
	if (perf_exclude_event(event, regs))
		return 0;
3865

L
Li Zefan 已提交
3866 3867 3868 3869
	if (event->attr.type == PERF_TYPE_TRACEPOINT &&
	    !perf_tp_event_match(event, data))
		return 0;

3870 3871 3872
	return 1;
}

3873
static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3874
				     enum perf_type_id type,
3875
				     u32 event_id, u64 nr, int nmi,
3876 3877
				     struct perf_sample_data *data,
				     struct pt_regs *regs)
3878
{
3879
	struct perf_event *event;
3880

3881
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
L
Li Zefan 已提交
3882
		if (perf_swevent_match(event, type, event_id, data, regs))
3883
			perf_swevent_add(event, nr, nmi, data, regs);
3884 3885 3886
	}
}

3887
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
3888
{
3889 3890
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
	int rctx;
3891

P
Peter Zijlstra 已提交
3892
	if (in_nmi())
3893
		rctx = 3;
3894
	else if (in_irq())
3895
		rctx = 2;
3896
	else if (in_softirq())
3897
		rctx = 1;
3898
	else
3899
		rctx = 0;
P
Peter Zijlstra 已提交
3900

3901 3902
	if (cpuctx->recursion[rctx]) {
		put_cpu_var(perf_cpu_context);
3903
		return -1;
3904
	}
P
Peter Zijlstra 已提交
3905

3906 3907
	cpuctx->recursion[rctx]++;
	barrier();
P
Peter Zijlstra 已提交
3908

3909
	return rctx;
P
Peter Zijlstra 已提交
3910
}
I
Ingo Molnar 已提交
3911
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
3912

3913
void perf_swevent_put_recursion_context(int rctx)
3914
{
3915 3916 3917 3918
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	barrier();
	cpuctx->recursion[rctx]++;
	put_cpu_var(perf_cpu_context);
3919
}
I
Ingo Molnar 已提交
3920
EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
P
Peter Zijlstra 已提交
3921

3922 3923 3924 3925
static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
3926
{
3927
	struct perf_cpu_context *cpuctx;
3928
	struct perf_event_context *ctx;
3929

3930
	cpuctx = &__get_cpu_var(perf_cpu_context);
3931
	rcu_read_lock();
3932
	perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3933
				 nr, nmi, data, regs);
3934 3935 3936 3937
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3938
	ctx = rcu_dereference(current->perf_event_ctxp);
3939
	if (ctx)
3940
		perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3941
	rcu_read_unlock();
3942
}
3943

3944
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3945
			    struct pt_regs *regs, u64 addr)
3946
{
3947
	struct perf_sample_data data;
3948 3949 3950 3951 3952
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
3953 3954 3955

	data.addr = addr;
	data.raw  = NULL;
3956

3957
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
3958 3959

	perf_swevent_put_recursion_context(rctx);
3960 3961
}

3962
static void perf_swevent_read(struct perf_event *event)
3963 3964 3965
{
}

3966
static int perf_swevent_enable(struct perf_event *event)
3967
{
3968
	struct hw_perf_event *hwc = &event->hw;
3969 3970 3971

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
3972
		perf_swevent_set_period(event);
3973
	}
3974 3975 3976
	return 0;
}

3977
static void perf_swevent_disable(struct perf_event *event)
3978 3979 3980
{
}

3981
static const struct pmu perf_ops_generic = {
3982 3983 3984 3985
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_unthrottle,
3986 3987
};

3988
/*
3989
 * hrtimer based swevent callback
3990 3991
 */

3992
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3993 3994 3995
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
3996
	struct pt_regs *regs;
3997
	struct perf_event *event;
3998 3999
	u64 period;

4000 4001
	event	= container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);
4002 4003

	data.addr = 0;
4004
	regs = get_irq_regs();
4005 4006 4007 4008
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
4009 4010
	if ((event->attr.exclude_kernel || !regs) &&
			!event->attr.exclude_user)
4011
		regs = task_pt_regs(current);
4012

4013
	if (regs) {
4014 4015 4016
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
4017 4018
	}

4019
	period = max_t(u64, 10000, event->hw.sample_period);
4020 4021 4022 4023 4024
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4061
/*
4062
 * Software event: cpu wall time clock
4063 4064
 */

4065
static void cpu_clock_perf_event_update(struct perf_event *event)
4066 4067 4068 4069 4070 4071
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4072 4073 4074
	prev = atomic64_read(&event->hw.prev_count);
	atomic64_set(&event->hw.prev_count, now);
	atomic64_add(now - prev, &event->count);
4075 4076
}

4077
static int cpu_clock_perf_event_enable(struct perf_event *event)
4078
{
4079
	struct hw_perf_event *hwc = &event->hw;
4080 4081 4082
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4083
	perf_swevent_start_hrtimer(event);
4084 4085 4086 4087

	return 0;
}

4088
static void cpu_clock_perf_event_disable(struct perf_event *event)
4089
{
4090
	perf_swevent_cancel_hrtimer(event);
4091
	cpu_clock_perf_event_update(event);
4092 4093
}

4094
static void cpu_clock_perf_event_read(struct perf_event *event)
4095
{
4096
	cpu_clock_perf_event_update(event);
4097 4098
}

4099
static const struct pmu perf_ops_cpu_clock = {
4100 4101 4102
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4103 4104
};

4105
/*
4106
 * Software event: task time clock
4107 4108
 */

4109
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4110
{
4111
	u64 prev;
I
Ingo Molnar 已提交
4112 4113
	s64 delta;

4114
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4115
	delta = now - prev;
4116
	atomic64_add(delta, &event->count);
4117 4118
}

4119
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4120
{
4121
	struct hw_perf_event *hwc = &event->hw;
4122 4123
	u64 now;

4124
	now = event->ctx->time;
4125

4126
	atomic64_set(&hwc->prev_count, now);
4127 4128

	perf_swevent_start_hrtimer(event);
4129 4130

	return 0;
I
Ingo Molnar 已提交
4131 4132
}

4133
static void task_clock_perf_event_disable(struct perf_event *event)
4134
{
4135
	perf_swevent_cancel_hrtimer(event);
4136
	task_clock_perf_event_update(event, event->ctx->time);
4137

4138
}
I
Ingo Molnar 已提交
4139

4140
static void task_clock_perf_event_read(struct perf_event *event)
4141
{
4142 4143 4144
	u64 time;

	if (!in_nmi()) {
4145 4146
		update_context_time(event->ctx);
		time = event->ctx->time;
4147 4148
	} else {
		u64 now = perf_clock();
4149 4150
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4151 4152
	}

4153
	task_clock_perf_event_update(event, time);
4154 4155
}

4156
static const struct pmu perf_ops_task_clock = {
4157 4158 4159
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4160 4161
};

4162
#ifdef CONFIG_EVENT_PROFILE
L
Li Zefan 已提交
4163

4164
void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4165
			  int entry_size)
4166
{
4167
	struct perf_raw_record raw = {
4168
		.size = entry_size,
4169
		.data = record,
4170 4171
	};

4172
	struct perf_sample_data data = {
4173
		.addr = addr,
4174
		.raw = &raw,
4175
	};
4176

4177 4178 4179 4180
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);
4181

4182
	/* Trace events already protected against recursion */
4183
	do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4184
				&data, regs);
4185
}
4186
EXPORT_SYMBOL_GPL(perf_tp_event);
4187

L
Li Zefan 已提交
4188 4189 4190 4191 4192 4193 4194 4195 4196
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}
4197

4198
static void tp_perf_event_destroy(struct perf_event *event)
4199
{
4200
	ftrace_profile_disable(event->attr.config);
4201 4202
}

4203
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4204
{
4205 4206 4207 4208
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4209
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4210
			perf_paranoid_tracepoint_raw() &&
4211 4212 4213
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4214
	if (ftrace_profile_enable(event->attr.config))
4215 4216
		return NULL;

4217
	event->destroy = tp_perf_event_destroy;
4218 4219 4220

	return &perf_ops_generic;
}
L
Li Zefan 已提交
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4245
#else
L
Li Zefan 已提交
4246 4247 4248 4249 4250 4251 4252

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	return 1;
}

4253
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4254 4255 4256
{
	return NULL;
}
L
Li Zefan 已提交
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

#endif /* CONFIG_EVENT_PROFILE */
4268

4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
	/*
	 * The breakpoint is already filled if we haven't created the counter
	 * through perf syscall
	 * FIXME: manage to get trigerred to NULL if it comes from syscalls
	 */
	if (!bp->callback)
		err = register_perf_hw_breakpoint(bp);
	else
		err = __register_perf_hw_breakpoint(bp);
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

4295
void perf_bp_event(struct perf_event *bp, void *data)
4296
{
4297 4298 4299 4300 4301 4302 4303
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

	sample.addr = bp->attr.bp_addr;

	if (!perf_exclude_event(bp, regs))
		perf_swevent_add(bp, 1, 1, &sample, regs);
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
}
#else
static void bp_perf_event_destroy(struct perf_event *event)
{
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4320
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4321

4322
static void sw_perf_event_destroy(struct perf_event *event)
4323
{
4324
	u64 event_id = event->attr.config;
4325

4326
	WARN_ON(event->parent);
4327

4328
	atomic_dec(&perf_swevent_enabled[event_id]);
4329 4330
}

4331
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4332
{
4333
	const struct pmu *pmu = NULL;
4334
	u64 event_id = event->attr.config;
4335

4336
	/*
4337
	 * Software events (currently) can't in general distinguish
4338 4339 4340 4341 4342
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4343
	switch (event_id) {
4344
	case PERF_COUNT_SW_CPU_CLOCK:
4345
		pmu = &perf_ops_cpu_clock;
4346

4347
		break;
4348
	case PERF_COUNT_SW_TASK_CLOCK:
4349
		/*
4350 4351
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4352
		 */
4353
		if (event->ctx->task)
4354
			pmu = &perf_ops_task_clock;
4355
		else
4356
			pmu = &perf_ops_cpu_clock;
4357

4358
		break;
4359 4360 4361 4362 4363
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4364 4365
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4366 4367 4368
		if (!event->parent) {
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4369
		}
4370
		pmu = &perf_ops_generic;
4371
		break;
4372
	}
4373

4374
	return pmu;
4375 4376
}

T
Thomas Gleixner 已提交
4377
/*
4378
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4379
 */
4380 4381
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4382
		   int cpu,
4383 4384 4385
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4386
		   perf_callback_t callback,
4387
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4388
{
4389
	const struct pmu *pmu;
4390 4391
	struct perf_event *event;
	struct hw_perf_event *hwc;
4392
	long err;
T
Thomas Gleixner 已提交
4393

4394 4395
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4396
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4397

4398
	/*
4399
	 * Single events are their own group leaders, with an
4400 4401 4402
	 * empty sibling list:
	 */
	if (!group_leader)
4403
		group_leader = event;
4404

4405 4406
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4407

4408 4409 4410 4411
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4412

4413
	mutex_init(&event->mmap_mutex);
4414

4415 4416 4417 4418 4419 4420
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4421

4422
	event->parent		= parent_event;
4423

4424 4425
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4426

4427
	event->state		= PERF_EVENT_STATE_INACTIVE;
4428

4429 4430 4431 4432 4433
	if (!callback && parent_event)
		callback = parent_event->callback;
	
	event->callback	= callback;

4434
	if (attr->disabled)
4435
		event->state = PERF_EVENT_STATE_OFF;
4436

4437
	pmu = NULL;
4438

4439
	hwc = &event->hw;
4440
	hwc->sample_period = attr->sample_period;
4441
	if (attr->freq && attr->sample_freq)
4442
		hwc->sample_period = 1;
4443
	hwc->last_period = hwc->sample_period;
4444 4445

	atomic64_set(&hwc->period_left, hwc->sample_period);
4446

4447
	/*
4448
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4449
	 */
4450
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4451 4452
		goto done;

4453
	switch (attr->type) {
4454
	case PERF_TYPE_RAW:
4455
	case PERF_TYPE_HARDWARE:
4456
	case PERF_TYPE_HW_CACHE:
4457
		pmu = hw_perf_event_init(event);
4458 4459 4460
		break;

	case PERF_TYPE_SOFTWARE:
4461
		pmu = sw_perf_event_init(event);
4462 4463 4464
		break;

	case PERF_TYPE_TRACEPOINT:
4465
		pmu = tp_perf_event_init(event);
4466
		break;
4467

4468 4469 4470 4471 4472
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4473 4474
	default:
		break;
4475
	}
4476 4477
done:
	err = 0;
4478
	if (!pmu)
4479
		err = -EINVAL;
4480 4481
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4482

4483
	if (err) {
4484 4485 4486
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4487
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4488
	}
4489

4490
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4491

4492 4493 4494 4495 4496 4497 4498 4499
	if (!event->parent) {
		atomic_inc(&nr_events);
		if (event->attr.mmap)
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4500
	}
4501

4502
	return event;
T
Thomas Gleixner 已提交
4503 4504
}

4505 4506
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4507 4508
{
	u32 size;
4509
	int ret;
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4534 4535 4536
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4537 4538
	 */
	if (size > sizeof(*attr)) {
4539 4540 4541
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4542

4543 4544
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4545

4546
		for (; addr < end; addr++) {
4547 4548 4549 4550 4551 4552
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4553
		size = sizeof(*attr);
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Li Zefan 已提交
4585
static int perf_event_set_output(struct perf_event *event, int output_fd)
4586
{
4587
	struct perf_event *output_event = NULL;
4588
	struct file *output_file = NULL;
4589
	struct perf_event *old_output;
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
	int fput_needed = 0;
	int ret = -EINVAL;

	if (!output_fd)
		goto set;

	output_file = fget_light(output_fd, &fput_needed);
	if (!output_file)
		return -EBADF;

	if (output_file->f_op != &perf_fops)
		goto out;

4603
	output_event = output_file->private_data;
4604 4605

	/* Don't chain output fds */
4606
	if (output_event->output)
4607 4608 4609
		goto out;

	/* Don't set an output fd when we already have an output channel */
4610
	if (event->data)
4611 4612 4613 4614 4615
		goto out;

	atomic_long_inc(&output_file->f_count);

set:
4616 4617 4618 4619
	mutex_lock(&event->mmap_mutex);
	old_output = event->output;
	rcu_assign_pointer(event->output, output_event);
	mutex_unlock(&event->mmap_mutex);
4620 4621 4622 4623

	if (old_output) {
		/*
		 * we need to make sure no existing perf_output_*()
4624
		 * is still referencing this event.
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
		 */
		synchronize_rcu();
		fput(old_output->filp);
	}

	ret = 0;
out:
	fput_light(output_file, fput_needed);
	return ret;
}

T
Thomas Gleixner 已提交
4636
/**
4637
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
4638
 *
4639
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4640
 * @pid:		target pid
I
Ingo Molnar 已提交
4641
 * @cpu:		target cpu
4642
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
4643
 */
4644 4645
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
4646
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4647
{
4648 4649 4650 4651
	struct perf_event *event, *group_leader;
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
4652 4653
	struct file *group_file = NULL;
	int fput_needed = 0;
4654
	int fput_needed2 = 0;
4655
	int err;
T
Thomas Gleixner 已提交
4656

4657
	/* for future expandability... */
4658
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4659 4660
		return -EINVAL;

4661 4662 4663
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
4664

4665 4666 4667 4668 4669
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4670
	if (attr.freq) {
4671
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
4672 4673 4674
			return -EINVAL;
	}

4675
	/*
I
Ingo Molnar 已提交
4676 4677 4678 4679 4680 4681 4682
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
4683
	 * Look up the group leader (we will attach this event to it):
4684 4685
	 */
	group_leader = NULL;
4686
	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4687
		err = -EINVAL;
4688 4689
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4690
			goto err_put_context;
4691
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4692
			goto err_put_context;
4693 4694 4695

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4696 4697 4698 4699 4700 4701 4702 4703
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4704
		 */
I
Ingo Molnar 已提交
4705 4706
		if (group_leader->ctx != ctx)
			goto err_put_context;
4707 4708 4709
		/*
		 * Only a group leader can be exclusive or pinned
		 */
4710
		if (attr.exclusive || attr.pinned)
4711
			goto err_put_context;
4712 4713
	}

4714
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4715
				     NULL, NULL, GFP_KERNEL);
4716 4717
	err = PTR_ERR(event);
	if (IS_ERR(event))
T
Thomas Gleixner 已提交
4718 4719
		goto err_put_context;

4720
	err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4721
	if (err < 0)
4722 4723
		goto err_free_put_context;

4724 4725
	event_file = fget_light(err, &fput_needed2);
	if (!event_file)
4726 4727
		goto err_free_put_context;

4728
	if (flags & PERF_FLAG_FD_OUTPUT) {
4729
		err = perf_event_set_output(event, group_fd);
4730 4731
		if (err)
			goto err_fput_free_put_context;
4732 4733
	}

4734
	event->filp = event_file;
4735
	WARN_ON_ONCE(ctx->parent_ctx);
4736
	mutex_lock(&ctx->mutex);
4737
	perf_install_in_context(ctx, event, cpu);
4738
	++ctx->generation;
4739
	mutex_unlock(&ctx->mutex);
4740

4741
	event->owner = current;
4742
	get_task_struct(current);
4743 4744 4745
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
4746

4747
err_fput_free_put_context:
4748
	fput_light(event_file, fput_needed2);
T
Thomas Gleixner 已提交
4749

4750
err_free_put_context:
4751
	if (err < 0)
4752
		kfree(event);
T
Thomas Gleixner 已提交
4753 4754

err_put_context:
4755 4756 4757 4758
	if (err < 0)
		put_ctx(ctx);

	fput_light(group_file, fput_needed);
T
Thomas Gleixner 已提交
4759

4760
	return err;
T
Thomas Gleixner 已提交
4761 4762
}

4763 4764 4765 4766 4767 4768 4769 4770 4771
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4772
				 pid_t pid, perf_callback_t callback)
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
4784
		return NULL;
4785 4786

	event = perf_event_alloc(attr, cpu, ctx, NULL,
4787
				     NULL, callback, GFP_KERNEL);
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
	err = PTR_ERR(event);
	if (IS_ERR(event))
		goto err_put_context;

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

err_put_context:
	if (err < 0)
		put_ctx(ctx);

	return NULL;
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

4815
/*
4816
 * inherit a event from parent task to child task:
4817
 */
4818 4819
static struct perf_event *
inherit_event(struct perf_event *parent_event,
4820
	      struct task_struct *parent,
4821
	      struct perf_event_context *parent_ctx,
4822
	      struct task_struct *child,
4823 4824
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
4825
{
4826
	struct perf_event *child_event;
4827

4828
	/*
4829 4830
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
4831 4832 4833
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
4834 4835
	if (parent_event->parent)
		parent_event = parent_event->parent;
4836

4837 4838 4839
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
4840
					   NULL, GFP_KERNEL);
4841 4842
	if (IS_ERR(child_event))
		return child_event;
4843
	get_ctx(child_ctx);
4844

4845
	/*
4846
	 * Make the child state follow the state of the parent event,
4847
	 * not its attr.disabled bit.  We hold the parent's mutex,
4848
	 * so we won't race with perf_event_{en, dis}able_family.
4849
	 */
4850 4851
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
4852
	else
4853
		child_event->state = PERF_EVENT_STATE_OFF;
4854

4855 4856
	if (parent_event->attr.freq)
		child_event->hw.sample_period = parent_event->hw.sample_period;
4857

4858 4859
	child_event->overflow_handler = parent_event->overflow_handler;

4860 4861 4862
	/*
	 * Link it up in the child's context:
	 */
4863
	add_event_to_ctx(child_event, child_ctx);
4864 4865 4866

	/*
	 * Get a reference to the parent filp - we will fput it
4867
	 * when the child event exits. This is safe to do because
4868 4869 4870
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
4871
	atomic_long_inc(&parent_event->filp->f_count);
4872

4873
	/*
4874
	 * Link this into the parent event's child list
4875
	 */
4876 4877 4878 4879
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4880

4881
	return child_event;
4882 4883
}

4884
static int inherit_group(struct perf_event *parent_event,
4885
	      struct task_struct *parent,
4886
	      struct perf_event_context *parent_ctx,
4887
	      struct task_struct *child,
4888
	      struct perf_event_context *child_ctx)
4889
{
4890 4891 4892
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
4893

4894
	leader = inherit_event(parent_event, parent, parent_ctx,
4895
				 child, NULL, child_ctx);
4896 4897
	if (IS_ERR(leader))
		return PTR_ERR(leader);
4898 4899
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
4900 4901 4902
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
4903
	}
4904 4905 4906
	return 0;
}

4907
static void sync_child_event(struct perf_event *child_event,
4908
			       struct task_struct *child)
4909
{
4910
	struct perf_event *parent_event = child_event->parent;
4911
	u64 child_val;
4912

4913 4914
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
4915

4916
	child_val = atomic64_read(&child_event->count);
4917 4918 4919 4920

	/*
	 * Add back the child's count to the parent's count:
	 */
4921 4922 4923 4924 4925
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
4926 4927

	/*
4928
	 * Remove this event from the parent's list
4929
	 */
4930 4931 4932 4933
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4934 4935

	/*
4936
	 * Release the parent event, if this was the last
4937 4938
	 * reference to it.
	 */
4939
	fput(parent_event->filp);
4940 4941
}

4942
static void
4943 4944
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
4945
			 struct task_struct *child)
4946
{
4947
	struct perf_event *parent_event;
4948

4949
	perf_event_remove_from_context(child_event);
4950

4951
	parent_event = child_event->parent;
4952
	/*
4953
	 * It can happen that parent exits first, and has events
4954
	 * that are still around due to the child reference. These
4955
	 * events need to be zapped - but otherwise linger.
4956
	 */
4957 4958 4959
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
4960
	}
4961 4962 4963
}

/*
4964
 * When a child task exits, feed back event values to parent events.
4965
 */
4966
void perf_event_exit_task(struct task_struct *child)
4967
{
4968 4969
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
4970
	unsigned long flags;
4971

4972 4973
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
4974
		return;
P
Peter Zijlstra 已提交
4975
	}
4976

4977
	local_irq_save(flags);
4978 4979 4980 4981 4982 4983
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
4984 4985
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
4986 4987 4988

	/*
	 * Take the context lock here so that if find_get_context is
4989
	 * reading child->perf_event_ctxp, we wait until it has
4990 4991 4992
	 * incremented the context's refcount before we do put_ctx below.
	 */
	spin_lock(&child_ctx->lock);
4993
	child->perf_event_ctxp = NULL;
4994 4995 4996
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
4997
	 * the events from it.
4998 4999
	 */
	unclone_ctx(child_ctx);
5000
	update_context_time(child_ctx);
P
Peter Zijlstra 已提交
5001 5002 5003
	spin_unlock_irqrestore(&child_ctx->lock, flags);

	/*
5004 5005 5006
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5007
	 */
5008
	perf_event_task(child, child_ctx, 0);
5009

5010 5011 5012
	/*
	 * We can recurse on the same lock type through:
	 *
5013 5014 5015
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5016 5017 5018 5019 5020 5021
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5022

5023
again:
5024
	list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
5025
				 group_entry)
5026
		__perf_event_exit_task(child_event, child_ctx, child);
5027 5028

	/*
5029
	 * If the last event was a group event, it will have appended all
5030 5031 5032
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5033
	if (!list_empty(&child_ctx->group_list))
5034
		goto again;
5035 5036 5037 5038

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5039 5040
}

5041 5042 5043 5044
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5045
void perf_event_free_task(struct task_struct *task)
5046
{
5047 5048
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5049 5050 5051 5052 5053 5054

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5055 5056
	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
		struct perf_event *parent = event->parent;
5057 5058 5059 5060 5061

		if (WARN_ON_ONCE(!parent))
			continue;

		mutex_lock(&parent->child_mutex);
5062
		list_del_init(&event->child_list);
5063 5064 5065 5066
		mutex_unlock(&parent->child_mutex);

		fput(parent->filp);

5067 5068
		list_del_event(event, ctx);
		free_event(event);
5069 5070
	}

5071
	if (!list_empty(&ctx->group_list))
5072 5073 5074 5075 5076 5077 5078
		goto again;

	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

5079
/*
5080
 * Initialize the perf_event context in task_struct
5081
 */
5082
int perf_event_init_task(struct task_struct *child)
5083
{
5084 5085 5086
	struct perf_event_context *child_ctx, *parent_ctx;
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5087
	struct task_struct *parent = current;
5088
	int inherited_all = 1;
5089
	int ret = 0;
5090

5091
	child->perf_event_ctxp = NULL;
5092

5093 5094
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5095

5096
	if (likely(!parent->perf_event_ctxp))
5097 5098
		return 0;

5099 5100
	/*
	 * This is executed from the parent task context, so inherit
5101
	 * events that have been marked for cloning.
5102
	 * First allocate and initialize a context for the child.
5103 5104
	 */

5105
	child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
5106
	if (!child_ctx)
5107
		return -ENOMEM;
5108

5109 5110
	__perf_event_init_context(child_ctx, child);
	child->perf_event_ctxp = child_ctx;
5111
	get_task_struct(child);
5112

5113
	/*
5114 5115
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5116
	 */
5117 5118
	parent_ctx = perf_pin_task_context(parent);

5119 5120 5121 5122 5123 5124 5125
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5126 5127 5128 5129
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5130
	mutex_lock(&parent_ctx->mutex);
5131 5132 5133 5134 5135

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5136
	list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
5137

5138
		if (!event->attr.inherit) {
5139
			inherited_all = 0;
5140
			continue;
5141
		}
5142

5143
		ret = inherit_group(event, parent, parent_ctx,
5144 5145
					     child, child_ctx);
		if (ret) {
5146
			inherited_all = 0;
5147
			break;
5148 5149 5150 5151 5152 5153 5154
		}
	}

	if (inherited_all) {
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5155 5156
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5157
		 * because the list of events and the generation
5158
		 * count can't have changed since we took the mutex.
5159
		 */
5160 5161 5162
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5163
			child_ctx->parent_gen = parent_ctx->parent_gen;
5164 5165 5166 5167 5168
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5169 5170
	}

5171
	mutex_unlock(&parent_ctx->mutex);
5172

5173
	perf_unpin_context(parent_ctx);
5174

5175
	return ret;
5176 5177
}

5178
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5179
{
5180
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5181

5182
	cpuctx = &per_cpu(perf_cpu_context, cpu);
5183
	__perf_event_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
5184

5185
	spin_lock(&perf_resource_lock);
5186
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5187
	spin_unlock(&perf_resource_lock);
5188

5189
	hw_perf_event_setup(cpu);
T
Thomas Gleixner 已提交
5190 5191 5192
}

#ifdef CONFIG_HOTPLUG_CPU
5193
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5194 5195
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5196 5197
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5198

5199 5200
	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5201
}
5202
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5203
{
5204
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5205
	struct perf_event_context *ctx = &cpuctx->ctx;
5206 5207

	mutex_lock(&ctx->mutex);
5208
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5209
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5210 5211
}
#else
5212
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5224
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5225 5226
		break;

5227 5228
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
5229
		hw_perf_event_setup_online(cpu);
5230 5231
		break;

T
Thomas Gleixner 已提交
5232 5233
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5234
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5235 5236 5237 5238 5239 5240 5241 5242 5243
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5244 5245 5246
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5247 5248
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5249
	.priority		= 20,
T
Thomas Gleixner 已提交
5250 5251
};

5252
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5253 5254 5255
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5256 5257
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5278
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5279 5280
		return -EINVAL;

5281
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5282 5283 5284 5285
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
5286 5287
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5288 5289 5290
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
5291
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5313
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5314
	perf_overcommit = val;
5315
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5342
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5343 5344
};

5345
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5346 5347 5348 5349
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5350
device_initcall(perf_event_sysfs_init);